Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Mixing of Graphite with X-ray Irradiated Water Towards the Exfoliation of Graphene Layers

Author(s): Wipsar S.B. Dwandaru*, Buky W. Pratama, Rhyko I. Wisnuwijaya, Lia D. Parwati, Deni S. Khaerudini, Supardi and Suparno

Volume 10, Issue 4, 2020

Page: [548 - 556] Pages: 9

DOI: 10.2174/2210681209666190617093904

Price: $65

Abstract

Background: This study aims to study the mixing of graphite with water irradiated by X-ray (low energy gamma ray) towards the formation of graphene oxide (GO).

Methods: The graphite is obtained from Zinc-Carbon (ZnC) battery wastes. This is a simple alternative technique in synthesizing GO based on X-ray irradiation without involving additional chemicals. X-ray irradiation is conducted upon 10 ml of distilled water using 20 kV of X-ray with irradiation time variation of 3 and 4 h. The X-ray irradiation towards the distilled water causes radiolysis to occur in the water. The graphite solution consists of 0.6 gm of graphite in 100 ml of distilled water. The GO is formed by mixing the X-ray irradiated water with 5 drops of the graphite solution. The sample solutions obtained are shaken several times and left to settle for a night. The samples are then characterized using UV-Visible (UV-Vis) and Fourier transform infra-red (FTIR) spectroscopies, and tunneling electron microscopy (TEM), whereas scanning electron microscope and energy dispersive X-ray (SEM-EDX) characterization is done by coating the sample on glass slides.

Results: The UV-Vis characterization results show a red shift of absorbance peaks from 234.5 nm to 244.5 nm as the time of irradiation is increased. These peaks indicate the formation of GO in the samples. The FTIR characterization results indicate that there are functional groups of OH, C=C, and C-O in the samples, which also show the existence of GO. The SEM images show the surface morphology of the sample, which resembles smooth-quadrilateral lump of clays, and the EDX result shows that the sample is composed of 2.86%, 54.02%, 11.62%, 2.2%, 26.23%, and 3.06% of carbon, oxygen, sodium, magnesium, silicon, and calcium atoms, respectively. The occurrence of carbon and oxygen atoms verifies further the formation of GO in the samples.

Conclusion: Finally, the TEM result shows few-layers of GO materials supported by the electron diffraction pattern showing hexagonal structure of the GO.

Keywords: X-ray irradiation, water radiolysis, graphene oxide, graphite of ZnC battery, graphite, graphene oxide.

Graphical Abstract
[1]
Yoo, B.M.; Shin, J.E.; Lee, H.D.; Park, H.B. Graphene and graphene oxide membranes for gas separation applications. Curr. Opin. Chem. Eng., 2017, 16, 39-47.
[http://dx.doi.org/10.1016/j.coche.2017.04.004]
[2]
Toda, K.; Furue, R.; Hayami, S. Recent progress in applications of graphene oxide for gas sensing: A review. Anal. Chim. Acta, 2015, 878, 43-53.
[http://dx.doi.org/10.1016/j.aca.2015.02.002] [PMID: 26002325]
[3]
Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 2013, 64, 225-229.
[http://dx.doi.org/10.1016/j.carbon.2013.07.055]
[4]
Yuan, R.; Yuan, J.; Wu, Y.; Ju, P.; Ji, L.; Li, H.; Chen, L.; Zhou, H.; Chen, J. Graphene oxide-monohydrated manganese phosphate composites: preparation via modified Hummers method. Colloids Surf. A Physicochem. Eng. Asp., 2018, 547, 56-63.
[http://dx.doi.org/10.1016/j.colsurfa.2018.03.023]
[5]
Chen, J.; Li, Y.; Huang, L.; Li, C.; Shi, G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81, 826-834.
[http://dx.doi.org/10.1016/j.carbon.2014.10.033]
[6]
Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-efficient synthesis of graphene oxide based on improved method. Sci. Rep., 2016, 6, 36143.
[http://dx.doi.org/10.1038/srep36143] [PMID: 27808164]
[7]
Pei, S.; Wei, Q.; Huang, K.; Cheng, H-M.; Ren, W. Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nat. Commun., 2018, 9(1), 145.
[http://dx.doi.org/10.1038/s41467-017-02479-z] [PMID: 29321501]
[8]
Esposito, F.; Sansone, L.; Taddei, C.; Campopiano, S.; Giordano, M.; Iadicicco, A. Ultrasensitive biosensor based on long period grating coated with polycarbonate-graphene oxide multilayer. Sens. Actuators B Chem., 2018, 274, 517-526.
[http://dx.doi.org/10.1016/j.snb.2018.08.002]
[9]
Bobnar, J.; Lozinšek, M.; Kapun, G.; Njel, C.; Dedryvère, R.; Genorio, B.; Dominko, R. Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries. Sci. Rep., 2018, 8(1), 5819.
[http://dx.doi.org/10.1038/s41598-018-23991-2] [PMID: 29643345]
[10]
Wang, L.; Lee, K.; Sun, Y-Y.; Lucking, M.; Chen, Z.; Zhao, J-J.; Zhang, S.B. Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano, 2009, 3(10), 2995-3000.
[http://dx.doi.org/10.1021/nn900667s] [PMID: 19856979]
[11]
Zhang, D.; Liu, X.; Wang, X. Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. J. Inorg. Biochem., 2011, 105(9), 1181-1186.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.05.014] [PMID: 21708103]
[12]
Krishnamoorthy, K.; Mohan, R.; Kim, S-J. Graphene oxide as a photocatalytic material. Appl. Phys. Lett., 2011, 2011, 98244101
[http://dx.doi.org/10.1063/1.3599453]
[13]
Fabre, C.; Proisy, M.; Chapuis, C.; Jouneau, S.; Lentz, P-A.; Meunier, C.; Mahé, G.; Lederlin, M. Radiology residents’ skill level in chest x-ray reading. Diagn. Interv. Imag., 2018, 99(6), 361-370.
[http://dx.doi.org/10.1016/j.diii.2018.04.007] [PMID: 29735257]
[14]
Deng, W.; Chen, W.; Clement, S.; Guller, A.; Zhao, Z.; Engel, A.; Goldys, E.M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun., 2018, 9(1), 2713.
[http://dx.doi.org/10.1038/s41467-018-05118-3] [PMID: 30006596]
[15]
Zhang, B.; Li, L.; Wang, Z.; Xie, S.; Zhang, Y.; Shen, Y.; Yu, M.; Deng, B.; Huang, Q.; Fan, C.; Li, J. Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. J. Mater. Chem., 2012, 22, 7775.
[http://dx.doi.org/10.1039/c2jm16722k]
[16]
Dumee, L.F.; Feng, C.; He, L.; Yi, Z.; She, F.; Peng, Z.; Gao, W.; Banos, C.; Davies, J.B.; Huynh, C.; Hawkins, S.; Duke, M.C.; Gray, S.; Hodgson, P.D.; Kong, L. Single step preparation of meso-porous and reduced graphene oxide by gamma-ray irradiation in gaseous phase. Carbon, 2014, 70, 313-318.
[http://dx.doi.org/10.1016/j.carbon.2013.12.094]
[17]
Zhang, Q.; Ye, S.; Chen, X.; Song, X.; Li, L. Huang, X. Photocatalytic degradation of ethylene using titanium dioxide nanotube arrays with Ag and reduced graphene oxide irradiated by γ-ray radiolysis. Appl. Catal. B, 2017, 203, 673-683.
[http://dx.doi.org/10.1016/j.apcatb.2016.10.034]
[18]
Le Caer, S. Water radiolysis: influence of xode surfaces on H2 production under ionizing radiation. Water, 2011, 3(1), 235-253.
[http://dx.doi.org/10.3390/w3010235]
[19]
Wisnuwijaya, R.I.; Purwanto, A.; Dwandaru, W.S.B. UV-Visible optical absorbance of graphene oxide synthesized from zinc-carbon battery waste via a custom-made ultrasound generator based on liquid sonication exfoliation method. Makara. J. Sci., 2017, 21(4), 175-181.
[http://dx.doi.org/10.7454/mss.v21i4.6752]
[20]
Bernardes, A.M.; Espinosa, D.C.R.; Tenorio, J.A.S. Recycling of batteries: A review of current processes and technologies. J. Power Sources, 2004, 130(1-2), 291-298.
[http://dx.doi.org/10.1016/j.jpowsour.2003.12.026]
[21]
Saxena, S.; Tyson, T.A.; Shukla, S.; Negusse, E.; Chen, H.; Bai, J. Investigation of structural and electronic properties of graphene oxide. Appl. Phys. Lett., 2011. 99013104
[http://dx.doi.org/10.1063/1.3607305]
[22]
Lai, Q.; Zhu, S.; Luo, X.; Zou, M.; Huang, S. Ultraviolet-visible spectroscopy of graphene oxide. AIP Adv., 2012, 2(3) 032146
[http://dx.doi.org/10.1063/1.4747817]
[23]
Gurunathan, S.; Han, J.W.; Kim, E.S.; Park, J.H.; Kim, J.H. Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int. J. Nanomedicine, 2015, 10(1), 2951-2969.
[http://dx.doi.org/10.2147/IJN.S79879] [PMID: 25931821]
[24]
Krishna, R.; Jones, A.N.; Marsden, B.J. Gamma Radiation effect on nuclear rector grades graphite 23rd Conference on Structural Mechanics in Reactor Technology, Manchester, UK2015.
[25]
Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS Nano, 2010, 4(8), 4806-4814.
[http://dx.doi.org/10.1021/nn1006368] [PMID: 20731455]
[26]
Wang, S.; Wang, C.; Ji, X. Towards understanding the salt-intercalation exfoliation of graphite into graphene. RSC Advances, 2017, 7, 52252-52260.
[http://dx.doi.org/10.1039/C7RA07489A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy