Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Chemical Synthesis of Acyclic Nucleoside Phosphonate Analogs Linked with Cyclic Systems between the Phosphonate and the Base Moieties

Author(s): Guang Huan Shen and Joon Hee Hong*

Volume 27, Issue 35, 2020

Page: [5918 - 5948] Pages: 31

DOI: 10.2174/0929867326666190620100217

Price: $65

Abstract

The syntheses of acyclic nucleoside phosphonate (ANP) analogs linked with cyclic systems are described in the present review. The purpose of the review is to report the methodology of ANP analogs and to give an idea on the synthesis of a therapeutic structural feature of such analogs. The cyclopropane systems were mainly prepared by diazomethane cyclopropanation catalyzed by Pd(OAc)2, intramolecular alkylation, Kulinkovich cyclopropanation, and use of difluorocyclopropane, and so forth. The preparation of methylenecyclopropane system was made by diazoacetate cyclopropanation catalyzed by Rhodium followed by addition-elimination reactions. For the preparation of a variety of tethered 1,2,3-triazole systems, 1,3-dipolar cycloaddition between azidealkylphosphonates and propargylated nucleobases was mainly applied. The formation of various phosphonate moieties was achieved via phosphonylation of alkoxide, cross-coupling between BrZnCF2P (O)(OEt)2 with iodoalkens catalyzed by CuBr, Michaelis-Arbuzov reaction with phosphite, and Rh(II)-catalyzed O-H insertion, and so forth.

Keywords: Acyclic nucleoside phosphonate (ANP), purine nucleoside phosphorylase (PNP), antiviral agents, enzyme inhibitors, phosphonylation, 1, 3-dipolar cycloaddition.

[1]
Elayadi, H.; Smietana, M.; Pannecouque, C.; Leyssen, P.; Neyts, J.; Vasseur, J.J.; Lazrek, H.B. Straightforward synthesis of triazoloacyclonucleotide phosphonates as potential HCV inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(24), 7365-7368.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.046 ] [PMID: 21051229]
[2]
De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discov., 2005, 4(11), 928-940.
[http://dx.doi.org/10.1038/nrd1877 ] [PMID: 16264436]
[3]
Lee, W.A.; Martin, J.C. Perspectives on the development of acyclic nucleotide analogs as antiviral drugs. Antiviral Res., 2006, 71(2-3), 254-259.
[http://dx.doi.org/10.1016/j.antiviral.2006.05.020 ] [PMID: 16837073]
[4]
Wróblewski, A.E.; Głowacka, I.E.; Piotrowska, D.G. 1′-Homonucleosides and their structural analogues: A review. Eur. J. Med. Chem., 2016, 118(8), 121-142.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.034 ] [PMID: 27128178]
[5]
Andrei, G.; Topalis, D.; De Schutter, T.; Snoeck, R. Insights into the mechanism of action of cidofovir and other acyclic nucleoside phosphonates against polyoma- and papillomaviruses and non-viral induced neoplasia. Antiviral Res., 2015, 114, 21-46.
[http://dx.doi.org/10.1016/j.antiviral.2014.10.012 ] [PMID: 25446403]
[6]
De Clercq, E.; Sakuma, T.; Baba, M.; Pauwels, R.; Balzarini, J.; Rosenberg, I.; Holý, A. Antiviral activity of phosphonylmethoxyalkyl derivatives of purine and pyrimidines. Antiviral Res., 1987, 8(5-6), 261-272.
[http://dx.doi.org/10.1016/S0166-3542(87)80004-9 ] [PMID: 3451698]
[7]
Pauwels, R.; Balzarini, J.; Schols, D.; Baba, M.; Desmyter, J.; Rosenberg, I.; Holy, A.; De Clercq, E. Phosphonylmethoxyethyl purine derivatives, a new class of anti-human immunodeficiency virus agents. Antimicrob. Agents Chemother., 1988, 32(7), 1025-1030.
[http://dx.doi.org/10.1128/AAC.32.7.1025 ] [PMID: 2847636]
[8]
Snoeck, R.; Sakuma, T.; De Clercq, E.; Rosenberg, I.; Holy, A. (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, a potent and selective inhibitor of human cytomegalovirus replication. Antimicrob. Agents Chemother., 1988, 32(12), 1839-1844.
[http://dx.doi.org/10.1128/AAC.32.12.1839 ] [PMID: 2854454]
[9]
Votruba, I.; Otová, B.; Holý, A. Acyclic nucleoside phosphonates as potential antineoplastic agents Cas. Lek. Cesk., 2008, 147(9), 471-477.
[PMID: 18988489]
[10]
Zídek, Z.; Potmesil, P.; Holý, A. Cytostatic activity of antiviral acyclic nucleoside phosphonates in rodent lymphocytes. Toxicol. Appl. Pharmacol., 2003, 192(3), 246-253.
[http://dx.doi.org/10.1016/S0041-008X(03)00215-1 ] [PMID: 14575642]
[11]
Głowacka, I.E.; Balzarini, J.; Andrei, G.; Snoeck, R.; Schols, D.; Piotrowska, D.G. Design, synthesis, antiviral and cytostatic activity of ω-(1H-1,2,3-triazol-1-yl)(polyhydroxy)alkylphosphonates as acyclic nucleotide analogues. Bioorg. Med. Chem., 2014, 22(14), 3629-3641.
[http://dx.doi.org/10.1016/j.bmc.2014.05.020 ] [PMID: 24906510]
[12]
Głowacka, I.E.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D.G. Phosphonylated Acyclic Guanosine Analogues with the 1,2,3-Triazole Linker. Molecules, 2015, 20(10), 18789-18807.
[http://dx.doi.org/10.3390/molecules201018789 ] [PMID: 26501246]
[13]
De Clercq, E.; Li, G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15 ] [PMID: 27281742]
[14]
D.E., Clercq E.; Descamps, J.; DE Somer, P.; Holyacute, A. (S)-9-(2,3-Dihydroxypropyl)adenine: An Aliphatic Nucleoside Analog with Broad-Spectrum Antiviral Activity. Science, 1978, 200(4341), 563-565.
[http://dx.doi.org/10.1126/science.200.4341.563 ] [PMID: 17839440]
[15]
De Clercq, E. Broad-spectrum anti-DNA virus and anti-retrovirus activity of phosphonylmethoxyalkylpurines and -pyrimidines. Biochem. Pharmacol., 1991, 42(5), 963-972.
[http://dx.doi.org/10.1016/0006-2952(91)90276-B ] [PMID: 1872902]
[16]
De Clercq, E. Potential of acyclic nucleoside phosphonates in the treatment of DNA virus and retrovirus infections. Expert Rev. Anti Infect. Ther., 2003, 1(1), 21-43.
[http://dx.doi.org/10.1586/14787210.1.1.21 ] [PMID: 15482100]
[17]
De Clercq, E. Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections. Clin. Microbiol. Rev., 2003, 16(4), 569-596.
[http://dx.doi.org/10.1128/CMR.16.4.569-596.2003 ] [PMID: 14557287]
[18]
Halazy, S.; Ehrhard, A.; Eggenspiller, A.; Berges-Gross, V.; Danzin, C. Fluorophosphonate Derivatives of N9-Benzylguanine as Potent, Slow-Binding Multisubstrate Analogue Inhibitors of Purine Nucleoside Phosphorylase. Tetrahedron, 1996, 52(1), 177-184.
[http://dx.doi.org/10.1016/0040-4020(95)00891-B]
[19]
de Azevedo, W.F.J. Jr Molecular dynamics simulations of protein targets identified in Mycobacterium tuberculosis. Curr. Med. Chem., 2011, 18(9), 1353-1366.
[http://dx.doi.org/10.2174/092986711795029519 ] [PMID: 21366529]
[20]
Canduri, F.; Silva, R.G.; dos Santos, D.M.; Palma, M.S.; Basso, L.A.; Santos, D.S.; de Azevedo, W.F.J. Jr Structure of human PNP complexed with ligands. Acta Crystallogr. D Biol. Crystallogr., 2005, 61(Pt 7), 856-862.
[http://dx.doi.org/10.1107/S0907444905005421 ] [PMID: 15983407]
[21]
Filgueira de Azevedo, W., Jr; dos Santos, G.C.; dos Santos, D.M.; Olivieri, J.R.; Canduri, F.; Silva, R.G.; Basso, L.A.; Renard, G.; da Fonseca, I.O.; Mendes, M.A.; Palma, M.S.; Santos, D.S. Docking and small angle X-ray scattering studies of purine nucleoside phosphorylase. Biochem. Biophys. Res. Commun., 2003, 309(4), 923-928.
[http://dx.doi.org/10.1016/j.bbrc.2003.08.093 ] [PMID: 13679062]
[22]
de Azevedo, W.F.J., Jr; Canduri, F.; dos Santos, D.M.; Silva, R.G.; de Oliveira, J.S.; de Carvalho, L.P.; Basso, L.A.; Mendes, M.A.; Palma, M.S.; Santos, D.S. Crystal structure of human purine nucleoside phosphorylase at 2.3A resolution. Biochem. Biophys. Res. Commun., 2003, 308(3), 545-552.
[http://dx.doi.org/10.1016/S0006-291X(03)01431-1 ] [PMID: 12914785]
[23]
Yokomatsu, T.; Abe, H.; Sato, M.; Suemune, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis of 1,1-difluoro-5-(1H-9-purinyl)-2-pentenylphosphonic acids and the related methano analogues. Remarkable effect of the nucleobases and the cyclopropane rings on inhibitory activity toward purine nucleoside phosphorylase. Bioorg. Med. Chem., 1998, 6(12), 2495-2505.
[http://dx.doi.org/10.1016/S0968-0896(98)80023-0 ] [PMID: 9925305]
[24]
Silva, R.G.; Nunes, J.E.; Canduri, F.; Borges, J.C.; Gava, L.M.; Moreno, F.B.; Basso, L.A.; Santos, D.S. Purine nucleoside phosphorylase: a potential target for the development of drugs to treat T-cell- and apicomplexan parasite-mediated diseases. Curr. Drug Targets, 2007, 8(3), 413-422.
[http://dx.doi.org/10.2174/138945007780058997 ] [PMID: 17348834]
[25]
Halazy, S.; Ehrhard, A.; Danzin, C. 9-(Difluorophosphonoalkyl)guanines as a New Class of Multisubstrate Analog Inhibitors of Purine Nucleoside Phosphorylase. J. Am. Chem. Soc., 1991, 113(1), 315-317.
[http://dx.doi.org/10.1021/ja00001a045]
[26]
Weibel, M.; Balzarini, J.; Bernhardt, A.; Mamont, P. Potentiating effect of (2-[2-[(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)methyl]-phenyl]ethenyl) -phosphonic acid (MDL 74,428), a potent inhibitor of purine nucleoside phosphorylase, on the antiretroviral activities of 2′,3′-dideoxyinosine combined with ribavirin in mice. Biochem. Pharmacol., 1994, 48(2), 245-252.
[http://dx.doi.org/10.1016/0006-2952(94)90094-9 ] [PMID: 8053921]
[27]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Design, synthesis, antiviral, and cytotoxic evaluation of novel phosphonylated 1,2,3-triazoles as acyclic nucleotide analogues. Nucleosides Nucleotides Nucleic Acids, 2012, 31(4), 293-318.
[http://dx.doi.org/10.1080/15257770.2012.662611 ] [PMID: 22444192]
[28]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. The synthesis, antiviral, cytostatic and cytotoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker. Eur. J. Med. Chem., 2013, 70(12), 703-722.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.057 ] [PMID: 24219992]
[29]
Casara, P.J.; Altenburger, J-M.; Taylor, D.L.; Tyms, A.S.; Kenny, M.; Navé, J-F. Synthesis and Antiviral Activity of Rigid Acyclonucleotide Analogs. Bioorg. Med. Chem. Lett., 1995, 5(12), 1275-1280.
[http://dx.doi.org/10.1016/0960-894X(95)00208-B]
[30]
Kim, C.U.; Misco, P.F.; Luh, B.Y.; Hitchcock, M.J.; Ghazzouli, I.; Martin, J.C. A new class of acyclic phosphonate nucleotide analogues: phosphonate isosteres of acyclovir and ganciclovir monophosphates as antiviral agents. J. Med. Chem., 1991, 34(7), 2286-2294.
[http://dx.doi.org/10.1021/jm00111a052 ] [PMID: 1648622]
[31]
Wang, W.; Jin, H.; Fuselli, N.; Mansour, T.S. Synthesis and Anti HCMV Activity of 3,4-Disubstituted Tetrahydrofuran Derived Nucleosides and Nucleotides: A tethered Series of PME Derivatives. Bioorg. Med. Chem. Lett., 1997, 7(20), 2567-2572.
[http://dx.doi.org/10.1016/S0960-894X(97)10048-8]
[32]
Hocková, D.; Holý, A.; Masojídková, M.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J. 5-Substituted-2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines-acyclic nucleoside phosphonate analogues with antiviral activity. J. Med. Chem., 2003, 46(23), 5064-5073.
[http://dx.doi.org/10.1021/jm030932o ] [PMID: 14584956]
[33]
Hocková, D.; Holý, A.; Masojídková, M.; Keough, D.T.; de Jersey, J.; Guddat, L.W. Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Bioorg. Med. Chem., 2009, 17(17), 6218-6232.
[http://dx.doi.org/10.1016/j.bmc.2009.07.044 ] [PMID: 19666228]
[34]
Montagu, A.; Pradére, U.; Roy, V.; Nolan, S.P.; Agrofoglio, L.A. Expeditious Convergent Procedure for the Preparation of bis(POC) Prodrugs of New (E)-4-Phosphono-but-2-en-1-yl Nucleosides. Tetrahedron, 2011, 67(29), 5319-5328.
[http://dx.doi.org/10.1016/j.tet.2011.05.017]
[35]
Janeba, Z.; Hocková, D. The Role of Acyclic Nucleoside Phosphonates as Potential Antimalarials. Chem. Listy, 2014, 108(4), 335-343.
[36]
Yokomatsu, T.; Sato, M.; Abe, H.; Suemune, K.; Matsumoto, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis of (2‘S,3’S)-9-(4′-Phosphono-4′,4′-Difluoro-2′,3′-Methanobutyl)Guanine and Its Enantiomer. Evaluation of the Inhibitory Activity for Purine Nucleoside Phosphorylase. Tetrahedron, 1997, 53(33), 11297-11306.
[http://dx.doi.org/10.1016/S0040-4020(97)00704-7]
[37]
Yokomatsu, T.; Suemune, K.; Murano, T.; Shibuya, S. Synthesis of (α,α-Difluoroallyl)phosphonates from Alkenyl Halides or Acetylenes. J. Org. Chem., 1996, 61(20), 7207-7211.
[http://dx.doi.org/10.1021/jo960896j ] [PMID: 11667632]
[38]
Stoeckler, J.D.; Agarwal, R.P.; Agarwal, K.C.; Parks, R.E.J., Jr Purine nucleoside phosphorylase from human erythrocytes. Methods Enzymol., 1978, 51, 530-538.
[http://dx.doi.org/10.1016/S0076-6879(78)51074-4 ] [PMID: 99639]
[39]
Ouerfell, O.; Ishida, M.; Shinozaki, H.; Nakanishi, K.; Ohfune, Y. Efficient Synthesis of 4-Methylene-L-glutamic Acid and its Analogues. Synlett, 1993, 1993(6), 409-410.
[http://dx.doi.org/10.1055/s-1993-22474]
[40]
Suda, M. Cyclopropanation of Terminal Olefins Using Diazomethane/Palladium(II) Acetate. Synthesis, 1981, 1981(9), 714-714.
[http://dx.doi.org/10.1055/s-1981-29572]
[41]
Yokomatsu, T.; Yamagishi, T.; Suemune, K.; Abe, H.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Stereoselective Reduction of Cyclopropylalkaones Possessing a Difluoromethylenephosphonate Group at the Ring: Application to Stereoselective Synthesis of Novel Cyclopropane Nucleotide Analogues. Tetrahedron, 2000, 56(37), 7099-7108.
[http://dx.doi.org/10.1016/S0040-4020(00)00620-7]
[42]
Montgomery, J.A.; Temple, C.J. Synthesis of Potential Anticancer Agents. XXVI. The Alkylation of 6-Chloropurine. J. Am. Chem. Soc., 1961, 83(3), 630-635.
[http://dx.doi.org/10.1021/ja01464a031]
[43]
Kjellberg, J.; Johansson, N.G. Characterization of N7 and N9 Alkylated Purine Analogues by 1H and 13C nmr. Tetrahedron, 1986, 42(23), 6541-6544.
[http://dx.doi.org/10.1016/S0040-4020(01)88116-3]
[44]
Geen, G.R.; Grinter, T.J.; Kincey, P.M.; Jarvest, R.L. The Effect of the c-6 Substituent on the Regioselectivity of n-Alkylation of 2-Aminopurines. Tetrahedron, 1990, 46(19), 6903-6914.
[http://dx.doi.org/10.1016/S0040-4020(01)87878-9]
[45]
Yokomatsu, T.; Hayakawa, Y.; Suemune, K.; Kihara, T.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis and biological evaluation of 1,1-difluoro-2-(tetrahydro-3-furanyl) ethylphosphonic acids possessing a N9-purinylmethyl functional group at the ring. a new class of inhibitors for purine nucleoside phosphorylases. Bioorg. Med. Chem. Lett., 1999, 9(19), 2833-2836.
[http://dx.doi.org/10.1016/S0960-894X(99)00495-3 ] [PMID: 10522701]
[46]
Guan, H-P.; Qiu, Y-L.; Ksebati, M.B.; Kern, E.R.; Zemlicka, J. Synthesis of Phosphonate Derivatives of Methylenecyclopropane Nucleoside Analogues by Alkylation-Elimination Method and Unusual Opening of Cyclopropane Ring. Tetrahedron, 2002, 58(30), 6047-6059.
[http://dx.doi.org/10.1016/S0040-4020(02)00589-6]
[47]
Lai, M.T.; Liu, L.D.; Liu, H.W. Mechanistic Study on the Inactivation of General Acyl-CoA Dehydrogenase by a Metabolite of Hypoglycin A. J. Am. Chem. Soc., 1991, 113(19), 7388-7397.
[http://dx.doi.org/10.1021/ja00019a040]
[48]
Megati, S.; Phadtare, S.; Zemlicka, J. Unsaturated Phosphonates as Acyclic Nucleotide Analogs. Anomalous Michaelis-Arbuzov and Michaelis-Becker Reactions with Multiple Bond Systems. J. Org. Chem., 1992, 57(8), 2320-2327.
[http://dx.doi.org/10.1021/jo00034a025]
[49]
Alexander, P.; Holý, A. General Method of Preparation of N-. Derivatives of Heterocyclic Bases Coll. Czech. Chem. Comm., 1993, 58(5), 1151-1163.
[http://dx.doi.org/10.1135/cccc19931151]
[50]
Qiu, Y.L.; Ksebati, M.B.; Ptak, R.G.; Fan, B.Y.; Breitenbach, J.M.; Lin, J.S.; Cheng, Y.C.; Kern, E.R.; Drach, J.C.; Zemlicka, J. (Z)- and (E)-2-((hydroxymethyl) cyclopropylidene)methyladenine and -guanine. New nucleoside analogues with a broad-spectrum antiviral activity. J. Med. Chem., 1998, 41(1), 10-23.
[http://dx.doi.org/10.1021/jm9705723 ] [PMID: 9438017]
[51]
Schweizer, E.E.; Creasy, W.S.; Light, K.K.; Shaffer, E.T. Reactions of Phosphorous Compounds. XX. Reactions of Furfuryl-, Dihydrofurfuryl, and Tetrahydrofurfuryltriphenylphosphonium Bromide. J. Org. Chem., 1969, 34(1), 212-218.
[http://dx.doi.org/10.1021/jo00838a046]
[52]
Gajewski, J.J.; Burka, L.T. Axially Dissymmetric Molecules. Characterization of the Four 1-Carbethoxy-4-Methylspiropentanes. J. Org. Chem., 1970, 35(7), 2190-2196.
[http://dx.doi.org/10.1021/jo00832a018]
[53]
Webb, R.R.; Wos, J.A.; Bronson, J.J.; Martin, J.C. Synthesis of (S)-N1-(3-hydroxy-2-phosphonylmethoxy) propylcytosine, (S)-HPMPC. Tetrahedron Lett., 1988, 29(43), 5475-5478.
[http://dx.doi.org/10.1016/S0040-4039(00)80790-X]
[54]
Choi, J.R.; Cho, D.G.; Roh, K.Y.; Hwang, J.T.; Ahn, S.; Jang, H.S.; Cho, W.Y.; Kim, K.W.; Cho, Y.G.; Kim, J.; Kim, Y.Z. A novel class of phosphonate nucleosides. 9-[(1-phosphonomethoxycyclopropyl)methyl]guanine as a potent and selective anti-HBV agent. J. Med. Chem., 2004, 47(11), 2864-2869.
[http://dx.doi.org/10.1021/jm0305265 ] [PMID: 15139764]
[55]
Raiman, M.V. II’ina, N.A.; Kulinkovich, O.G., A Convenient Method for Preparation of N-Substituted 1-Acetonylaminocyclopropanes from Acetoacetic Ester Ethylene Acetal. Synlett, 1999, 1999(7), 1053-1054.
[http://dx.doi.org/10.1055/s-1999-2751]
[56]
Lee, J.C.; Sung, M.J.; Cha, J.K. Evaluation of Titanium Alkoxides and Aryloxides in the Kulinkovich Cyclopropanation of Carboxylic Esters. Tetrahedron Lett., 2001, 42(11), 2059-2061.
[http://dx.doi.org/10.1016/S0040-4039(01)00145-9]
[57]
Starrett, J.E.J., Jr; Tortolani, D.R.; Russell, J.; Hitchcock, M.J.; Whiterock, V.; Martin, J.C.; Mansuri, M.M. Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). J. Med. Chem., 1994, 37(12), 1857-1864.
[http://dx.doi.org/10.1021/jm00038a015 ] [PMID: 8021925]
[58]
Jones, R.J.; Bischofberger, N. Minireview: nucleotide prodrugs. Antiviral Res., 1995, 27(1-2), 1-17.
[http://dx.doi.org/10.1016/0166-3542(95)00011-A ] [PMID: 7486948]
[59]
Moore, J.P.; McKeating, J.A.; Weiss, R.A.; Sattentau, Q.J. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science, 1990, 250(4984), 1139-1142.
[http://dx.doi.org/10.1126/science.2251501 ] [PMID: 2251501]
[60]
Mahy, B.W. Virology a Practical Approach; IRL Press: Washinton, D. C., 1985, pp. 207-236.
[61]
Onishi, T.; Sekiyama, T.; Tsuji, T. Synthesis of phosphonate analogues of the antiviral cyclopropane nucleoside A-5021. Nucleosides Nucleotides Nucleic Acids, 2005, 24(8), 1187-1197.
[http://dx.doi.org/10.1081/NCN-200067409 ] [PMID: 16270661]
[62]
Sekiyama, T.; Hatsuya, S.; Tanaka, Y.; Uchiyama, M.; Ono, N.; Iwayama, S.; Oikawa, M.; Suzuki, K.; Okunishi, M.; Tsuji, T. Synthesis and antiviral activity of novel acyclic nucleosides: discovery of a cyclopropyl nucleoside with potent inhibitory activity against herpesviruses. J. Med. Chem., 1998, 41(8), 1284-1298.
[http://dx.doi.org/10.1021/jm9705869 ] [PMID: 9548818]
[63]
Iwayama, S.; Ono, N.; Ohmura, Y.; Suzuki, K.; Aoki, M.; Nakazawa, H.; Oikawa, M.; Kato, K.; Okunishi, M.; Nishiyama, Y.; Yamanishi, K. Antiherpesvirus Activities of (1‘S,2’R)-9-[1′,2′-bis(Hydroxymethyl)cycloprop-1′-yl]MethylGuanine (A-5021) in Cell Culture. Antimicrob. Agents Chemother., 1998, 42(7), 1666-1670.
[http://dx.doi.org/10.1128/AAC.42.7.1666 ] [PMID: 9661001]
[64]
Onishi, T.; Matsuzawa, T.; Nishi, S.; Tsuji, T. A Practical Synthesis of Antiviral Cyclopropane Nucleoside A-5021. Tetrahedron Lett., 1999, 40(50), 8845-8847.
[http://dx.doi.org/10.1016/S0040-4039(99)01858-4]
[65]
Onishi, T.; Mukai, C.; Nakagawa, R.; Sekiyama, T.; Aoki, M.; Suzuki, K.; Nakazawa, H.; Ono, N.; Ohmura, Y.; Iwayama, S.; Okunishi, M.; Tsuji, T. Synthesis and antiviral activity of novel anti-VZV 5-substituted uracil nucleosides with a cyclopropane sugar moiety. J. Med. Chem., 2000, 43(2), 278-282.
[http://dx.doi.org/10.1021/jm9904194 ] [PMID: 10649983]
[66]
Harris, R.L.N.; McFadden, H.G. Acylphosphonates as Substrates for Wittig and Horner-Wittig Reactions: Unusual Stereoselectivity in the Synthesis of β-Phosphinoylacrylates. Aust. J. Chem., 1984, 37(2), 417-424.
[http://dx.doi.org/10.1071/CH9840417]
[67]
Teulade, M-P.; Savignac, P.; Aboujaoude, E.E.; Lietge, S.; Collignon, N. Alkylidenediphosphonates et Vinylphosphonates: Une Demarche Synthetiques Selective par Voie Carbanionique. J. Organomet. Chem., 1986, 304(3), 283-300.
[http://dx.doi.org/10.1016/0022-328X(86)80147-4]
[68]
Vo-Quang, Y.; Gravey, A.M.; Simonneau, R.; Vo-Quang, L.; Lacoste, A.M.; Le Goffic, F. Towards New Inhibitors of D-alanine:D-alanine Ligase: the Synthesis of 3-Amino Butenylphosphonic and Aminophosphonamidic Acids. Tetrahedron Lett., 1987, 28(49), 6167-6170.
[http://dx.doi.org/10.1016/S0040-4039(00)61837-3]
[69]
Yan, Z.; Zhou, S.; Kern, E.R.; Zemlicka, J. Synthesis of Methylenecyclopropane Analogues of Antiviral Nucleoside Phosphonates. Tetrahedron, 2006, 62(11), 2608-2615.
[http://dx.doi.org/10.1016/j.tet.2005.12.035 ] [PMID: 16758001]
[70]
Hah, J.H.; Gil, J.M.; Oh, D.Y. The stereoselective synthesis of cyclopropylphosphonate analogs of nucleotides. Tetrahedron Lett., 1999, 40(47), 8235-8238.
[http://dx.doi.org/10.1016/S0040-4039(99)01747-5]
[71]
de Meijere, A.; Teichmann, S.; Seyed-Mahdavi, F.; Kohlstruk, S. Synthesis and Diels—Alder Reactions of 2-Substituted 2-Cyclopropylideneacetates in Comparison with Allenecarboxylate and Ordinary Acrylates. Liebigs Ann. Chem., 1996, 1996(12), 1989-2000.
[http://dx.doi.org/10.1002/jlac.199619961208]
[72]
Seyed-Mahdavi, F.; Teichmann, S.; de Meijere, A. Reactivity Enhancement through Strain and Electronic Effects: α-Heterocyclopropylidenacetates as Powerful Michael Acceptors. Tetrahedron Lett., 1986, 27(51), 6185-6188.
[http://dx.doi.org/10.1016/S0040-4039(00)85428-3]
[73]
de Meijere, A.; Wessjohann, L. Tailoring the Reactivity of Small Ring Building Blocks for Organic Synthesis. Synlett, 1990, 1990(1), 20-32.
[http://dx.doi.org/10.1055/s-1990-20975]
[74]
Zhou, S.; Zemlicka, J. A New Alkylation-Elimination Method for Synthesis of Antiviral Fluoromethylenecyclopropane Analogues of Nucleosides. Tetrahedron, 2005, 61(30), 7112-7116.
[http://dx.doi.org/10.1016/j.tet.2005.05.054 ] [PMID: 16801980]
[75]
Soli, E.D.; Manoso, A.S.; Patterson, M.C.; DeShong, P.; Favor, D.A.; Hirschmann, R.; Smith, A.B. III Azide and Cyanide Displacements via Hypervalent Silicate Intermediates. J. Org. Chem., 1999, 64(9), 3171-3177.
[http://dx.doi.org/10.1021/jo982302d ] [PMID: 11674417]
[76]
Kjellberg, J.; Johansson, N.G. Studies on the Alkylation of Derivatives of Guanines. Nucleosides Nucleotides, 1989, 8(2), 225-256.
[http://dx.doi.org/10.1080/07328318908054170]
[77]
Wang, R.; Kern, E.R.; Zemlicka, J. Synthesis of methylenecyclobutane analogues of nucleosides with axial chirality and their phosphoralaninates: a new pronucleotide effective against Epstein-Barr virus. Antivir. Chem. Chemother., 2002, 13(4), 251-262.
[http://dx.doi.org/10.1177/095632020201300406 ] [PMID: 12495213]
[78]
Li, C.; Zemlicka, J. Synthesis of “reversed” methylenecyclopropane analogues of antiviral phosphonates. Nucleosides Nucleotides Nucleic Acids, 2007, 26(1), 111-120.
[http://dx.doi.org/10.1080/15257770601052349 ] [PMID: 17162591]
[79]
Qiu, Y-L.; Zemlicka, J. A New Efficient Synthesis of Antiviral Methylenecyclopropane Analogs of Purine Nucleosides. Synthesis, 1998, 1998(10), 1447-1452.
[http://dx.doi.org/10.1055/s-1998-2163]
[80]
Engel, R. Synthesis of Carbon-Phosphorus Bonds; CRC Press: Boca Raton, FL, 1988, pp. 21-75.
[81]
Mitsunobu, O. The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products. Synthesis, 1981, 1981(1), 1-28.
[http://dx.doi.org/10.1055/s-1981-29317]
[82]
Iwakawa, M.; Pinto, B.M.; Szarek, W.A. Synthetic Routes to Nucleoside Analogs of N-Substituted 1,3-Thiazolidines. Can. J. Chem., 1978, 56(3), 326-335.
[http://dx.doi.org/10.1139/v78-051]
[83]
Jacobson, K.A.; Ji, X.; Li, A-H.; Melman, N.; Siddiqui, M.A.; Shin, K-J.; Marquez, V.E.; Ravi, R.G. Methanocarba analogues of purine nucleosides as potent and selective adenosine receptor agonists. J. Med. Chem., 2000, 43(11), 2196-2203.
[http://dx.doi.org/10.1021/jm9905965 ] [PMID: 10841798]
[84]
Mhaske, S.B.; Ksebati, B.; Prichard, M.N.; Drach, J.C.; Zemlicka, J. Phosphonate analogues of cyclopropavir phosphates and their E-isomers. Synthesis and antiviral activity. Bioorg. Med. Chem., 2009, 17(11), 3892-3899.
[http://dx.doi.org/10.1016/j.bmc.2009.04.020 ] [PMID: 19410465]
[85]
Li, C.; Prichard, M.N.; Korba, B.E.; Drach, J.C.; Zemlicka, J. Fluorinated methylenecyclopropane analogues of nucleosides. Synthesis and antiviral activity of (Z)- and (E)-9-[(2-fluoromethyl-2-hydroxymethyl)-cyclopropylidene]methyladenine and -guanine. Bioorg. Med. Chem., 2008, 16(5), 2148-2155.
[http://dx.doi.org/10.1016/j.bmc.2007.11.082 ] [PMID: 18082410]
[86]
Wagner, A.; Heitz, M-P.; Mioskowski, C. Direct Conversion of Tetrahydropyranylated Alcohols to the Corresponding Bromides. Tetrahedron Lett., 1989, 30(5), 557-558.
[http://dx.doi.org/10.1016/S0040-4039(00)95252-3]
[87]
Bakos, T.; Vincze, I. Direct, High-Yield Transformation of Tetrahydropyranyl Ethers to Acetates. Synth. Commun., 1989, 19(3-4), 523-528.
[http://dx.doi.org/10.1080/00397918908050695]
[88]
Yan, Z.; Kern, E.R.; Gullen, E.; Cheng, Y.C.; Drach, J.C.; Zemlicka, J. Nucleotides and pronucleotides of 2,2-bis(hydroxymethyl)methylenecyclopropane analogues of purine nucleosides: synthesis and antiviral activity. J. Med. Chem., 2005, 48(1), 91-99.
[http://dx.doi.org/10.1021/jm040149b ] [PMID: 15634003]
[89]
Li, H.; Yoo, J.C.; Kim, E.; Hong, J.H. Synthesis of novel difluoro-cyclopropyl guanine nucleosides and their phosphonate analogues as potent antiviral agents. Nucleosides Nucleotides Nucleic Acids, 2011, 30(11), 945-960.
[http://dx.doi.org/10.1080/15257770.2011.625374 ] [PMID: 22060557]
[90]
Hong, J.H.; Ko, O.H. Synthesis and Antiviral Evaluation of Novel Acyclic Nucleosides. Bull. Korean Chem. Soc., 2003, 24(9), 1284-1288.
[http://dx.doi.org/10.5012/bkcs.2003.24.9.1284]
[91]
Csuk, R.; Thiede, G. Preparation of Novel Difluorocyclopropane Nucleosides. Tetrahedron, 1999, 55(3), 739-750.
[http://dx.doi.org/10.1016/S0040-4020(98)01067-9]
[92]
Csuk, R.; Eversmann, L. Synthesis of Difluorocyclopropyl Carbocyclic Homo-nucleosides. Tetrahedron, 1998, 54(23), 6445-6456.
[http://dx.doi.org/10.1016/S0040-4020(98)00324-X]
[93]
Phillion, D.P.; Andrew, S.S. Synthesis and Reactivity of Diethyl Phosphonomethyltriflate. Tetrahedron Lett., 1986, 27(13), 1477-1480.
[http://dx.doi.org/10.1016/S0040-4039(00)84289-6]
[94]
Xu, Y.; Flavin, M.T.; Xu, Z.Q. Preparation of New Wittig Reagents and Their Application to the Synthesis of α,β-Unsaturated Phosphonates. J. Org. Chem., 1996, 61(22), 7697-7701.
[http://dx.doi.org/10.1021/jo9608275 ] [PMID: 11667723]
[95]
Borcherding, D.R.; Narayanan, S.; Hasobe, M.; McKee, J.G.; Keller, B.T.; Borchardt, R.T. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 11. Molecular dissections of neplanocin A as potential inhibitors of S-adenosylhomocysteine hydrolase. J. Med. Chem., 1988, 31(9), 1729-1738.
[http://dx.doi.org/10.1021/jm00117a011 ] [PMID: 3411600]
[96]
Kim, A.; Hong, J.H.; Oh, C.H. Synthesis and anti-HCMV activity of novel cyclopropyl phosphonic acid nucleosides. Nucleosides Nucleotides Nucleic Acids, 2006, 25(12), 1399-1406.
[http://dx.doi.org/10.1080/15257770600918920 ] [PMID: 17067961]
[97]
Hyun Oh, C.; Hong, J.H. Synthesis and antiviral evaluation of novel cyclopropyl nucleosides, phosphonate nucleosides and phosphonic acid nucleosides. Arch. Pharm. (Weinheim), 2006, 339(9), 507-512.
[http://dx.doi.org/10.1002/ardp.200600031 ] [PMID: 16795106]
[98]
Oh, C.H.; Hong, J.H. Design, synthesis and anti-HIV activity of homologous PMEA derivatives. Nucleosides Nucleotides Nucleic Acids, 2008, 27(2), 186-195.
[http://dx.doi.org/10.1080/15257770701795953 ] [PMID: 18205072]
[99]
John, J.; Kim, Y.; Bennett, N.; Das, K.; Liekens, S.; Naesens, L.; Arnold, E.; Maguire, A.R.; Götte, M.; Dehaen, W.; Balzarini, J. Pronounced Inhibition Shift from HIV Reverse Transcriptase to Herpetic DNA Polymerases by Increasing the Flexibility of α-Carboxy Nucleoside Phosphonates. J. Med. Chem., 2015, 58(20), 8110-8127.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01180 ] [PMID: 26450273]
[100]
Keane, S.J.; Ford, A.; Mullins, N.D.; Maguire, N.M.; Legigan, T.; Balzarini, J.; Maguire, A.R. Design and synthesis of α-carboxy nucleoside phosphonate analogues and evaluation as HIV-1 reverse transcriptase-targeting agents. J. Org. Chem., 2015, 80(5), 2479-2493.
[http://dx.doi.org/10.1021/jo502549y ] [PMID: 25532055]
[101]
Debarge, S.; Balzarini, J.; Maguire, A.R. Design and synthesis of α-carboxy phosphononucleosides. J. Org. Chem., 2011, 76(1), 105-126.
[http://dx.doi.org/10.1021/jo101738e ] [PMID: 21121618]
[102]
Yin, X-Q.; Li, W-K.; Schneller, S.W. An Efficient Mitsunobu Coupling to Adenine-Derived Carbocyclic Nucleosides. Tetrahedron Lett., 2006, 47(52), 9187-9189.
[http://dx.doi.org/10.1016/j.tetlet.2006.10.126]
[103]
Chen, G.S.; Chen, C.S.; Chien, T.C.; Yeh, J.Y.; Kuo, C.C.; Talekar, R.S.; Chern, J.W. Nucleosides. IX. Synthesis of purine N(3),5′-cyclonucleosides and N(3),5′-cyclo-2′,3′-seconucleosides via Mitsunobu reaction as TIBO-like derivatives. Nucleosides Nucleotides Nucleic Acids, 2004, 23(1-2), 347-359.
[http://dx.doi.org/10.1081/NCN-120027904 ] [PMID: 15043159]
[104]
Fletcher, S. Regioselective Alkylation of the Exocyclic Nitrogen of Adenine and Adenosine by the Mitsunobu Reaction. Tetrahedron Lett., 2010, 51(22), 2948-2950.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.103]
[105]
Halazy, S.; Eggenspiller, A.; Ehrhard, A.; Danzin, C. Phosphonate Derivatives of N9-Benzylguanine: a New Class of Potent Purine Nucleoside Phosphorylase Inhibitors. Bioorg. Med. Chem. Lett., 1992, 2(5), 407-410.
[http://dx.doi.org/10.1016/S0960-894X(00)80157-2]
[106]
Börner, A.; Holz, J.; Kagan, H.B. New Chiral Building Blocks and Their Application to the Construction of Chiral Aminoalcohols: Enantiomerically Pure cis- and trans-3-Mesyloxy-4-Hydroxy Tetrahydrofurans. Tetrahedron Lett., 1993, 34(33), 5273-5276.
[http://dx.doi.org/10.1016/S0040-4039(00)73971-2]
[107]
Mansour, T.S.; Jin, H. Synthesis of (+/−)–1′-Aza-Carbocyclic-Pyrimidine-2′,3′-Dideoxynucleoside Analogues as Potential Anti-HIV Agents. Bioorg. Med. Chem. Lett., 1991, 1(12), 757-760.
[http://dx.doi.org/10.1016/S0960-894X(01)81063-5]
[108]
Shaw, G.; Warrener, R.N. Purines, pyrimidines, and glyoxalines. Part VIII. New syntheses of uracils and thymines. J. Chem. Soc., 1958, 157-161.
[http://dx.doi.org/10.1039/jr9580000157]
[109]
Yu, K.L.; Bronson, J.J.; Yang, H.; Patick, A.; Alam, M.; Brankovan, V.; Datema, R.; Hitchcock, M.J.M.; Martin, J.C. Synthesis and antiviral activity of 2′-substituted 9-[2-(phosphonomethoxy)ethyl]guanine analogues. J. Med. Chem., 1993, 36(19), 2726-2738.
[http://dx.doi.org/10.1021/jm00071a003 ] [PMID: 8410987]
[110]
Yokomatsu, T.; Murano, T.; Suemune, K.; Shibuya, S. Facile Synthesis of Aryl(difluoromethyl)Phosphonates through CuBr-Mediated Cross Coupling Reactions of [(Diethoxyphosphinyl)Difluoromethyl]Zinc Bromide with Aryl Iodides. Tetrahedron, 1997, 53(3), 815-822.
[http://dx.doi.org/10.1016/S0040-4020(96)01063-0]
[111]
Yokomatsu, T.; Minowa, T.; Murano, T.; Shibuya, S. Enzymatic Desymmetrization of Prochiral 2-Benzyl-1,3-Propanediol Derivatives: A Practical Chemoenzymatic Synthesis of Novel Phosphorylated Tyrosine Analogues. Tetrahedron, 1998, 54(32), 9341-9356.
[http://dx.doi.org/10.1016/S0040-4020(98)00586-9]
[112]
Yokomatsu, T.; Murano, T.; Umesue, I.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis and biological evaluation of α,α-difluorobenzylphosphonic acid derivatives as small molecular inhibitors of protein-tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 1999, 9(4), 529-532.
[http://dx.doi.org/10.1016/S0960-894X(99)00027-X ] [PMID: 10098656]
[113]
Yokomatsu, T.; Hayakawa, Y.; Kihara, T.; Koyanagi, S.; Soeda, S.; Shimeno, H.; Shibuya, S. Synthesis and evaluation of multisubstrate analogue inhibitors of purine nucleoside phosphorylases. Bioorg. Med. Chem., 2000, 8(11), 2571-2579.
[http://dx.doi.org/10.1016/S0968-0896(00)00192-9 ] [PMID: 11092542]
[114]
Burton, D.J.; Yang, Z-Y. Fluorinated Organometallics: Perfluoroalkyl and Functionalized Perfluoroalkyl Organometallic Reagents in Organic Synthesis. Tetrahedron, 1992, 48(2), 189-275.
[http://dx.doi.org/10.1016/S0040-4020(01)88139-4]
[115]
Blaszczyk, R.; Gajda, T. Convenient Synthesis of Dialkyl 1‐Azidoalkylphosphonates using Tetramethylguanidinium Azide as Azidation Agent. Synth. Commun., 2008, 38(7), 1110-1119.
[http://dx.doi.org/10.1080/00397910701863483]
[116]
Delain-Bioton, L.; Villemin, D.; Lohier, J.F.; Sopkova, J.; Jaffres, P.A. Synthesis of Triazolyl-Alkylphosphonate Starting from ω-Azidoalkylphosphonates or ω-Alkynyl-phosphonates. Tetrahedron, 2007, 63(39), 9677-9684.
[http://dx.doi.org/10.1016/j.tet.2007.07.024]
[117]
Lindsell, W.E.; Murray, C.; Preston, P.N.; Woodman, T.A.J. Synthesis of 1,3-Diynes in the Purine, Pyrimidine, 1,3,5-Triazine and Acridine Series. Tetrahedron, 2000, 56(9), 1233-1245.
[http://dx.doi.org/10.1016/S0040-4020(00)00016-8]
[118]
Vrolijk, J.M.; Kaul, A.; Hansen, B.E.; Lohmann, V.; Haagmans, B.L.; Schalm, S.W.; Bartenschlager, R. A replicon-based bioassay for the measurement of interferons in patients with chronic hepatitis C. J. Virol. Methods, 2003, 110(2), 201-209.
[http://dx.doi.org/10.1016/S0166-0934(03)00134-4 ] [PMID: 12798249]
[119]
Li, H.; Hong, J.H. Synthesis and anti-HIV evaluation of new acyclic phosphonate nucleotide analogues and their bis(SATE) derivatives. Nucleosides Nucleotides Nucleic Acids, 2010, 29(8), 581-590.
[http://dx.doi.org/10.1080/15257770.2010.495958 ] [PMID: 20661812]
[120]
Louie, J.; Bielawski, C.W.; Grubbs, R.H. Tandem catalysis: the sequential mediation of olefin metathesis, hydrogenation, and hydrogen transfer with single-component Ru complexes. J. Am. Chem. Soc., 2001, 123(45), 11312-11313.
[http://dx.doi.org/10.1021/ja016431e ] [PMID: 11697983]
[121]
Kang, J.H.; Chung, H.E.; Kim, S.Y.; Kim, Y.; Lee, J.; Lewin, N.E.; Pearce, L.V.; Blumberg, P.M.; Marquez, V.E. Conformationally constrained analogues of diacylglycerol (DAG). Effect on protein kinase C (PK-C) binding by the isosteric replacement of sn-1 and sn-2 esters in DAG-lactones. Bioorg. Med. Chem., 2003, 11(12), 2529-2539.
[http://dx.doi.org/10.1016/S0968-0896(03)00156-1 ] [PMID: 12757721]
[122]
Hossain, N.; Rozenski, J.; De Clercq, E.; Herdewijn, P. Synthesis and Antiviral Activity of Acyclic Analogues of 1,5-Anhydrohexitol Nucleosides using Mitsunobu Reaction. Tetrahedron, 1996, 52(43), 13655-13670.
[http://dx.doi.org/10.1016/0040-4020(96)00818-6]
[123]
El-Subbagh, H.I.; Racha, S.; Abushanab, E.; Panzica, R.P. Synthesis of Phosphonate Isosteres of 2′-Deoxy-2′,2′-seco-Nucleosides. J. Org. Chem., 1996, 61(3), 890-894.
[http://dx.doi.org/10.1021/jo951701v]
[124]
Périgaud, C.; Gosselin, G.; Lefebvre, I.; Girardet, J.L.; Benzaria, S.; Barber, I.; Imbach, J.L. Rational Design for Cytosolic Delivery of Nucleoside Monphosphates: ‘SATE’ and ‘DTE’ as Enzyme-Labile Transient Phosphate Protecting Groups. Bioorg. Med. Chem. Lett., 1993, 3(12), 2521-2526.
[http://dx.doi.org/10.1016/S0960-894X(01)80709-5]
[125]
Mocharla, V.P.; Colasson, B.; Lee, L.V.; Röper, S.; Sharpless, K.B.; Wong, C.H.; Kolb, H.C. In situ click chemistry: enzyme-generated inhibitors of carbonic anhydrase II. Angew. Chem. Int. Ed. Engl., 2004, 44(1), 116-120.
[http://dx.doi.org/10.1002/anie.200461580 ] [PMID: 15599912]
[126]
Wu, P.; Feldman, A.K.; Nugent, A.K.; Hawker, C.J.; Scheel, A.; Voit, B.; Pyun, J.; Frechet, J.M.J.; Sharpless, K.B.; Fokin, V.V. Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-. Catalyzed Ligation of Azides and Alkynes. Angew. Chem. Int. Ed., 2004, 43(30), 3928-3932.
[PMID: 15274216]
[127]
Shi, J.; Liu, L.; He, J.; Meng, X.; Guo, Q. Facile derivatization of pyridyloxazole-type fluorophore via click chemistry. Chem. Lett., 2007, 36(9), 1142-1143.
[http://dx.doi.org/10.1246/cl.2007.1142]
[128]
Saito, Y.; Escuret, V.; Durantel, D.; Zoulim, F.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of 1,2,3-triazolo-carbanucleoside analogues of ribavirin targeting an HCV in replicon. Bioorg. Med. Chem., 2003, 11(17), 3633-3639.
[http://dx.doi.org/10.1016/S0968-0896(03)00349-3 ] [PMID: 12901908]
[129]
Głowacka, I.E.; Cieślak, M.; Piotrowska, D.G. Synthesis of Novel 1-Hydroxy-2-(1,2,3-triazol-1-yl)ethylphosphonates and 2-Hydroxy-3-(1,2,3-triazol-1-yl)propylphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(3), 431-431.
[http://dx.doi.org/10.1080/10426507.2010.494646]
[130]
Lazrek, H.B.; Taourirte, M.; Oulih, T.; Barascut, J.L.; Imbach, J.L.; Pannecouque, C.; Witrouw, M.; De Clercq, E. Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. Nucleosides Nucleotides Nucleic Acids, 2001, 20(12), 1949-1960.
[http://dx.doi.org/10.1081/NCN-100108325 ] [PMID: 11794800]
[131]
Diab, S.A.; Hienzch, A.; Lebargy, C.; Guillarme, S.; Pfund, E.; Lequeux, T. Synthesis of fluorophosphonylated acyclic nucleotide analogues via copper(I)-catalyzed Huisgen 1-3 dipolar cycloaddition. Org. Biomol. Chem., 2009, 7(21), 4481-4490.
[http://dx.doi.org/10.1039/b912724k ] [PMID: 19830299]
[132]
Piotrowska, D.G.; Balzarini, J.; Głowacka, I.E. Design, synthesis, antiviral and cytostatic evaluation of novel isoxazolidine nucleotide analogues with a 1,2,3-triazole linker. Eur. J. Med. Chem., 2012, 47(1), 501-509.
[http://dx.doi.org/10.1016/j.ejmech.2011.11.021 ] [PMID: 22137458]
[133]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Synthesis of a new series of phosphonylated 1,2,3-triazoles as acyclic analogs of ribavirin. Arch. Pharm. (Weinheim), 2013, 346(9), 677-687.
[http://dx.doi.org/10.1002/ardp.201300156 ] [PMID: 23934961]
[134]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Synthesis and biological evaluation of novel 1,2,3-triazolonucleotides. Arch. Pharm. (Weinheim), 2013, 346(4), 278-291.
[http://dx.doi.org/10.1002/ardp.201200421 ] [PMID: 23427010]
[135]
Wróblewski, A.E. Głowacka, I.E. Synthesis of (1R,2S)- and (1S,2S)-3-Azido-1,2-Dihydroxypropylphosphonates. Tetrahedron Asymmetry, 2002, 13(9), 989-994.
[http://dx.doi.org/10.1016/S0957-4166(02)00223-9]
[136]
Wróblewski, A.E. Głowacka, I.E. Synthesis of (1S,2S)- and (1R,2S)-3-Amino-1,2-Dihydroxypropylphosphonic Acids. Pol. J. Chem., 2005, 79(12), 1895-1900.
[137]
Wróblewski, A.E. Głowacka, I.E. Enantiomerically Pure 4-Amino-1,2,3-Trihydroxybutylphosphonic Acids. Tetrahedron, 2005, 61(50), 11930-11938.
[http://dx.doi.org/10.1016/j.tet.2005.09.057]
[138]
Głowacka, I.E.; Balzarini, J.; Piotrowska, D.G. 1-Amino-3-(1H-1,2,3-triazol-1-yl)propylphosphonates as acyclic analogs of nucleotides. Arch. Pharm. (Weinheim), 2014, 347(7), 496-505.
[http://dx.doi.org/10.1002/ardp.201300471 ] [PMID: 24706386]
[139]
Piotrowska, D.G. Głowacka, I.E. Enantioselective Synthesis of Phosphonate Analogues of (R)- and (S)-. Homoserine. Tetrahedron Asymmetry, 2007, 18(23), 2787-2790.
[http://dx.doi.org/10.1016/j.tetasy.2007.11.007]
[140]
Ryglowski, A.; Lazaro, R.; Roumestant, M.L.; Viallefont, P. Synthesis of Phosphohomoserine Lactone, A New Pseudopeptide Unit. Synth. Commun., 1996, 26(9), 1739-1746.
[http://dx.doi.org/10.1080/00397919608002613]
[141]
Hannour, S.; Ryglowski, A.; Roumestant, M.L.; Viallefont, P.; Martinez, J.; Ouazzani, F.; El Hallaoui, A. Enantiospecific Synthesis of α-Amino Phosphonic Acids. Phosphorus Sulfur Silicon Relat. Elem., 1998, 134(1), 419-430.
[http://dx.doi.org/10.1080/10426509808545483]
[142]
Casaschi, A.; Grigg, R.; Sansano, J.M. Palladium Catalysed Tandem Cyclisation–Anion Capture. Part 7: Synthesis of Derivatives of α-Amino Esters, Nitrogen Heterocycles and β-Aryl/heteroaryl Ethylamines via in situ Generated Vinylstannanes. Tetrahedron, 2001, 57(3), 607-615.
[http://dx.doi.org/10.1016/S0040-4020(00)01030-9]
[143]
Pérez-Serrano, L.; Casarrubios, L.; Dominguez, G.; González-Pérez, P.; Pérez-Castells, J. Synthesis of Enynoindoles Via Vinyl and Ethynyl Indoles. Synthesis, 2002, 2002(13), 1810-1812.
[144]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. Novel acyclic phosphonylated 1,2,3-triazolonucleosides with an acetamidomethyl linker: synthesis and biological activity. Arch. Pharm. (Weinheim), 2014, 347(7), 506-514.
[http://dx.doi.org/10.1002/ardp.201300468 ] [PMID: 24664932]
[145]
Lazrek, H.B.; Taourirte, M.; Oulih, T.; Lebtoumi, M.; Barascut, J.L.; Imbach, J.L. Synthesis of new 1,2,3-triazole acyclonucleoside analogs of ACV and HBG. Nucleosides Nucleotides, 1997, 16(7-9), 1115-1118.
[http://dx.doi.org/10.1080/07328319708006145]
[146]
Krim, J.; Sillahi, B.; Taourirte, M.; Rakib, E.M.; Engels, J.W. Microwave-Assisted Click Chemistry: Synthesis of Mono and Bis-1,2,3-Triazole Acyclonucleoside Analogues of Acyclovir via Copper(I)-Catalyzed cycloaddition. ARKIVOC, 2009, 142-152.
[147]
Głowacka, I.E.; Gulej, R.; Grzonkowski, P.; Andrei, G.; Schols, D.; Snoeck, R.; Piotrowska, D.G. Synthesis and the Biological Activity of Phosphonylated 1,2,3-Triazolena-phthalimide Conjugates. Molecules, 2016, 21(11) E1420
[http://dx.doi.org/10.3390/molecules21111420 ] [PMID: 27792200]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy