Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

An Overview of the Design, Development and Applications of Biodegradable Stents

Author(s): Keerthana Nakka, Sri D. Nagarajan*, Balamayilsamy Sundaravadivel, Subramanian Shankaravel and Christopher Vimalson

Volume 10, Issue 1, 2020

Page: [2 - 13] Pages: 12

DOI: 10.2174/2210303109666190617165344

Price: $65

Abstract

Background & Objectives: Stents have been effectively used in the treatment of vascular diseases and further explorations are going on in treating various strictures including tracheal, intestinal, nasal, urethra and esophageal. Stents serve as a support to walls of the lumen to prevent restenosis. Metal stents prevent in-stent restenosis but the corrosion of the metallic framework causes further complications. To overcome the shortcomings of metallic stents, metallic Drug-Eluting Stents (DES) have been designed where the drugs are chosen as an anti-restenosis agent in such a way that it prevents thrombosis, neointimal proliferation and possess immunosuppressive properties. Biodegradable stents are becoming ideal, provided they effectively spot the target stricture and have long-term stability to support the walls of the body conduit which in turn aids in eliminating the need for a second surgery. Polymeric materials can be used to enhance the mechanical strength and prolong the degradation time of biodegradable DES, thereby making it an ideal choice for stenting.

Discussion: This review focus on the progress made in the design, manufacture, characterization studies and applications of stents over the past decade.

Conclusion: We concluded that the use of stents is now an emerging technique for the treatment of GI strictures caused due to colorectal cancer, esophageal cancer, cholangiocarcinoma, Crohn’s disease etc. Though BDS have several advantages, advanced techniques are needed for fabrication and suitable modification in the design of the scaffold to enhance its clinical efficacy and to thereby develop an ideal endoprosthetic device.

Keywords: Biodegradable stents, degradation studies, dynamic testing, eye stents, laser cutting, stent materials.

Graphical Abstract
[1]
Landau, C.; Lange, R.A.; Hillis, L.D. Percutaneous transluminal coronary angioplasty. N. Engl. J. Med., 1994, 330(14), 981-993.
[http://dx.doi.org/10.1056/NEJM199404073301407] [PMID: 8121462]
[2]
Bittl, J.A. Advances in coronary angioplasty. N. Engl. J. Med., 1996, 335(17), 1290-1302.
[http://dx.doi.org/10.1056/NEJM199610243351707] [PMID: 8857010]
[3]
Jukema, J.W.; Ahmed, T.A.N.; Verschuren, J.J.W.; Quax, P.H.A. Restenosis after PCI. Part 1: pathophysiology and risk factors. Nat. Rev. Cardiol., 2011, 9(2), 79-90.
[http://dx.doi.org/10.1038/nrcardio.2011.148] [PMID: 21989052]
[4]
O’Laughlin, M.P.; Perry, S.B.; Lock, J.E.; Mullins, C.E. Use of endovascular stents in congenital heart disease. Circulation, 1991, 83(6), 1923-1939.
[http://dx.doi.org/10.1161/01.CIR.83.6.1923] [PMID: 2040045]
[5]
Chen, M.S.; John, J.M.; Chew, D.P.; Lee, D.S.; Ellis, S.G.; Bhatt, D.L. Bare metal stent restenosis is not a benign clinical entity. Am. Heart J., 2006, 151(6), 1260-1264.
[http://dx.doi.org/10.1016/j.ahj.2005.08.011] [PMID: 16781233]
[6]
Wang, Z.; Li, N.; Li, R.; Li, Y.; Ruan, L. Biodegradable intestinal stents: a review. Prog. Nat. Sci.: Mater. Int., 2014, 24(5), 423-432.
[http://dx.doi.org/10.1016/j.pnsc.2014.08.008]
[7]
Kim, S.G.; Yang, C-H. Upper gastrointestinal stent. Clin. Endosc., 2012, 45(4), 386-391.
[http://dx.doi.org/10.5946/ce.2012.45.4.386] [PMID: 23251886]
[8]
Schmidt, T.; Abbott, J.D. Coronary Stents: History, Design, and Construction. J. Clin. Med., 2018, 7(6), 126.
[http://dx.doi.org/10.3390/jcm7060126] [PMID: 29843465]
[9]
Kwon, D.Y.; Kim, J.I.; Kim, D.Y.; Kang, H.J.; Lee, B.; Lee, K.W.; Kim, M.S. Biodegradable stent. J. Biomed. Sci. Eng., 2012, 05(04), 208-216.
[http://dx.doi.org/10.4236/jbise.2012.54028]
[10]
Navarese, E.P.; Tandjung, K.; Claessen, B.; Andreotti, F.; Kowalewski, M.; Kandzari, D.E.; Kereiakes, D.J.; Waksman, R.; Mauri, L.; Meredith, I.T.; Finn, A.V.; Kim, H-S.; Kubica, J.; Suryapranata, H.; Aprami, T.M.; Di Pasquale, G.; von Birgelen, C.; Kedhi, E. Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice: comprehensive network meta-analysis. BMJ, 2013, 347, f6530.
[http://dx.doi.org/10.1136/bmj.f6530] [PMID: 24196498]
[11]
Jain, D.; Mahmood, E.; Singhal, S. Biodegradable Stents. J. Clin. Gastroenterol., 2017, 51(4), 295-299.
[http://dx.doi.org/10.1097/MCG.0000000000000725] [PMID: 27749637]
[12]
Zhu, Y.; Yang, K.; Cheng, R.; Xiang, Y.; Yuan, T.; Cheng, Y.; Sarmento, B.; Cui, W. The current status of biodegradable stent to treat benign luminal disease. Mater. Today, 2017, 20(9), 516-529.
[http://dx.doi.org/10.1016/j.mattod.2017.05.002]
[13]
Álvarez, B.; Óscar, A. Castaño; Llano, R.; Restrepo, D. The current state of biodegradable self-expanding stents in in-terventional gastrointestinal and pancreatobiliary endoscopy Rev. colomb. gastroenterol, 2015, 30, 178-186.
[14]
Hossainy, S.F. Abbott Cardiovascular Systems Inc, assignee. Stent fabricated from polymer composite toughened by a dispersed phase U.S. Patent, 2017, 9, 808-362.
[15]
Lincoff, A.M.; Furst, J.G.; Ellis, S.G.; Tuch, R.J.; Topol, E.J. Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J. Am. Coll. Cardiol., 1997, 29(4), 808-816.
[http://dx.doi.org/10.1016/S0735-1097(96)00584-0] [PMID: 9091528]
[16]
Martínez-Martínez, I.; González-Porras, J.R.; Cebeira, M.J.; de Arriba, F.; Espín, S.; Bohdan, N.; Corrales, F.J.; Corral, J.; Vicente, V. Identification of a new potential mechanism responsible for severe bleeding in myeloma: immunoglobulins bind the heparin binding domain of antithrombin activating this endogenous anticoagulant. Haematologica, 2016, 101(10), e423-e426.
[http://dx.doi.org/10.3324/haematol.2016.144873] [PMID: 27479819]
[17]
Casu, B.; Naggi, A.; Torri, G. Re-visiting the structure of heparin. Carbohydr. Res., 2015, 403, 60-68.
[http://dx.doi.org/10.1016/j.carres.2014.06.023] [PMID: 25088334]
[18]
Biran, R.; Pond, D. Heparin coatings for improving blood compatibility of medical devices. Adv. Drug Deliv. Rev., 2017, 112, 12-23.
[http://dx.doi.org/10.1016/j.addr.2016.12.002] [PMID: 28042080]
[19]
Puranik, A.S.; Dawson, E.R.; Peppas, N.A. Recent advances in drug eluting stents. Int. J. Pharm., 2013, 441(1-2), 665-679.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.029] [PMID: 23117022]
[20]
Hartford, C.M.; Ratain, M.J. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin. Pharmacol. Ther., 2007, 82(4), 381-388.
[http://dx.doi.org/10.1038/sj.clpt.6100317] [PMID: 17728765]
[21]
Moses, J.W.; Leon, M.B.; Popma, J.J.; Fitzgerald, P.J.; Holmes, D.R.; O’Shaughnessy, C.; Caputo, R.P.; Kereiakes, D.J.; Williams, D.O.; Teirstein, P.S.; Jaeger, J.L.; Kuntz, R.E. SIRIUS Investigators.Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med., 2003, 349(14), 1315-1323.
[http://dx.doi.org/10.1056/NEJMoa035071] [PMID: 14523139]
[22]
Worthley, S.; Brilakis, N.; Abizaid, A.; Kirtane, A.; Simon, D.; Windecker, S.; Brar, S.; Meredith, I.; Shetty, S. v; Sinhal, A.; Almonacid, A. P.-; Chamie, D.; Maehara, A.; Stone, G. First-in-human evaluation of a novel polymer-free drug-filled stent: angiographic, IVUS, OCT, and clinical outcomes from the RevElution study. J. Am. Coll. Cardiol., 2016, 68(18)
[http://dx.doi.org/10.1016/j.jacc.2016.09.579]
[23]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[24]
Strickler, F.; Richard, R.; McFadden, S.; Lindquist, J.; Schwarz, M.C.; Faust, R.; Wilson, G.J.; Boden, M. In vivo and in vitro characterization of poly(styrene-b-isobutylene-b-styrene) copolymer stent coatings for biostability, vascular compatibility and mechanical integrity. J. Biomed. Mater. Res. A, 2010, 92(2), 773-782.
[http://dx.doi.org/10.1002/jbm.a.32418] [PMID: 19274717]
[25]
Heldman, A.W.; Cheng, L.; Jenkins, G.M.; Heller, P.F.; Kim, D-W.; Ware, M., Jr; Nater, C.; Hruban, R.H.; Rezai, B.; Abella, B.S.; Bunge, K.E.; Kinsella, J.L.; Sollott, S.J.; Lakatta, E.G.; Brinker, J.A.; Hunter, W.L.; Froehlich, J.P. Paclitaxel stent coating inhibits neointimal hyperplasia at 4 weeks in a porcine model of coronary restenosis. Circulation, 2001, 103(18), 2289-2295.
[http://dx.doi.org/10.1161/01.CIR.103.18.2289] [PMID: 11342479]
[26]
Burke, S.E.; Kuntz, R.E.; Schwartz, L.B. Zotarolimus (ABT-578) eluting stents. Adv. Drug Deliv. Rev., 2006, 58(3), 437-446.
[http://dx.doi.org/10.1016/j.addr.2006.01.021] [PMID: 16581153]
[27]
Banerjee, S. The resolute™ integrity zotarolimus-eluting stent in coronary artery disease: a review. Cardiol. Ther., 2013, 2(1), 17-25.
[http://dx.doi.org/10.1007/s40119-012-0010-z] [PMID: 25135286]
[28]
Ellis, S.G.; Kereiakes, D.J.; Metzger, D.C.; Caputo, R.P.; Rizik, D.G.; Teirstein, P.S.; Litt, M.R.; Kini, A.; Kabour, A.; Marx, S.O.; Popma, J.J.; McGreevy, R.; Zhang, Z.; Simonton, C.; Stone, G.W. ABSORB III Investigators. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N. Engl. J. Med., 2015, 373(20), 1905-1915.
[http://dx.doi.org/10.1056/NEJMoa1509038] [PMID: 26457558]
[29]
Koppara, T.; Cheng, Q.; Yahagi, K.; Mori, H.; Sanchez, O. D.; Feygin, J.; Wittchow, E.; Kolodgie, F. D.; Virmani, R.; Joner, M. M Circ.: Cardiovasc. Interventions, 2015, 8(6)
[30]
Harrington, J.; Vaughan, R.; Jow, K.; Pippey, W.; Chen, Y.M. inventors; Abbott Cardiovascular Systems Inc, assignee. La-ser system and processing conditions for manufacturing bio-absorbable stents. U.S.patent, 2017. 15/643,221
[31]
Muhammad, N.; Abdullah, M.M.A.B.; Saleh, M.S.; Li, L. Laser cutting of coronary stents: Progress and Development in Laser Based Stent Cutting Technology. Key Eng. Mater., 2015, 660, 345-350.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.660.345]
[32]
Gale, D.C.; Wang, Y.; Atladottir, S.M.; Kleine, K. inventors; Abbott Cardiovascular Systems Inc, assignee. Method and apparatus to prevent stent damage caused by la-ser cutting U.S.patent 2013.
[33]
Gianchandani, Y.B.; Takahata, K. nventors; University of Michigan, assignee. Assembly and planar structure for use therein which is expandable into a 3-D structure such as a stent and device for making the planar structure. U.S. patent, 2016. 9,440,302
[34]
Naik, D.K.; Khan, A.; Majumder, H.; Garg, R.K. Experimental Investigation of the PMEDM of Nickel Free Austenitic Stainless Steel: A Promising Coronary Stent Material. Silicon, 2018, 11(2), 899-907.
[http://dx.doi.org/10.1007/s12633-018-9877-1]
[35]
Mehta, K.; Gupta, K. Machining of Shape Memory Alloys; Fabrication and Processing of Shape Memory Alloys SpringerBriefs in Applied Sciences and Technology, 2018, pp. 9-37.
[36]
Tomonto, C.V. nventor; Cordis Corp, assignee. Flexible stent and method of manufacture. U.S. patent, 2006. 2006
[37]
Saraf, A.R.; Sadaiah, M. Photochemical machining of a novel cardiovascular stent. Mater. Manuf. Process., 2016, 32(15), 1740-1746.
[http://dx.doi.org/10.1080/10426914.2016.1198025]
[38]
Tiasha, T.R. Biodegradable Magnesium Implants for Medical Applications., Applications (Doctoral dissertation, University of Cincinnati), . 2017.
[39]
Zhang, X.; Ma, P. Application of Knitting Structure Textiles in Medical Areas. AUTEX Res. J., 2018, 18(2), 181-191.
[http://dx.doi.org/10.1515/aut-2017-0019]
[40]
Lin, M-C.; Lou, C-W.; Lin, J-Y.; Lin, T.A.; Chen, Y-S.; Lin, J-H. Biodegradable Polyvinyl Alcohol Vascular Stents: Structural Model and Mechanical and Biological Property Evaluation. Mater. Sci. Eng. Mater. Sci. Eng. Proc. Conf., 2018, pp. 404-413.
[41]
Yekrang, J.; Semnani, D.; Seyghalani, A.Z.; Razavi, S. A novel biodegradable micro-nano tubular knitted structure of PGA braided yarns and PCL nanofibres applicable as esophagus prosthesis. Indian J. Fibre Text. Res., 2017, 42, 264-270.
[42]
Wang, C-E.; Zhang, P-H. Design and characterization of PDO biodegradable intravascular stents. Text. Res. J., 2016, 87(16), 1968-1976.
[http://dx.doi.org/10.1177/0040517516660893]
[43]
Han, C-M.; Lih, E.; Choi, S-K.; Bedair, T.M.; Lee, Y-J.; Park, W.; Han, D.K.; Son, J.S.; Joung, Y.K. Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures. J. Ind. Eng. Chem., 2018, 67, 396-406.
[http://dx.doi.org/10.1016/j.jiec.2018.07.014]
[44]
Puppi, D.; Pirosa, A.; Lupi, G.; Erba, P.A.; Giachi, G.; Chiellini, F. Design and fabrication of novel polymeric biodegradable stents for small caliber blood vessels by computer-aided wet-spinning. Biomed. Mater., 2017, 12(3)035011
[http://dx.doi.org/10.1088/1748-605X/aa6a28] [PMID: 28589916]
[45]
Puppi, D.; Chiellini, F. Wet‐spinning of biomedical polymers: from single‐fibre production to additive manufacturing of three‐dimensional scaffolds. Polym. Int., 2017, 66(12), 1690-1696.
[http://dx.doi.org/10.1002/pi.5332]
[46]
Huang, B.; Gale, D.C.; Gueriguian, V.J. inventors; Abbott Cardiovascular Systems Inc, assignee. Method of fabricating stents from blow molded tubing. U.S. patent., 2017. 9,668,896
[47]
Wang, L.; Lindquist, J.S.; Lee, N.P.; Chen, J.J.; Devens, D.A. Abbott Cardiovascular Systems Inc, assignee., Method of fabricating stents from blow molded tubing U.S. patent. 2017. 9,668,896
[48]
Ang, H.Y.; Bulluck, H.; Wong, P.; Venkatraman, S.S.; Huang, Y.; Foin, N. Bioresorbable stents: Current and upcoming bioresorbable technologies. Int. J. Cardiol., 2017, 228, 931-939.
[http://dx.doi.org/10.1016/j.ijcard.2016.11.258] [PMID: 27912202]
[49]
Headley, F.A., Jr; Geitz, K.A. Boston Scientific Scimed Inc, assignee., Bioabsorbable stents with reinforced filaments. U.S. patent. 2016. 2016
[50]
Im, S.H.; Jung, Y.; Jang, Y.; Kim, S.H. Poly(L-lactic acid) scaffold with oriented micro-valley surface and superior properties fabricated by solid-state drawing for blood-contact biomaterials. Biofabrication, 2016, 8(4)045010
[http://dx.doi.org/10.1088/1758-5090/8/4/045010] [PMID: 27775924]
[51]
Ang, H. Y.; Bulluck, H.; Wong, P.; Lim, S. T.; Venkatraman, S. S.; Huang, Y.; Foin, N. Bioresorbable Scaffold Stability and Mechanical Properties Textbook of Catheter-Based Cardiovascular Interventions 2018. 641-658
[52]
Sarisözen, C.; Arica, B.; Hincal, A.A.; Caliş, S. Development of biodegradable drug releasing polymeric cardiovascular stents and in vitro evaluation. J. Microencapsul., 2009, 26(6), 501-512.
[http://dx.doi.org/10.1080/02652040802465792] [PMID: 18932059]
[53]
Sonawane, V.C.; More, M.P.; Pandey, A.P.; Patil, P.O.; Deshmukh, P.K. Fabrication and characterization of shape memory polymers based bioabsorbable biomedical drug eluting stent. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1740-1750.
[http://dx.doi.org/10.1080/21691401.2017.1282867] [PMID: 28140661]
[54]
Grabow, N.; Bünger, C.M.; Schultze, C.; Schmohl, K.; Martin, D.P.; Williams, S.F.; Sternberg, K.; Schmitz, K-P. A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann. Biomed. Eng., 2007, 35(12), 2031-2038.
[http://dx.doi.org/10.1007/s10439-007-9376-9] [PMID: 17846893]
[55]
Revati, R.; Majid, M.A.; Ridzuan, M.; Normahira, M.; Nasir, N.M.Y.M.R.; Gibson, A. Mechanical, thermal and morphological characterization of 3D porous Pennisetum purpureum/PLA biocomposites scaffold. Mater. Sci. Eng. Mater. Sci. Eng. Proc. Conf., 2017, pp. 752-759.
[56]
Bartosch, M.; Peters, H.; Koerner, A.; Schmitt, B.; Berger, F.; Hort, N.; Witte, F. New methods for in vivo degradation testing of future stent materials. Mater. Corros., 2017, 69(2), 156-166.
[http://dx.doi.org/10.1002/maco.201709521]
[57]
Dyet, J.F.; Watts, W.G.; Ettles, D.F.; Nicholson, A.A. Mechanical properties of metallic stents: how do these properties influence the choice of stent for specific lesions? Cardiovasc. Intervent. Radiol., 2000, 23(1), 47-54.
[http://dx.doi.org/10.1007/s002709910007] [PMID: 10656906]
[58]
Dehestani, M.; Adolfsson, E.; Stanciu, L.A. Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications. Mater. Des., 2016, 109, 556-569.
[http://dx.doi.org/10.1016/j.matdes.2016.07.092]
[59]
Mariot, P.; Leeflang, M.; Schaeffer, L.; Zhou, J. An investigation on the properties of injection-molded pure iron potentially for biodegradable stent application. Powder Technol., 2016, 294, 226-235.
[http://dx.doi.org/10.1016/j.powtec.2016.02.042]
[60]
Shi, Y.; Zhang, L.; Chen, J.; Zhang, J.; Yuan, F.; Shen, L.; Chen, C.; Pei, J.; Li, Z.; Tan, J.; Yuan, G. In vitro and in vivo degradation of rapamycin-eluting Mg-Nd-Zn-Zr alloy stents in porcine coronary arteries. Mater. Sci. Eng. Proc. Conf., 2017, pp. 1-6.
[61]
Mattesini, A.; Secco, G.G.; Dall’Ara, G.; Ghione, M.; Rama-Merchan, J.C.; Lupi, A.; Viceconte, N.; Lindsay, A.C.; De Silva, R.; Foin, N.; Naganuma, T.; Valente, S.; Colombo, A.; Di Mario, C. ABSORB biodegradable stents versus second-generation metal stents: a comparison study of 100 complex lesions treated under OCT guidance. JACC Cardiovasc. Interv., 2014, 7(7), 741-750.
[http://dx.doi.org/10.1016/j.jcin.2014.01.165] [PMID: 25060016]
[62]
Løvdal, A.L.V.; Calve, S.; Yang, S.; Van Alstine, W.; Binkert, C.A.; Klausen, K. Evaluation of a bioabsorbable self-expandable vein stent-base made of poly (L-lactide) in vitro and in vivo. Cardiovasc. Intervent. Radiol., 2017, 40(1), 112-119.
[http://dx.doi.org/10.1007/s00270-016-1491-2] [PMID: 27815574]
[63]
Liu, L.; Koo, Y.; Collins, B.; Xu, Z.; Sankar, J.; Yun, Y. Biodegradability and platelets adhesion assessment of magnesium-based alloys using a microfluidic system. PLoS One, 2017, 12(8)e0182914
[http://dx.doi.org/10.1371/journal.pone.0182914] [PMID: 28797069]
[64]
Versteegden, L.R.; van Kampen, K.A.; Janke, H.P.; Tiemessen, D.M.; Hoogenkamp, H.R.; Hafmans, T.G.; Roozen, E.A.; Lomme, R.M.; van Goor, H.; Oosterwijk, E.; Feitz, W.F.; van Kuppevelt, T.H.; Daamen, W.F. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomater., 2017, 52, 1-8.
[http://dx.doi.org/10.1016/j.actbio.2017.02.005] [PMID: 28179160]
[65]
Strohbach, A.; Busch, R. Polymers for cardiovascular stent coatings. Int. J. Polym. Sci., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/782653]
[66]
Liu, J.; Wang, Z.; Wu, K.; Li, J.; Chen, W.; Shen, Y.; Guo, S. Paclitaxel or 5-fluorouracil/esophageal stent combinations as a novel approach for the treatment of esophageal cancer. Biomaterials, 2015, 53, 592-599.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.009] [PMID: 25890755]
[67]
Koo, Y.; Lee, H-B.; Dong, Z.; Kotoka, R.; Sankar, J.; Huang, N.; Yun, Y. The effects of static and dynamic loading on biodegradable magnesium pins in vitro and in vivo. Sci. Rep., 2017, 7(1), 14710.
[http://dx.doi.org/10.1038/s41598-017-14836-5] [PMID: 29089642]
[68]
Park, J-H.; Song, H-Y.; Shin, J.H.; Kim, J.H.; Jun, E.J.; Cho, Y.C.; Kim, S.H.; Park, J. Polydioxanone biodegradable stent placement in a canine urethral model: analysis of inflammatory reaction and biodegradation. J. Vasc. Interv. Radiol., 2014, 25(8), 1257-1264.e1.
[http://dx.doi.org/10.1016/j.jvir.2014.03.023] [PMID: 24912878]
[69]
Wen, J.; Oliver, D.A. Medtronic Xomed Inc, assignee., Sinus and nasal stent U.S.patent. 2018. 15/750,688
[70]
Britz, G.; Ferrell, A. Developments on the horizon in the treat. Surg. Neurol. Int., 2013, 4(2), 31.
[http://dx.doi.org/10.4103/2152-7806.109194]
[71]
Li, G.; Li, Y.; Lan, P.; Li, J.; Zhao, Z.; He, X.; Zhang, J.; Hu, H. Biodegradable weft-‐knitted intestinal stents: Fabrication and physical changes investigation in vitro degradation. J. Biomed. Mater. Res., Part A, 2013, 102(4), 982-990.
[72]
Shi, K-D.; Ji, F. Prophylactic stenting for esophageal stricture prevention after endoscopic submucosal dissection. World J. Gastroenterol., 2017, 23(6), 931-934.
[http://dx.doi.org/10.3748/wjg.v23.i6.931] [PMID: 28246466]
[73]
Karstensen, J.G.; Christensen, K.R.; Brynskov, J.; Rønholt, C.; Vilmann, P.; Hendel, J. Biodegradable stents for the treatment of bowel strictures in Crohn’s disease: technical results and challenges. Endosc. Int. Open, 2016, 4(3), E296-E300.
[http://dx.doi.org/10.1055/s-0042-101940] [PMID: 27004247]
[74]
Waksman, R.; Pakala, R. Biodegradable and bioabsorbable stents. Curr. Pharm. Des., 2010, 16(36), 4041-4051.
[http://dx.doi.org/10.2174/138161210794454905] [PMID: 21208182]
[75]
Ham, Y.H.; Kim, G.H. Plastic and biodegradable stents for complex and refractory benign esophageal strictures. Clin. Endosc., 2014, 47(4), 295-300.
[http://dx.doi.org/10.5946/ce.2014.47.4.295] [PMID: 25133114]
[76]
Köneş, O.; Oran, E. Self-Expanding Biodegradable Stents for Postoperative Upper Gastrointestinal Issues. JSLS, 2018, 22(2)
[77]
Iqbal, J.; Chamberlain, J.; Francis, S.E.; Gunn, J. Role of animal models in coronary stenting. Ann. Biomed. Eng., 2016, 44(2), 453-465.
[http://dx.doi.org/10.1007/s10439-015-1414-4] [PMID: 26259974]
[78]
Wang, M.; Zhang, Y.; Fan, Z. Progress of endoscopic treatment for benign esophageal strictures. Chin. J. Minimally Invasive Neurosurg., 2016, 16, 365-369.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy