Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Schizophrenia Patient Shows a Rare Interleukin 15 Receptor alpha Variant Disrupting Signal Transduction

Author(s): Yanli Pan, Zhimin Wang, Guangping Zhang, Junhua Guo, Xuequan Zhu, Jia Zhou, Zhenrong Zhang, Zuoli Sun, Jian Yang, Abba J. Kastin, Weihong Pan, Xiaojun Wu, Jianliang Zhang, Xiaomin Wang, Chuanyue Wang and Yi He*

Volume 19, Issue 8, 2019

Page: [560 - 569] Pages: 10

DOI: 10.2174/1566524019666190617172054

Price: $65

conference banner
Abstract

Background: Schizophrenia is a complex and debilitating mental disorder with strong heritability. Its pathogenesis involves immune dysregulation. Interleukin 15 and interleukin 15 receptor alpha(IL-15Rα) are classical immune molecules. They also help maintain normal brain function, leading to our hypothesis that IL-15Rα gene(IL- 15RA) variants contribute to the pathogenesis of schizophrenia.

Objective: We determine whether the genetic variants of IL-15RA are associated with the development and progression of schizophrenia and whether IL-15RA single nucleotide polymorphism(SNP) plays a key role in downstream signaling transduction.

Methods and Results: We sequenced IL-15RA exon from 132 Chinese schizophrenic patients and identified a rare variant(rs528238821) in a patient diagnosed with catatonic schizophrenia and ankylosing spondylitis(AS). We overexpressed this missense variant in cells driven by pBI-CMV vector. The cells showed attenuated STAT3 phosphorylation in response to interleukin15.

Conclusion: IL-15RA mutation is rare in schizophrenic patients but interfered with IL- 15Rα intracellular signal transduction. Given the similarity of symptoms of catatonic schizophrenia and the known phenotype of IL-15Rα knockout mice, gene variation might offer diagnostic value for sub-types of schizophrenia.

Keywords: Interleukin 15 receptor alpha, interleukin 15, single nucleotide polymorphism, schizophrenia, IL-15RA, STAT3 phosphorylation.

[1]
Stefansson H, Meyer-Lindenberg A, Steinberg S, et al. CNVs conferring risk of autism or schizophrenia affect cognition in controls. Nature 2014; 505(7483): 361-6.
[http://dx.doi.org/10.1038/nature12818] [PMID: 24352232]
[2]
Sullivan PF, Magnusson C, Reichenberg A, et al. Family history of schizophrenia and bipolar disorder as risk factors for autism. Arch Gen Psychiatry 2012; 69(11): 1099-103.
[http://dx.doi.org/10.1001/archgenpsychiatry.2012.730] [PMID: 22752149]
[3]
Rapoport JL, Giedd JN, Gogtay N. Neurodevelopmental model of schizophrenia: Update 2012. Mol Psychiatry 2012; 17(12): 1228-38.
[http://dx.doi.org/10.1038/mp.2012.23] [PMID: 22488257]
[4]
McClellan J, King MC. Genetic heterogeneity in human disease. Cell 2010; 141(2): 210-7.
[http://dx.doi.org/10.1016/j.cell.2010.03.032] [PMID: 20403315]
[5]
Duncan LE, Ratanatharathorn A, Aiello AE, et al. Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry 2018; 23(3): 666-73.
[http://dx.doi.org/10.1038/mp.2017.77] [PMID: 28439101]
[6]
Schizophrenia working group of the psychiatric genomics consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014; 511(7510): 421-7.
[http://dx.doi.org/10.1038/nature13595] [PMID: 25056061]
[7]
Moises HW, Yang L, Kristbjarnarson H, et al. An international two-stage genome-wide search for schizophrenia susceptibility genes. Nat Genet 1995; 11(3): 321-4.
[http://dx.doi.org/10.1038/ng1195-321] [PMID: 7581457]
[8]
Hoischen A, Krumm N, Eichler EE. Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci 2014; 17(6): 764-72.
[http://dx.doi.org/10.1038/nn.3703] [PMID: 24866042]
[9]
Malherbe PJ, Roos JL Jr, Ehlers R, Karayiorgou M, Roos JL. Phenotypic features of patients with schizophrenia carrying de novo gene mutations: a pilot study. Psychiatry Res 2015; 225(1-2): 108-14.
[http://dx.doi.org/10.1016/j.psychres.2014.10.024] [PMID: 25467704]
[10]
Wang Q, Li M, Yang Z, et al. Increased co-expression of genes harboring the damaging de novo mutations in Chinese schizophrenic patients during prenatal development. Sci Rep 2015; 5: 18209.
[http://dx.doi.org/10.1038/srep18209] [PMID: 26666178]
[11]
Hudson ZD, Miller BJ. Meta-Analysis of Cytokine and Chemokine Genes in Schizophrenia. Clin Schizophr Relat Psychoses 2018; 12(3): 121-129B.
[http://dx.doi.org/10.3371/CSRP.HUMI.070516] [PMID: 27454212]
[12]
Kronfol Z, Remick DG. Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 2000; 157(5): 683-94.
[http://dx.doi.org/10.1176/appi.ajp.157.5.683] [PMID: 10784457]
[13]
Martinuzzi E, Barbosa S, Daoudlarian D, et al. OPTiMiSE Study Group. Stratification and prediction of remission in first-episode psychosis patients: the OPTiMiSE cohort study. Transl Psychiatry 2019; 9(1): 20.
[http://dx.doi.org/10.1038/s41398-018-0366-5] [PMID: 30655509]
[14]
Pan W, Wu X, Kastin AJ, et al. Potential protective role of IL15Rα during inflammation. J Mol Neurosci 2011; 43(3): 412-23.
[http://dx.doi.org/10.1007/s12031-010-9459-1] [PMID: 20981579]
[15]
Pan W, Wu X, He Y, et al. Brain interleukin-15 in neuroinflammation and behavior. Neurosci Biobehav Rev 2013; 37(2): 184-92.
[http://dx.doi.org/10.1016/j.neubiorev.2012.11.009] [PMID: 23201098]
[16]
Patidar M, Yadav N, Dalai SK. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016; 31: 49-59.
[http://dx.doi.org/10.1016/j.cytogfr.2016.06.001] [PMID: 27325459]
[17]
Pilipow K, Roberto A, Roederer M, Waldmann TA, Mavilio D, Lugli E. IL15 and T-cell Stemness in T-cell-Based Cancer Immunotherapy. Cancer Res 2015; 75(24): 5187-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1498] [PMID: 26627006]
[18]
de Jong JL, Farner NL, Widmer MB, Giri JG, Sondel PM. Interaction of IL-15 with the shared IL-2 receptor beta and gamma c subunits. The IL-15/beta/gamma c receptor-ligand complex is less stable than the IL-2/beta/gamma c receptor-ligand complex. J Immunol 1996; 156(4): 1339-48.
[PMID: 8568232]
[19]
Giri JG, Ahdieh M, Eisenman J, et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 1994; 13(12): 2822-30.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06576.x] [PMID: 8026467]
[20]
Kurowska M, Rudnicka W, Maślińska D, Maśliński W. Expression of IL-15 and IL-15 receptor isoforms in select structures of human fetal brain. Ann N Y Acad Sci 2002; 966: 441-5.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04245.x] [PMID: 12114302]
[21]
He Y, Wu X, Khan RS, et al. IL-15 receptor deletion results in circadian changes of locomotor and metabolic activity. J Mol Neurosci 2010; 41(2): 315-21.
[http://dx.doi.org/10.1007/s12031-009-9319-z] [PMID: 20012227]
[22]
Pistilli EE, Bogdanovich S, Garton F, et al. Loss of IL-15 receptor α alters the endurance, fatigability, and metabolic characteristics of mouse fast skeletal muscles. J Clin Invest 2011; 121(8): 3120-32.
[http://dx.doi.org/10.1172/JCI44945] [PMID: 21765213]
[23]
Wu X, Hsuchou H, Kastin AJ, et al. Interleukin-15 affects serotonin system and exerts antidepressive effects through IL15Rα receptor. Psychoneuroendocrinology 2011; 36(2): 266-78.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.017] [PMID: 20724079]
[24]
Wu X, He Y, Hsuchou H, Kastin AJ, Rood JC, Pan W. Essential role of interleukin-15 receptor in normal anxiety behavior. Brain Behav Immun 2010; 24(8): 1340-6.
[http://dx.doi.org/10.1016/j.bbi.2010.06.012] [PMID: 20600810]
[25]
Nguyen L, Bohlen J, Stricker J, Chahal I, Zhang H, Pistilli EE. Hippocampus-specific deficiency of IL-15Rα contributes to greater anxiety-like behaviors in mice. Metab Brain Dis 2017; 32(2): 297-302.
[http://dx.doi.org/10.1007/s11011-016-9930-y] [PMID: 27837366]
[26]
He Y, Hsuchou H, Wu X, et al. Interleukin-15 receptor is essential to facilitate GABA transmission and hippocampal-dependent memory. J Neurosci 2010; 30(13): 4725-34.
[http://dx.doi.org/10.1523/JNEUROSCI.6160-09.2010] [PMID: 20357123]
[27]
Souza-Fonseca-Guimaraes F, Parlato M, de Oliveira RB, et al. Interferon-γ and granulocyte/monocyte colony-stimulating factor production by natural killer cells involves different signaling pathways and the adaptor stimulator of interferon genes (STING). J Biol Chem 2013; 288(15): 10715-21.
[http://dx.doi.org/10.1074/jbc.M112.435602] [PMID: 23443666]
[28]
Wilkie S, Burbridge SE, Chiapero-Stanke L, et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem 2010; 285(33): 25538-44.
[http://dx.doi.org/10.1074/jbc.M110.127951] [PMID: 20562098]
[29]
Huntington ND, Puthalakath H, Gunn P, et al. Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 2007; 8(8): 856-63.
[http://dx.doi.org/10.1038/ni1487] [PMID: 17618288]
[30]
Waldmann T, Tagaya Y, Bamford R. Interleukin-2, interleukin-15, and their receptors. Int Rev Immunol 1998; 16(3-4): 205-26.
[http://dx.doi.org/10.3109/08830189809042995] [PMID: 9505189]
[31]
Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature 2009; 461(7265): 747-53.
[http://dx.doi.org/10.1038/nature08494] [PMID: 19812666]
[32]
Wu X, Pan W, He Y, et al. Cerebral interleukin-15 shows upregulation and beneficial effects in experimental autoimmune encephalomyelitis. J Neuroimmunol 2010; 223: 65-72. 36.
[33]
Wu X, Kastin AJ, Hsuchou H, Pan W. The effects of IL2Rgamma knockout on depression and contextual memory. Behav Brain Res 2010; 213(2): 319-22.
[http://dx.doi.org/10.1016/j.bbr.2010.04.046] [PMID: 20438766]
[34]
Pan W, Yu C, Hsuchou H, Kastin AJ. The role of cerebral vascular NFkappaB in LPS-induced inflammation: differential regulation of efflux transporter and transporting cytokine receptors. Cell Physiol Biochem 2010; 25(6): 623-30.
[http://dx.doi.org/10.1159/000315081] [PMID: 20511707]
[35]
Cosman D. The hematopoietin receptor superfamily. Cytokine 1993; 5(2): 95-106.
[http://dx.doi.org/10.1016/1043-4666(93)90047-9] [PMID: 8392875]
[36]
Pan W, Stone KP, Hsuchou H, Manda VK, Zhang Y, Kastin AJ. Cytokine signaling modulates blood-brain barrier function. Curr Pharm Des 2011; 17(33): 3729-40.
[http://dx.doi.org/10.2174/138161211798220918] [PMID: 21834767]
[37]
Stone KP, Kastin AJ, Pan W. NFĸB is an unexpected major mediator of interleukin-15 signaling in cerebral endothelia. Cell Physiol Biochem 2011; 28(1): 115-24.
[http://dx.doi.org/10.1159/000331720] [PMID: 21865854]
[38]
Ouyang S, Hsuchou H, Kastin AJ, Pan W. TNF stimulates nuclear export and secretion of IL-15 by acting on CRM1 and ARF6. PLoS One 2013; 8(8)e69356
[http://dx.doi.org/10.1371/journal.pone.0069356] [PMID: 23950892]
[39]
Volk DW, Gonzalez-Burgos G, Lewis DA. l-Proline, GABA Synthesis and Gamma Oscillations in Schizophrenia. Trends Neurosci 2016; 39(12): 797-8.
[http://dx.doi.org/10.1016/j.tins.2016.10.009] [PMID: 27832914]
[40]
Kim JH, Kim JH, Son YD, et al. Altered interregional correlations between serotonin transporter availability and cerebral glucose metabolism in schizophrenia: A high-resolution PET study using [11C]DASB and [18F]FDG. Schizophr Res 2017; 182: 55-65.
[http://dx.doi.org/10.1016/j.schres.2016.10.020] [PMID: 27760700]
[41]
Kennedy MK, Glaccum M, Brown SN, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771-80. 33.
[42]
Lodolce J, Burkett P, Koka R, et al. Interleukin-15 and the regulation of lymphoid homeostasis. Mol Immunol 2002; 39: 537-44. 34
[43]
Pan W, Yu C, Hsuchou H, Khan RS, Kastin AJ. Cerebral microvascular IL15 is a novel mediator of TNF action. J Neurochem 2009; 111(3): 819-27.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06371.x] [PMID: 19719822]
[44]
Hou MS, Huang ST, Tsai MH, et al. The interleukin-15 system suppresses T cell-mediated autoimmunity by regulating negative selection and nT(H)17 cell homeostasis in the thymus. J Autoimmun 2015; 56: 118-29. 35.
[45]
Eaton WW, Byrne M, Ewald H, et al. Association of schizophrenia and autoimmune diseases: linkage of Danish national registers. Am J Psychiatry 2006; 163(3): 521-8.
[http://dx.doi.org/10.1176/appi.ajp.163.3.521] [PMID: 16513876]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy