Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Simvastatin and ML141 Decrease Intracellular Streptococcus pyogenes Infection

Author(s): Lindy Caffo, Bria L. Sneed, Caroline Burcham, Katie Reed, Nathan C. Hahn, Samantha Bell, Olivia Downham, Melissa D. Evans, Christopher R. Fullenkamp, Teague K. Drinnon, Derron Bishop, Heather A. Bruns, John L. McKillip, Robert E. Sammelson and Susan A. McDowell*

Volume 20, Issue 9, 2019

Page: [733 - 744] Pages: 12

DOI: 10.2174/1389201020666190618115154

Price: $65

Abstract

Background: Recurrent pharyngotonsillitis due to Streptococcus pyogenes develops regardless of whether infecting strains are resistant or susceptible to first-line antimicrobials. Causation for recurrent infection is associated with the use of first-line antimicrobials that fail to penetrate deep tissue and host cell membranes, enabling intracellular S. pyogenes to survive throughout repeated rounds of antimicrobial therapy.

Objective: To determine whether simvastatin, a therapeutic approved for use in the treatment of hypercholesterolemia, and ML141, a first-in-class small molecule inhibitor with specificity for human CDC42, limit host cell invasion by S. pyogenes.

Methods: Assays to assess host cell invasion, bactericidal activity, host cell viability, actin depolymerization, and fibronectin binding were performed using the RAW 267.4 macrophage cell line and Human Umbilical Vein Endothelial Cells (HUVEC) infected with S. pyogenes (90-226) and treated with simvastatin, ML141, structural analogs of ML141, or vehicle control.

Results: Simvastatin and ML141 decreased intracellular infection by S. pyogenes in a dose-dependent manner. Inhibition by simvastatin persisted following 1 h washout whereas inhibition by ML141 was reversed. During S. pyogenes infection, actin stress fibers depolymerized in vehicle control treated cells, yet remained intact in simvastatin and in ML141 treated cells. Consistent with the previous characterization of ML141, simvastatin decreased host cell binding to fibronectin. Structural analogs of ML141, designated as the RSM series, decreased intracellular infection through non-cytotoxic, nonbactericidal mechanisms.

Conclusion: Our findings demonstrate the potential of repurposing simvastatin and of developing CDC42-targeted therapeutics for eradicating intracellular S. pyogenes infection to break the cycle of recurrent infection through a host-directed approach.

Keywords: Antimicrobial therapy, antimicrobials, Streptococcus pyogenes, simvastatin, fibronectin, HUVEC.

Graphical Abstract
[1]
Brook, I. Treatment challenges of Group A beta-hemolytic streptococcal pharyngo-tonsillitis. Int. Arch. Otorhinolaryngol., 2017, 21(3), 286-296.
[http://dx.doi.org/10.1055/s-0036-1584294] [PMID: 28680500]
[2]
Osterlund, A.; Popa, R.; Nikkilä, T.; Scheynius, A.; Engstrand, L. Intracellular reservoir of Streptococcus pyogenes in vivo: A possible explanation for recurrent pharyngotonsillitis. Laryngoscope, 1997, 107(5), 640-647.
[http://dx.doi.org/10.1097/00005537-199705000-00016] [PMID: 9149167]
[3]
Rohde, M.; Müller, E.; Chhatwal, G.S.; Talay, S.R. Host cell caveolae act as an entry-port for group A streptococci. Cell. Microbiol., 2003, 5(5), 323-342.
[http://dx.doi.org/10.1046/j.1462-5822.2003.00279.x] [PMID: 12713491]
[4]
Hertzén, E.; Johansson, L.; Wallin, R.; Schmidt, H.; Kroll, M.; Rehn, A.P.; Kotb, M.; Mörgelin, M.; Norrby-Teglund, A. M1 protein-dependent intracellular trafficking promotes persistence and replication of Streptococcus pyogenes in macrophages. J. Innate Immun., 2010, 2(6), 534-545.
[http://dx.doi.org/10.1159/000317635] [PMID: 20798480]
[5]
O’Neill, A.M.; Thurston, T.L.; Holden, D.W. Cytosolic replication of Group A Streptococcus in human macrophages. MBio, 2016, 7(2), e00020-e16.
[http://dx.doi.org/10.1128/mBio.00020-16] [PMID: 27073088]
[6]
Medina, E.; Goldmann, O.; Toppel, A.W.; Chhatwal, G.S. Survival of Streptococcus pyogenes within host phagocytic cells: A pathogenic mechanism for persistence and systemic invasion. J. Infect. Dis., 2003, 187(4), 597-603.
[http://dx.doi.org/10.1086/373998] [PMID: 12599076]
[7]
Rohde, M.; Cleary, P.P. Adhesion and invasion of Streptococcus pyogenes into host cells and clinical relevance of intracellular streptococci.Streptococcus pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J.; Stevens, D.L; Fischetti, V.A., Ed.; Oklahoma City, OK, 2016.
[8]
Cordero, D.; Fullenkamp, C.R.; Pelly, R.R.; Reed, K.M.; Caffo, L.M.; Zahrt, A.N.; Newman, M.; Komanapalli, S.; Niemeier, E.M.; Bishop, D.L.; Bruns, H.A.; Haynes, M.K.; Sklar, L.A.; Sammelson, R.E.; McDowell, S.A. Small molecule inhibitors limit endothelial cell invasion by Staphylococcus aureus. Curr. Pharm. Biotechnol., 2014, 15(8), 727-737.
[http://dx.doi.org/10.2174/1389201015666140909124310] [PMID: 25213310]
[9]
Johnson, D.I. Cdc42: An essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev., 1999, 63(1), 54-105.
[PMID: 10066831]
[10]
Horn, M.P.; Knecht, S.M.; Rushing, F.L.; Birdsong, J.; Siddall, C.P.; Johnson, C.M.; Abraham, T.N.; Brown, A.; Volk, C.B.; Gammon, K.; Bishop, D.L.; McKillip, J.L.; McDowell, S.A. Simvastatin inhibits Staphylococcus aureus host cell invasion through modulation of isoprenoid intermediates. J. Pharmacol. Exp. Ther., 2008, 326(1), 135-143.
[http://dx.doi.org/10.1124/jpet.108.137927] [PMID: 18388257]
[11]
Parihar, S.P.; Guler, R.; Brombacher, F. Statins: A viable candidate for host-directed therapy against infectious diseases. Nat. Rev. Immunol., 2018.
[PMID: 30487528]
[12]
Hong, L.; Kenney, S.R.; Phillips, G.K.; Simpson, D.; Schroeder, C.E.; Nöth, J.; Romero, E.; Swanson, S.; Waller, A.; Strouse, J.J.; Carter, M.; Chigaev, A.; Ursu, O.; Oprea, T.; Hjelle, B.; Golden, J.E.; Aubé, J.; Hudson, L.G.; Buranda, T.; Sklar, L.A.; Wandinger-Ness, A. Characterization of a Cdc42 protein inhibitor and its use as a molecular probe. J. Biol. Chem., 2013, 288(12), 8531-8543.
[http://dx.doi.org/10.1074/jbc.M112.435941] [PMID: 23382385]
[13]
Surviladze, Z. A potent and selective inhibitor of Cdc42 GTPase, in Probe Reports from the NIH Molecular Libraries Program, 2010.Bethesda (MD).. https://www.ncbi.nlm.nih.gov/books/NBK51965/
[14]
Cue, D.; Dombek, P.E.; Lam, H.; Cleary, P.P. Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect. Immun., 1998, 66(10), 4593-4601.
[PMID: 9746555]
[15]
Tadigoppula, N.; Korthikunta, V.; Gupta, S.; Kancharla, P.; Khaliq, T.; Soni, A.; Srivastava, R.K.; Srivastava, K.; Puri, S.K.; Raju, K.S. Wahajuddin, Sijwali, P.S.; Kumar, V.; Mohammad, I.S. Synthesis and insight into the structure-activity relationships of chalcones as antimalarial agents. J. Med. Chem., 2013, 56(1), 31-45.
[http://dx.doi.org/10.1021/jm300588j] [PMID: 23270565]
[16]
Soliman, R. Preparation and antidiabetic activity of some sulfonylurea derivatives of 3,5-disubstituted pyrazoles. J. Med. Chem., 1979, 22(3), 321-325.
[http://dx.doi.org/10.1021/jm00189a022] [PMID: 423216]
[17]
Lennernäs, H.; Fager, G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Similarities and differences. Clin. Pharmacokinet., 1997, 32(5), 403-425.
[http://dx.doi.org/10.2165/00003088-199732050-00005] [PMID: 9160173]
[18]
Ozeri, V.; Rosenshine, I.; Ben-Ze’Ev, A.; Bokoch, G.M.; Jou, T.S.; Hanski, E. De novo formation of focal complex-like structures in host cells by invading Streptococci. Mol. Microbiol., 2001, 41(3), 561-573.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02535.x] [PMID: 11532125]
[19]
Nobes, C.D.; Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995, 81(1), 53-62.
[http://dx.doi.org/10.1016/0092-8674(95)90370-4] [PMID: 7536630]
[20]
Yang, L.; Wang, L.; Zheng, Y. Gene targeting of Cdc42 and Cdc42GAP affirms the critical involvement of Cdc42 in filopodia induction, directed migration, and proliferation in primary mouse embryonic fibroblasts. Mol. Biol. Cell, 2006, 17(11), 4675-4685.
[http://dx.doi.org/10.1091/mbc.e06-05-0466] [PMID: 16914516]
[21]
Sipes, N.S.; Feng, Y.; Guo, F.; Lee, H.O.; Chou, F.S.; Cheng, J.; Mulloy, J.; Zheng, Y. Cdc42 regulates extracellular matrix remodeling in three dimensions. J. Biol. Chem., 2011, 286(42), 36469-36477.
[http://dx.doi.org/10.1074/jbc.M111.283176] [PMID: 21880728]
[22]
Cywes, C.; Wessels, M.R.; Group, A.; Group, A. Streptococcus tissue invasion by CD44-mediated cell signalling. Nature, 2001, 414(6864), 648-652.
[http://dx.doi.org/10.1038/414648a] [PMID: 11740562]
[23]
Chow, O.A.; von Köckritz-Blickwede, M.; Bright, A.T.; Hensler, M.E.; Zinkernagel, A.S.; Cogen, A.L.; Gallo, R.L.; Monestier, M.; Wang, Y.; Glass, C.K.; Nizet, V. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe, 2010, 8(5), 445-454.
[http://dx.doi.org/10.1016/j.chom.2010.10.005] [PMID: 21075355]
[24]
Bowman, P.D.; Wang, X.; Meledeo, M.A.; Dubick, M.A.; Kheirabadi, B.S. Toxicity of aluminum silicates used in hemostatic dressings toward human umbilical veins endothelial cells, HeLa cells, and RAW267.4 mouse macrophages. J. Trauma, 2011, 71(3), 727-732.
[http://dx.doi.org/10.1097/TA.0b013e3182033579] [PMID: 21768911]
[25]
Ridley, A.J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol., 2015, 36, 103-112.
[http://dx.doi.org/10.1016/j.ceb.2015.08.005] [PMID: 26363959]
[26]
Cerione, R.A. Cdc42: new roads to travel. Trends Cell Biol., 2004, 14(3), 127-132.
[http://dx.doi.org/10.1016/j.tcb.2004.01.008] [PMID: 15003621]
[27]
Bokoch, G.M. Regulation of innate immunity by Rho GTPases. Trends Cell Biol., 2005, 15(3), 163-171.
[http://dx.doi.org/10.1016/j.tcb.2005.01.002] [PMID: 15752980]
[28]
Tapon, N.; Hall, A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr. Opin. Cell Biol., 1997, 9(1), 86-92.
[http://dx.doi.org/10.1016/S0955-0674(97)80156-1] [PMID: 9013670]
[29]
Melendez, J.; Grogg, M.; Zheng, Y. Signaling role of Cdc42 in regulating mammalian physiology. J. Biol. Chem., 2011, 286(4), 2375-2381.
[http://dx.doi.org/10.1074/jbc.R110.200329] [PMID: 21115489]
[30]
Schwartz, M.A.; Meredith, J.E.; Kiosses, W.B. An activated Rac mutant functions as a dominant negative for membrane ruffling. Oncogene, 1998, 17(5), 625-629.
[http://dx.doi.org/10.1038/sj.onc.1201977] [PMID: 9704928]
[31]
Zhou, X.; Zheng, Y. Cell type-specific signaling function of RhoA GTPase: Lessons from mouse gene targeting. J. Biol. Chem., 2013, 288(51), 36179-36188.
[32]
Lee, K.; Boyd, K.L.; Parekh, D.V.; Kehl-Fie, T.E.; Baldwin, H.S.; Brakebusch, C.; Skaar, E.P.; Boothby, M.; Zent, R. Cdc42 promotes host defenses against fatal infection. Infect. Immun., 2013, 81(8), 2714-2723.
[http://dx.doi.org/10.1128/IAI.01114-12] [PMID: 23690402]
[33]
Hennessy, E.; Adams, C.; Reen, F.J.; O’Gara, F. Is there potential for repurposing statins as novel antimicrobials? Antimicrob. Agents Chemother., 2016, 60(9), 5111-5121.
[http://dx.doi.org/10.1128/AAC.00192-16] [PMID: 27324773]
[34]
Greenwood, J.; Steinman, L.; Zamvil, S.S. Statin therapy and autoimmune disease: From protein prenylation to immunomodulation. Nat. Rev. Immunol., 2006, 6(5), 358-370.
[http://dx.doi.org/10.1038/nri1839] [PMID: 16639429]
[35]
Zumla, A.; Rao, M.; Wallis, R.S.; Kaufmann, S.H.; Rustomjee, R.; Mwaba, P.; Vilaplana, C.; Yeboah-Manu, D.; Chakaya, J.; Ippolito, G.; Azhar, E.; Hoelscher, M.; Maeurer, M. Host-directed therapies for infectious diseases: Current status, recent progress, and future prospects. Lancet Infect. Dis., 2016, 16(4), e47-e63.
[http://dx.doi.org/10.1016/S1473-3099(16)00078-5] [PMID: 27036359]
[36]
Nagendran, M.; McAuley, D.F.; Kruger, P.S.; Papazian, L.; Truwit, J.D.; Laffey, J.G.; Thompson, B.T.; Clarke, M.; Gordon, A.C. Statin therapy for acute respiratory distress syndrome: an individual patient data meta-analysis of randomised clinical trials. Intensive Care Med., 2017, 43(5), 663-671.
[http://dx.doi.org/10.1007/s00134-016-4649-0] [PMID: 28004129]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy