Generic placeholder image

Central Nervous System Agents in Medicinal Chemistry


ISSN (Print): 1871-5249
ISSN (Online): 1875-6166

Research Article

Evaluation of Selected Natural Compounds as Dual Inhibitors of Catechol-O-Methyltransferase and Monoamine Oxidase

Author(s): Idalet Engelbrecht, Jacobus P. Petzer and Anél Petzer*

Volume 19, Issue 2, 2019

Page: [133 - 145] Pages: 13

DOI: 10.2174/1871524919666190619090852


Background: The most effective symptomatic treatment of Parkinson’s disease remains the metabolic precursor of dopamine, L-dopa. To enhance the efficacy of L-dopa, it is often combined with inhibitors of the enzymes, catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO) B, key metabolic enzymes of L-dopa and dopamine.

Objective: This study attempted to discover compounds that exhibit dual inhibition of COMT and MAO-B among a library of 40 structurally diverse natural compounds. Such dual acting inhibitors may be effective as adjuncts to L-dopa and offer enhanced value in the management of Parkinson’s disease.

Methods: Selected natural compounds were evaluated as in vitro inhibitors of rat liver COMT and recombinant human MAO. Reversibility of MAO inhibition was investigated by dialysis.

Results: Among the natural compounds morin (IC50 = 1.32 µM), chlorogenic acid (IC50 = 6.17 µM), (+)-catechin (IC50 = 0.86 µM), alizarin (IC50 = 0.88 µM), fisetin (IC50 = 5.78 µM) and rutin (IC50 = 25.3 µM) exhibited COMT inhibition. Among these active COMT inhibitors only morin (IC50 = 16.2 µM), alizarin (IC50 = 8.16 µM) and fisetin (IC50 = 7.33 µM) were noteworthy MAO inhibitors, with specificity for MAO-A.

Conclusion: None of the natural products investigated here are dual COMT/MAO-B inhibitors. However, good potency COMT inhibitors have been identified, which may serve as leads for future development of COMT inhibitors.

Keywords: Catechol-O-methyltransferase, inhibition, monoamine oxidase, multi-target-directed, natural compounds, Parkinson's disease.

Graphical Abstract
Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron, 2003, 39(6), 889-909.
Blum, D.; Torch, S.; Lambeng, N.; Nissou, M.; Benabid, A.L.; Sadoul, R.; Verna, J.M. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol., 2001, 65(2), 135-172.
Cheong, S.L.; Federico, S.; Spalluto, G.; Klotz, K.N.; Pastorin, G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: transition from single-target to multitarget therapy. Drug Discov. Today, 2019, S1359-6446(18), 30036-30039.
Youdim, M.B.; Bakhle, Y.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol., 2006, 147(Suppl. 1), S287-S296.
Hermida-Ameijeiras, A.; Méndez-Alvarez, E.; Sánchez-Iglesias, S.; Sanmartín-Suárez, C.; Soto-Otero, R. Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem. Int., 2004, 45(1), 103-116.
Mattammal, M.B.; Haring, J.H.; Chung, H.D.; Raghu, G.; Strong, R. An endogenous dopaminergic neurotoxin: Implication for Parkinson’s disease. Neurodegeneration, 1995, 4(3), 271-281.
Terland, O.; Flatmark, T.; Tangerås, A.; Grønberg, M. Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species. J. Mol. Cell. Cardiol., 1997, 29(6), 1731-1738.
Smeyne, M.; Smeyne, R.J. Glutathione metabolism and Parkinson’s disease. Free Radic. Biol. Med., 2013, 62, 13-25.
Lees, A. Alternatives to levodopa in the initial treatment of early Parkinson’s disease. Drugs Aging, 2005, 22(9), 731-740.
Tolosa, E.; Martí, M.J.; Valldeoriola, F.; Molinuevo, J.L. History of levodopa and dopamine agonists in Parkinson’s disease treatment. Neurology, 1998, 50(6), S2-S10.
Olanow, C.W.; Stocchi, F. Levodopa: A new look at an old friend. Mov. Disord., 2018, 33(6), 859-866.
Tambasco, N.; Romoli, M.; Calabresi, P. Levodopa in Parkinson’s disease: current status and future developments. Curr. Neuropharmacol., 2018, 16(8), 1239-1252.
Freitas, M.E.; Ruiz-Lopez, M.; Fox, S.H. Novel levodopa formulations for Parkinson’s disease. CNS Drugs, 2016, 30(11), 1079-1095.
Poewe, W.; Antonini, A. Novel formulations and modes of delivery of levodopa. Mov. Disord., 2015, 30(1), 114-120.
Ahlskog, J.E.; Muenter, M.D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov. Disord., 2001, 16(3), 448-458.
Nutt, J.G.; Fellman, J.H. Pharmacokinetics of levodopa. Clin. Neuropharmacol., 1984, 7(1), 35-49.
Scott, L.J. Opicapone: A review in Parkinson’s disease. Drugs, 2016, 76(13), 1293-1300.
Contin, M.; Martinelli, P. Pharmacokinetics of levodopa. J. Neurol., 2010, 257(Suppl. 2), S253-S261.
Heeringa, M.J.; d’Agostini, F.; DeBoer, P.; DaPrada, M.; Damsma, G. Effect of monoamine oxidase A and B and of catechol-O-methyltransferase inhibition on L-DOPA-induced circling behavior. J. Neural Transm. (Vienna), 1997, 104(6-7), 593-603.
Seeberger, L.C.; Hauser, R.A. Carbidopa levodopa enteral suspension. Expert Opin. Pharmacother., 2015, 16(18), 2807-2817.
Learmonth, D.A.; Palma, P.N.; Vieira-Coelho, M.A.; Soares-da-Silva, P. Synthesis, biological evaluation, and molecular modeling studies of a novel, peripherally selective inhibitor of catechol-O-methyltransferase. J. Med. Chem., 2004, 47(25), 6207-6217.
Nissinen, E.; Lindén, I.B.; Schultz, E.; Pohto, P. Biochemical and pharmacological properties of a peripherally acting catechol-O-methyltransferase inhibitor entacapone. Naunyn Schmiedebergs Arch. Pharmacol., 1992, 346(3), 262-266.
Tohgi, H.; Abe, T.; Kikuchi, T.; Takahashi, S.; Nozaki, Y. The significance of 3-O-methyldopa concentrations in the cerebrospinal fluid in the pathogenesis of wearing-off phenomenon in Parkinson’s disease. Neurosci. Lett., 1991, 132(1), 19-22.
Youdim, M.B.; Edmondson, D.; Tipton, K.F. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci., 2006, 7(4), 295-309.
Finberg, J.P.M. Inhibitors of MAO-B and COMT: Their effects on brain dopamine levels and uses in Parkinson’s disease. J. Neural Transm. (Vienna), 2019, 126(4), 433-448.
Dezsi, L.; Vecsei, L. Monoamine oxidase B inhibitors in Parkinson’s disease. CNS Neurol. Disord. Drug Targets, 2017, 16(4), 425-439.
Tipton, K.F. 90 years of monoamine oxidase: Some progress and some confusion. J. Neural Transm. (Vienna), 2018, 125(11), 1519-1551.
Da Prada, M.; Zürcher, G.; Wüthrich, I.; Haefely, W.E. On tyramine, food, beverages and the reversible MAO inhibitor moclobemide. J. Neural Transm. Suppl., 1988, 26, 31-56.
Flockhart, D.A. Dietary restrictions and drug interactions with monoamine oxidase inhibitors: an update. J. Clin. Psychiatry, 2012, 73(Suppl. 1), 17-24.
Männistö, P.T.; Kaakkola, S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol. Rev., 1999, 51(4), 593-628.
Zürcher, G.; Keller, H.H.; Kettler, R.; Borgulya, J.; Bonetti, E.P.; Eigenmann, R.; Da Prada, M. Ro 40-7592, a novel, very potent, and orally active inhibitor of catechol-O-methyltransferase: A pharmacological study in rats. Adv. Neurol., 1990, 53, 497-503.
Müller, T.; Kuhn, W.; Przuntek, H. Therapy with central active catechol-O-methyltransferase (COMT)-inhibitors: Is addition of monoamine oxidase (MAO)-inhibitors necessary to slow progress of neurodegenerative disorders? J. Neural Transm. (Vienna), 1993, 92(2-3), 187-195.
Tom, T.; Cummings, J.L. Depression in Parkinson’s disease. Pharmacological characteristics and treatment. Drugs Aging, 1998, 12(1), 55-74.
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
Van der Schyf, C.J.; Gal, S.; Geldenhuys, W.J.; Youdim, M.B. Multifunctional neuroprotective drugs targeting monoamine oxidase inhibition, iron chelation, adenosine receptors, and cholinergic and glutamatergic action for neurodegenerative diseases. Expert Opin. Investig. Drugs, 2006, 15(8), 873-886.
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
Paterson, I.; Anderson, E.A. Chemistry. The renaissance of natural products as drug candidates. Science, 2005, 310(5747), 451-453.
Chen, X.; Decker, M. Multi-target compounds acting in the central nervous system designed from natural products. Curr. Med. Chem., 2013, 20(13), 1673-1685.
Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem. Res., 2012, 37(9), 1829-1842.
Mazzio, E.A.; Harris, N.; Soliman, K.F. Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta Med., 1998, 64(7), 603-606.
Zhou, C.; Huang, Y.; Przedborski, S. Oxidative stress in Parkinson’s disease: A mechanism of pathogenic and therapeutic significance. Ann. N. Y. Acad. Sci., 2008, 1147, 93-104.
Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; Wu, J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm. Sin. B, 2019, 9(2), 335-350.
Liang, M.; Li, X.; Ouyang, X.; Xie, H.; Chen, D. Antioxidant mechanisms of echinatin and licochalcone A. Molecules, 2018, 24(1), E3.
Chen, D.; Wang, C.Y.; Lambert, J.D.; Ai, N.; Welsh, W.J.; Yang, C.S. Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure-activity relationship and molecular-modeling studies. Biochem. Pharmacol., 2005, 69(10), 1523-1531.
Kang, K.S.; Yamabe, N.; Wen, Y.; Fukui, M.; Zhu, B.T. Beneficial effects of natural phenolics on levodopa methylation and oxidative neurodegeneration. Brain Res., 2013, 1497, 1-14.
van Duursen, M.B.; Sanderson, J.T.; de Jong, P.C.; Kraaij, M.; van den Berg, M. Phytochemicals inhibit catechol-O-methyltransferase activity in cytosolic fractions from healthy human mammary tissues: implications for catechol estrogen-induced DNA damage. Toxicol. Sci., 2004, 81(2), 316-324.
Carradori, S.; Gidaro, M.C.; Petzer, A.; Costa, G.; Guglielmi, P.; Chimenti, P.; Alcaro, S.; Petzer, J.P. Inhibition of human monoamine oxidase: biological and molecular modeling studies on selected natural flavonoids. J. Agric. Food Chem., 2016, 64(47), 9004-9011.
Gidaro, M.C.; Astorino, C.; Petzer, A.; Carradori, S.; Alcaro, F.; Costa, G.; Artese, A.; Rafele, G.; Russo, F.M.; Petzer, J.P.; Alcaro, S. Kaempferol as selective human MAO-A inhibitor: analytical detection in Calabrian red wines, biological and molecular modeling studies. J. Agric. Food Chem., 2016, 64(6), 1394-1400.
Mostert, S.; Petzer, A.; Petzer, J.P. Indanones as high-potency reversible inhibitors of monoamine oxidase. ChemMedChem, 2015, 10(5), 862-873.
Novaroli, L.; Reist, M.; Favre, E.; Carotti, A.; Catto, M.; Carrupt, P.A. Human recombinant monoamine oxidase B as reliable and efficient enzyme source for inhibitor screening. Bioorg. Med. Chem., 2005, 13(22), 6212-6217.
Strydom, B.; Bergh, J.J.; Petzer, J.P. The inhibition of monoamine oxidase by 8-(2-phenoxyethoxy)caffeine analogues. Arzneimittelforschung, 2012, 62(11), 513-518.
Petzer, A.; Harvey, B.H.; Wegener, G.; Petzer, J.P. Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol. Appl. Pharmacol., 2012, 258(3), 403-409.
Hirano, Y.; Tsunoda, M.; Funatsu, T.; Imai, K. Rapid assay for catechol-O-methyltransferase activity by high-performance liquid chromatography-fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 819(1), 41-46.
Zhu, B.T.; Wang, P.; Nagai, M.; Wen, Y.; Bai, H.W. Inhibition of human catechol-O-methyltransferase (COMT)-mediated O-methylation of catechol estrogens by major polyphenolic components present in coffee. J. Steroid Biochem. Mol. Biol., 2009, 113(1-2), 65-74.
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
Aoyama, N.; Tsunoda, M.; Imai, K. Improved assay for catechol-O-methyltransferase activity utilizing norepinephrine as an enzymatic substrate and reversed-phase high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A, 2005, 1074(1-2), 47-51.
Petzer, A.; Pienaar, A.; Petzer, J.P. The inhibition of monoamine oxidase by esomeprazole. Drug Res. (Stuttg.), 2013, 63(9), 462-467.
Larit, F.; Elokely, K.M.; Chaurasiya, N.D.; Benyahia, S.; Nael, M.A.; León, F.; Abu-Darwish, M.S.; Efferth, T.; Wang, Y.H.; Belouahem-Abed, D.; Benayache, S.; Tekwani, B.L.; Cutler, S.J. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants. Phytomedicine, 2018, 40, 27-36.

© 2024 Bentham Science Publishers | Privacy Policy