Generic placeholder image

Nanoscience & Nanotechnology-Asia


ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Improving Dyeing Properties of Jute Yarn to Metal Complex Dyes via Grafting with Methyl Methacrylate and Using Nano Silver

Author(s): Ali A. Zolriasatein*

Volume 10 , Issue 5 , 2020

Page: [664 - 672] Pages: 9

DOI: 10.2174/2210681209666190618112723

Price: $65


Objective: In this study, bleached jute yarn was treated with methyl methacrylate and then in situ synthesis of silver nanoparticles were performed.

Experimental: Experimental data showed a decrease in tensile strength of treated yarns from 0.91 to 0.78 g/dtex. Afterwards, treated samples were dyed with 1:1 and 1:2 pre-metallised dyes.

Results: Methyl methacrylate treated jute yarns exhibited higher color strength (12.55%) and fastness properties as compared to untreated samples.

Conclusion: Methyl methacrylate treated and nano-coated jute yarns showed much better color strength (23.96%) and higher color fastness properties towards light and washing.

Keywords: Jute yarn, methyl meta methacrylate, nano silver, pre-metallised dyes, chemical treatment, hemi-cellulose.

Graphical Abstract
Saha, P.; Manna, S.; Chowdhury, S.R.; Sen, R.; Roy, D.; Adhikari, B. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour. Technol., 2010, 101(9), 3182-3187.
[] [PMID: 20074944]
Shahidullah, Md.; Rabiul Islam, Md.; Alamgir Sayeed, M.M.; Kamal Uddin, Md.; Abdullah, A.B.M. Improvement of light fastness properties of dyed jute fabrics through pretreatment. J. Appl. Sci., 2007, 7, 3791-3795.
Islam, M.N.; Ali, M.; Kamal Uddin, M.; Ahmed, K.; Sarwaruddin-Chowdhury, A.M. Studies on the physico-mechanical properties of the modified jute fibre by sulphonation method. Pak. J. Biol. Sci., 2006, 9, 1424-1429.
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A. Effects of alkali and ultraviolet treatment on colour strength and mechanical properties of jute yarn. Color. Technol., 2012, 128, 395-402.
Samanta, A.K.; Singhee, D.; Basu, G.; Biswas, S.K. Thermal behaviour and structural features of chemically and bio-chemically modified jute substrate. Indian J. Fibre Text. Res., 2007, 32, 355-365.
Zolriasatein, A.A.; Hajilari, M. Effect of endo-1,4-β-xylanase enzyme on appearance and physical properties of jute yarn. Res. J. Pharm. Biol. Chem. Sci., 2015, 6, 862-868.
Zolriasatein, A.A.; Yazdanshenas, M.E. Changes in composition, appearance, physical, and dyeing properties of jute yarn after bio-pretreatment with laccase, xylanase, cellulase, and pectinase enzymes. J. Textil. Inst., 2014, 105(6), 609-619.
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A. Effects of commercial laccase enzyme on appearance and light fastness of lingocellulosic jute yarn. Asian J. Chem., 2011, 23, 4677-4680.
Arifuzzaman Khan, G.M. Dyeing of grafted jute fibre with reactive dyes and its improved properties. Thammasat Int. J. Sc. Tech., 2007, 12(3), 8-13.
Mondal, I.H. Grafting of methyl acrylate and methyl methacrylate onto jute fiber: Physico-chemical characteristics of the grafted jute. J. Eng. Fibers Fabrics, 2013, 8, 42-50.
Das, D.; Munshi, R. Finishing of jute using methacrylic acid in presence of tetrasodium pyrophosphate and potassium persulphate as catalysts under thermal treatment. Indian J. Fibre Text. Res., 2009, 34, 82-90.
Uddin, M.K.; Khan, M.A.; Ali, K.M.I. Modification of jute yarn by graft-copolymerization with ultraviolet radiation. Radiat. Phys. Chem., 1996, 48, 511-517.
Chattopadhyay, D.P.; Patel, B.H. Synthesis, characterization and application of nano cellulose for enhanced performance of textiles. J. Textile Sci. Eng., 2016, 6(2), 1-8.
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A.; Najafi, F. The use of poly(amidoamine) dendrimer in modification of jute for improving dyeing properties of reactive dyes. J. Appl. Polym. Sci., 2013, 127, 4203-4210.
Cai, Y.; David, S.K.; Pailthorpe, M.T. Dyeing of jute and jute/cotton blend fabrics with 2:1 pre-metallised dyes. Dyes Pigm., 2000, 45, 161-168.
Prachayawarakorn, J.; Kryratsamee, W. Dyeing properties of Bombyx mori silks grafted with methyl methacrylate and methacrylamide. J. Appl. Polym. Sci., 2006, 100, 1169-1175.
Jafari, N.; Karimi, L.; Mirjalili, M.; Derakhshan, S.J. Effect of silver particle size on color and antibacterial properties of silk and cotton fabrics. Fibers Polym., 2016, 17, 888-895.
Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chemistry, 2005, 11(2), 454-463.
[] [PMID: 15565727]
Roy, R.; Mahato, D.; Nath, S.; Nandi, N.; Chowdhury, P. Influence of mordanting on tensile strength of jute and cotton fabrics. Am. Int. J. Res. Formal Appl. Nat. Sci., 2017, 1(17), 08-11.
Masoumi, A.; Ghaemy, M. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride). Express Polym. Lett., 2014, 8(3), 187-196.
Babaahmadi, V.; Montazer, M.; Ghanbarafjeh, M.; Samadi, N. Simultaneous in situ synthesis of nanosilver and dyeing of polyamide 6 fabric. Indian J. Fibre Text. Res., 2018, 43, 488-494.
Yu, D.G. Formation of colloidal silver nanoparticles stabilized by Na+-poly(gamma-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf. B Biointerfaces, 2007, 59(2), 171-178.
[] [PMID: 17583483]
Dong, Y.; Bai, Z.; Zhang, L.; Liu, R.; Zhu, T. Finishing of cotton fabrics with aqueous nano-titanium dioxide dispersion and the decomposition of gaseous ammonia by ultra violet irradiation. J. Appl. Polym. Sci., 2006, 99, 286-291.
Nersisyan, H.H.; Lee, J.H.; Son, H.T.; Won, C.W.; Maeng, V. A new and effective chemical reduction method for preparation of nano sized silver powder and colloid dispersion. Mater. Res. Bull., 2003, 38, 949-956.
Ayyad, O.; Rohas, D.M.; Sole, J.O.; Romero, P.G. From silver nano particles to nano structures through matrix chemistry. J. Nanopart. Res., 2009, 19, 9620-9623.
Courrol, L.C.; Silva, F.R.D.O.; Gomes, L. A simple method to synthesize silver nano particles by photo-reduction. Colloids Surf. A Physicochem. Eng. Asp., 2007, 305, 54-57.
Xie, Y.; Ye, R.; Liu, H. Synthesis of silver nano particles in reverse micelles stabilized by natural bio surfactant. Colloids Surf. A Physicochem. Eng. Asp., 2006, 279, 175-178.
Sathishkumar, M.; Sneha, K.; Won, S.W.; Cho, C.W.; Kim, S.; Yun, Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces, 2009, 73(2), 332-338.
[] [PMID: 19576733]
Kalishwaralal, K.; Deepak, V.; Ram Kumar Pandian, S.; Kottaisamy, M. BarathmaniKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces, 2010, 77(2), 257-262.
[] [PMID: 20197229]
Zeiri, L.; Bronk, B.V.; Shabtai, Y.; Czégé, J.; Efrima, S. Silver metal induced surface enhanced Raman of bacteria. Colloids Surf. A Physicochem. Eng. Asp., 2002, 208, 357-362.
Shahverdi, A.R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A.A. Rapid synthesis of silver nano particles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem., 2007, 42, 919-923.
Duran, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Antibacterial effect of silver nano particles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol., 2007, 3, 203-208.
Kaur, P.; Saxena, M.; Vadehra, D.V. Plasmid mediated resistance to silver ions in Escherichia coli. Indian J. Med. Res., 1985, 82, 122-126.
[PMID: 3902636]
Barani, H.; Montazer, M.; Samadi, N.; Toliyat, T. In situ synthesis of nano silver/lecithin on wool: Enhancing nanoparticles diffusion. Colloids Surf. B Biointerfaces, 2012, 92, 9-15.
[] [PMID: 22178185]
Allahyarzadeh, V.; Montazer, M.; Hemmati Nejad, N.; Samadi, N. In situ synthesis of nano silver on polyester using NaOH/Nano TiO2. J. Appl. Polym. Sci., 2013, 129, 892-900.
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[] [PMID: 18945421]
El-Shishtawy, R.M.; Asiri, A.M.; Abdelwahed, N.A.M.; Al-Otaibi, M.M. In situ production of silver nano particle on cotton fabric and its antimicrobial evaluation. Cellulose, 2011, 18, 75-82.
Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver Nanomaterials and potential implications for human health and the environment. J. Nanopart. Res., 2010, 12, 1531-1551.
Montazer, M.; Alimohammadi, F.; Shamei, A.; Rahimi, M.K. In situ synthesis of nano silver on cotton using Tollens’reagent. Carbohydr. Polym., 2012, 87, 1706-1712.
Babaahmadi, V.; Montazer, M. A new route to synthesis silver nanoparticles on polyamide fabric using stannous chloride. J. Textil. Inst., 2015, 106, 970-977.
Hosseinkhani, M.; Montazer, M.; Eskandarnejad, S.; Rahimi, M.K. Simultaneous in situ synthesis of nano silver and wool fiber fineness enhancement using sulphur based reducing agents. Colloids Surf. A Physicochem. Eng. Asp., 2012, 415, 431-438.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy