Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

B7-H3 Immune Checkpoint Protein in Human Cancer

Author(s): Karine Flem-Karlsen, Øystein Fodstad and Caroline E. Nunes-Xavier*

Volume 27, Issue 24, 2020

Page: [4062 - 4086] Pages: 25

DOI: 10.2174/0929867326666190517115515

Price: $65

conference banner
Abstract

B7-H3 belongs to the B7 family of immune checkpoint proteins, which are important regulators of the adaptive immune response and emerging key players in human cancer. B7-H3 is a transmembrane protein expressed on the surface of tumor cells, antigen presenting cells, natural killer cells, tumor endothelial cells, but can also be present in intra- and extracellular vesicles. Additionally, B7-H3 may be present as a circulating soluble isoform in serum and other body fluids. B7-H3 is overexpressed in a variety of tumor types, in correlation with poor prognosis. B7-H3 is a promising new immunotherapy target for anti-cancer immune response, as well as a potential biomarker. Besides its immunoregulatory role, B7-H3 has intrinsic pro-tumorigenic activities related to enhanced cell proliferation, migration, invasion, angiogenesis, metastatic capacity and anti-cancer drug resistance. B7-H3 has also been found to regulate key metabolic enzymes, promoting the high glycolytic capacity of cancer cells. B7-H3 receptors are still not identified, and little is known about the molecular mechanisms underlying B7-H3 functions. Here, we review the current knowledge on the involvement of B7-H3 in human cancer.

Keywords: B7-H3 Immune, regulators, body fluids, isoform, anti-cancer immune response, pro-tumorigenic activities.

[1]
Lorenz, U. SHP-1 and SHP-2 in T cells: two phosphatases functioning at many levels. Immunol. Rev., 2009, 228(1), 342-359.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00760.x] [PMID: 19290938]
[2]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[3]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol., 2012, 24(2), 207-212.
[http://dx.doi.org/10.1016/j.coi.2011.12.009] [PMID: 22236695]
[4]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med., 2016, 8(328)328rv4
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[5]
Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367] [PMID: 30115704]
[6]
Fink, P.J. The cancer immunotherapy revolution: mechanistic insights. J. Immunol., 2018, 200(2), 371-372.
[http://dx.doi.org/10.4049/jimmunol.1790024] [PMID: 29311377]
[7]
Kelly, P.N. The cancer immunotherapy revolution. Science, 2018, 359(6382), 1344-1345.
[http://dx.doi.org/10.1126/science.359.6382.1344] [PMID: 29567702]
[8]
Collins, M.; Ling, V.; Carreno, B.M. The B7 family of immune-regulatory ligands. Genome Biol., 2005, 6(6), 223.
[http://dx.doi.org/10.1186/gb-2005-6-6-223] [PMID: 15960813]
[9]
Carreno, B.M.; Collins, M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu. Rev. Immunol., 2002, 20, 29-53.
[http://dx.doi.org/10.1146/annurev.immunol.20.091101.091806] [PMID: 11861596]
[10]
Zhu, Y.; Yao, S.; Iliopoulou, B.P.; Han, X.; Augustine, M.M.; Xu, H.; Phennicie, R.T.; Flies, S.J.; Broadwater, M.; Ruff, W.; Taube, J.M.; Zheng, L.; Luo, L.; Zhu, G.; Chen, J.; Chen, L. B7-H5 costimulates human T cells via CD28H. Nat. Commun., 2013, 4, 2043.
[http://dx.doi.org/10.1038/ncomms3043] [PMID: 23784006]
[11]
Flajnik, M.F.; Tlapakova, T.; Criscitiello, M.F.; Krylov, V.; Ohta, Y. Evolution of the B7 family: co-evolution of B7H6 and NKp30, identification of a new B7 family member, B7H7, and of B7's historical relationship with the MHC. Immunogenetics, 2012, 64(8), 571-590.
[http://dx.doi.org/10.1007/s00251-012-0616-2] [PMID: 22488247]
[12]
Brandt, C.S.; Baratin, M.; Yi, E.C.; Kennedy, J.; Gao, Z.; Fox, B.; Haldeman, B.; Ostrander, C.D.; Kaifu, T.; Chabannon, C.; Moretta, A.; West, R.; Xu, W.; Vivier, E.; Levin, S.D. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med., 2009, 206(7), 1495-1503.
[http://dx.doi.org/10.1084/jem.20090681] [PMID: 19528259]
[13]
Hansen, J.D.; Du Pasquier, L.; Lefranc, M.P.; Lopez, V.; Benmansour, A.; Boudinot, P. The B7 family of immunoregulatory receptors: a comparative and evolutionary perspective. Mol. Immunol., 2009, 46(3), 457-472.
[http://dx.doi.org/10.1016/j.molimm.2008.10.007] [PMID: 19081138]
[14]
Dephoure, N.; Zhou, C.; Villén, J.; Beausoleil, S.A.; Bakalarski, C.E.; Elledge, S.J.; Gygi, S.P. A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. USA, 2008, 105(31), 10762-10767.
[http://dx.doi.org/10.1073/pnas.0805139105] [PMID: 18669648]
[15]
Carrier, M.; Joint, M.; Lutzing, R.; Page, A.; Rochette-Egly, C. Phosphoproteome and transcriptome of RA-responsive and RA-resistant breast cancer cell lines. PLoS One, 2016, 11(6)e0157290
[http://dx.doi.org/10.1371/journal.pone.0157290] [PMID: 27362937]
[16]
Mertins, P.; Mani, D.R.; Ruggles, K.V.; Gillette, M.A.; Clauser, K.R.; Wang, P.; Wang, X.; Qiao, J.W.; Cao, S.; Petralia, F.; Kawaler, E.; Mundt, F.; Krug, K.; Tu, Z.; Lei, J.T.; Gatza, M.L.; Wilkerson, M.; Perou, C.M.; Yellapantula, V.; Huang, K.L.; Lin, C.; McLellan, M.D.; Yan, P.; Davies, S.R.; Townsend, R.R.; Skates, S.J.; Wang, J.; Zhang, B.; Kinsinger, C.R.; Mesri, M.; Rodriguez, H.; Ding, L.; Paulovich, A.G.; Fenyö, D.; Ellis, M.J.; Carr, S.A.; Nci, C. NCI CPTAC. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 2016, 534(7605), 55-62.
[http://dx.doi.org/10.1038/nature18003] [PMID: 27251275]
[17]
Mertins, P.; Yang, F.; Liu, T.; Mani, D.R.; Petyuk, V.A.; Gillette, M.A.; Clauser, K.R.; Qiao, J.W.; Gritsenko, M.A.; Moore, R.J.; Levine, D.A.; Townsend, R.; Erdmann-Gilmore, P.; Snider, J.E.; Davies, S.R.; Ruggles, K.V.; Fenyo, D.; Kitchens, R.T.; Li, S.; Olvera, N.; Dao, F.; Rodriguez, H.; Chan, D.W.; Liebler, D.; White, F.; Rodland, K.D.; Mills, G.B.; Smith, R.D.; Paulovich, A.G.; Ellis, M.; Carr, S.A. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol. Cell. Proteomics, 2014, 13(7), 1690-1704.
[http://dx.doi.org/10.1074/mcp.M113.036392] [PMID: 24719451]
[18]
Schweppe, D.K.; Rigas, J.R.; Gerber, S.A. Quantitative phosphoproteomic profiling of human non-small cell lung cancer tumors. J. Proteomics, 2013, 91, 286-296.
[http://dx.doi.org/10.1016/j.jprot.2013.07.023] [PMID: 23911959]
[19]
Christensen, G.L.; Kelstrup, C.D.; Lyngsø, C.; Sarwar, U.; Bøgebo, R.; Sheikh, S.P.; Gammeltoft, S.; Olsen, J.V.; Hansen, J.L. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol. Cell. Proteomics, 2010, 9(7), 1540-1553.
[http://dx.doi.org/10.1074/mcp.M900550-MCP200] [PMID: 20363803]
[20]
Stuart, S.A.; Houel, S.; Lee, T.; Wang, N.; Old, W.M.; Ahn, N.G. A Phosphoproteomic comparison of B-RAFV600E and MKK1/2 inhibitors in melanoma cells. Mol. Cell. Proteomics, 2015, 14(6), 1599-1615.
[http://dx.doi.org/10.1074/mcp.M114.047233] [PMID: 25850435]
[21]
Kim, W.; Bennett, E.J.; Huttlin, E.L.; Guo, A.; Li, J.; Possemato, A.; Sowa, M.E.; Rad, R.; Rush, J.; Comb, M.J.; Harper, J.W.; Gygi, S.P. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell, 2011, 44(2), 325-340.
[http://dx.doi.org/10.1016/j.molcel.2011.08.025] [PMID: 21906983]
[22]
Chapoval, A.I.; Ni, J.; Lau, J.S.; Wilcox, R.A.; Flies, D.B.; Liu, D.; Dong, H.; Sica, G.L.; Zhu, G.; Tamada, K.; Chen, L. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat. Immunol., 2001, 2(3), 269-274.
[http://dx.doi.org/10.1038/85339] [PMID: 11224528]
[23]
Steinberger, P.; Majdic, O.; Derdak, S.V.; Pfistershammer, K.; Kirchberger, S.; Klauser, C.; Zlabinger, G.; Pickl, W.F.; Stöckl, J.; Knapp, W. Molecular characterization of human 4Ig-B7-H3, a member of the B7 family with four Ig-like domains. J. Immunol., 2004, 172(4), 2352-2359.
[http://dx.doi.org/10.4049/jimmunol.172.4.2352] [PMID: 14764704]
[24]
Suh, W.K.; Gajewska, B.U.; Okada, H.; Gronski, M.A.; Bertram, E.M.; Dawicki, W.; Duncan, G.S.; Bukczynski, J.; Plyte, S.; Elia, A.; Wakeham, A.; Itie, A.; Chung, S.; Da Costa, J.; Arya, S.; Horan, T.; Campbell, P.; Gaida, K.; Ohashi, P.S.; Watts, T.H.; Yoshinaga, S.K.; Bray, M.R.; Jordana, M.; Mak, T.W. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat. Immunol., 2003, 4(9), 899-906.
[http://dx.doi.org/10.1038/ni967] [PMID: 12925852]
[25]
Tran, C.N.; Thacker, S.G.; Louie, D.M.; Oliver, J.; White, P.T.; Endres, J.L.; Urquhart, A.G.; Chung, K.C.; Fox, D.A. Interactions of T cells with fibroblast-like synoviocytes: role of the B7 family costimulatory ligand B7-H3. J. Immunol., 2008, 180(5), 2989-2998.
[http://dx.doi.org/10.4049/jimmunol.180.5.2989] [PMID: 18292521]
[26]
Seaman, S.; Zhu, Z.; Saha, S.; Zhang, X.M.; Yang, M.Y.; Hilton, M.B.; Morris, K.; Szot, C.; Morris, H.; Swing, D.A.; Tessarollo, L.; Smith, S.W.; Degrado, S.; Borkin, D.; Jain, N.; Scheiermann, J.; Feng, Y.; Wang, Y.; Li, J.; Welsch, D.; DeCrescenzo, G.; Chaudhary, A.; Zudaire, E.; Klarmann, K.D.; Keller, J.R.; Dimitrov, D.S.; St Croix, B. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell, 2017, 31(4), 501-515.e8.
[http://dx.doi.org/10.1016/j.ccell.2017.03.005] [PMID: 28399408]
[27]
Sun, J.; Fu, F.; Gu, W.; Yan, R.; Zhang, G.; Shen, Z.; Zhou, Y.; Wang, H.; Shen, B.; Zhang, X. Origination of new immunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system. PLoS One, 2011, 6(9)e24751
[http://dx.doi.org/10.1371/journal.pone.0024751] [PMID: 21931843]
[28]
Sun, X.; Vale, M.; Leung, E.; Kanwar, J.R.; Gupta, R.; Krissansen, G.W. Mouse B7-H3 induces antitumor immunity. Gene Ther., 2003, 10(20), 1728-1734.
[http://dx.doi.org/10.1038/sj.gt.3302070] [PMID: 12939639]
[29]
Chen, W.; Liu, P.; Wang, Y.; Nie, W.; Li, Z.; Xu, W.; Li, F.; Zhou, Z.; Zhao, M.; Liu, H. Characterization of a soluble B7-H3 (sB7-H3) spliced from the intron and analysis of sB7-H3 in the sera of patients with hepatocellular carcinoma. PLoS One, 2013, 8(10)e76965
[http://dx.doi.org/10.1371/journal.pone.0076965] [PMID: 24194851]
[30]
Zhang, G.; Hou, J.; Shi, J.; Yu, G.; Lu, B.; Zhang, X. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology, 2008, 123(4), 538-546.
[http://dx.doi.org/10.1111/j.1365-2567.2007.02723.x] [PMID: 18194267]
[31]
Chen, Z.R.; Zhang, G.B.; Wang, Y.Q.; Yan, Y.D.; Zhou, W.F.; Zhu, C.H.; Wang, J.; Ji, W. Soluble B7-H3 elevations in hospitalized children with Mycoplasma pneumoniae pneumonia. Diagn. Microbiol. Infect. Dis., 2013, 77(4), 362-366.
[http://dx.doi.org/10.1016/j.diagmicrobio.2013.09.006] [PMID: 24139879]
[32]
Xu, F; Yi, J; Wang, F; Wang, W; Wang, Z; Xue, J; Luan, X. Involvement of soluble B7-H3 in combination with the serum inflammatory cytokines interleukin-17, -8 and -6 in the diagnosis of hepatocellular carcinoma. Oncol Lett, 2017, 14(6), 8138-8143.
[33]
Chen, Z.; Zhao, X.; Zhang, X.; Zhang, G.; Sun, H.; Jiang, W.; Wang, Y.; Zhu, C.; Ji, W.; Yan, Y. Increased concentrations of soluble B7-H3 and interleukin 36 in bronchoalveolar lavage fluid of Children with Mycoplasma pneumoniae pneumonia. BMC Infect. Dis., 2016, 16, 212.
[http://dx.doi.org/10.1186/s12879-016-1555-6] [PMID: 27188891]
[34]
Xie, C.; Liu, D.; Chen, Q.; Yang, C.; Wang, B.; Wu, H. Soluble B7-H3 promotes the invasion and metastasis of pancreatic carcinoma cells through the TLR4/NF-κB pathway. Sci. Rep., 2016, 6, 27528.
[http://dx.doi.org/10.1038/srep27528] [PMID: 27273624]
[35]
Sun, M.; Richards, S.; Prasad, D.V.; Mai, X.M.; Rudensky, A.; Dong, C. Characterization of mouse and human B7-H3 genes. J. Immunol., 2002, 168(12), 6294-6297.
[http://dx.doi.org/10.4049/jimmunol.168.12.6294] [PMID: 12055244]
[36]
Gene Cards. The human gene database. Available at:, http://www.genecards.org/cgi-bin/carddisp.pl?gene=CD276 (Accessed Date: January, 2019)
[37]
Flem-Karlsen, K.; Tekle, C.; Andersson, Y.; Flatmark, K.; Fodstad, Ø.; Nunes-Xavier, C.E. Immunoregulatory protein B7-H3 promotes growth and decreases sensitivity to therapy in metastatic melanoma cells. Pigment Cell Melanoma Res., 2017, 30(5), 467-476.
[http://dx.doi.org/10.1111/pcmr.12599] [PMID: 28513992]
[38]
Ingebrigtsen, V.A.; Boye, K.; Tekle, C.; Nesland, J.M.; Flatmark, K.; Fodstad, O. B7-H3 expression in colorectal cancer: nuclear localization strongly predicts poor outcome in colon cancer. Int. J. Cancer, 2012, 131(11), 2528-2536.
[http://dx.doi.org/10.1002/ijc.27566] [PMID: 22473715]
[39]
Vigdorovich, V.; Ramagopal, U.A.; Lázár-Molnár, E.; Sylvestre, E.; Lee, J.S.; Hofmeyer, K.A.; Zang, X.; Nathenson, S.G.; Almo, S.C. Structure and T cell inhibition properties of B7 family member, B7-H3. Structure, 2013, 21(5), 707-717.
[http://dx.doi.org/10.1016/j.str.2013.03.003] [PMID: 23583036]
[40]
Madic, J.; Kiialainen, A.; Bidard, F.C.; Birzele, F.; Ramey, G.; Leroy, Q.; Rio Frio, T.; Vaucher, I.; Raynal, V.; Bernard, V.; Lermine, A.; Clausen, I.; Giroud, N.; Schmucki, R.; Milder, M.; Horn, C.; Spleiss, O.; Lantz, O.; Stern, M.H.; Pierga, J.Y.; Weisser, M.; Lebofsky, R. Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int. J. Cancer, 2015, 136(9), 2158-2165.
[http://dx.doi.org/10.1002/ijc.29265] [PMID: 25307450]
[41]
Xu, L.; Zhang, G.; Zhou, Y.; Chen, Y.; Xu, W.; Wu, S.; Zhang, X. Stimulation of B7-H3 (CD276) directs the differentiation of human marrow stromal cells to osteoblasts. Immunobiology, 2011, 216(12), 1311-1317.
[http://dx.doi.org/10.1016/j.imbio.2011.05.013] [PMID: 21893365]
[42]
Suh, W.K.; Wang, S.X.; Jheon, A.H.; Moreno, L.; Yoshinaga, S.K.; Ganss, B.; Sodek, J.; Grynpas, M.D.; Mak, T.W. The immune regulatory protein B7-H3 promotes osteoblast differentiation and bone mineralization. Proc. Natl. Acad. Sci. USA, 2004, 101(35), 12969-12973.
[http://dx.doi.org/10.1073/pnas.0405259101] [PMID: 15317945]
[43]
Hashiguchi, M.; Kobori, H.; Ritprajak, P.; Kamimura, Y.; Kozono, H.; Azuma, M. Triggering receptor expressed on myeloid cell-like transcript 2 (TLT-2) is a counter-receptor for B7-H3 and enhances T cell responses. Proc. Natl. Acad. Sci. USA, 2008, 105(30), 10495-10500.
[http://dx.doi.org/10.1073/pnas.0802423105] [PMID: 18650384]
[44]
Leitner, J.; Klauser, C.; Pickl, W.F.; Stöckl, J.; Majdic, O.; Bardet, A.F.; Kreil, D.P.; Dong, C.; Yamazaki, T.; Zlabinger, G.; Pfistershammer, K.; Steinberger, P. B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur. J. Immunol., 2009, 39(7), 1754-1764.
[http://dx.doi.org/10.1002/eji.200839028] [PMID: 19544488]
[45]
Castriconi, R.; Dondero, A.; Augugliaro, R.; Cantoni, C.; Carnemolla, B.; Sementa, A.R.; Negri, F.; Conte, R.; Corrias, M.V.; Moretta, L.; Moretta, A.; Bottino, C. Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc. Natl. Acad. Sci. USA, 2004, 101(34), 12640-12645.
[http://dx.doi.org/10.1073/pnas.0405025101] [PMID: 15314238]
[46]
Zou, W.; Chen, L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol., 2008, 8(6), 467-477.
[http://dx.doi.org/10.1038/nri2326] [PMID: 18500231]
[47]
Luo, L.; Zhu, G.; Xu, H.; Yao, S.; Zhou, G.; Zhu, Y.; Tamada, K.; Huang, L.; Flies, A.D.; Broadwater, M.; Ruff, W.; van Deursen, J.M.; Melero, I.; Zhu, Z.; Chen, L. B7-H3 promotes pathogenesis of autoimmune disease and inflammation by regulating the activity of different T cell subsets. PLoS One, 2015, 10(6)e0130126
[http://dx.doi.org/10.1371/journal.pone.0130126] [PMID: 26065426]
[48]
Zhang, G.; Wang, J.; Kelly, J.; Gu, G.; Hou, J.; Zhou, Y.; Redmond, H.P.; Wang, J.H.; Zhang, X. B7-H3 augments the inflammatory response and is associated with human sepsis. J. Immunol., 2010, 185(6), 3677-3684.
[http://dx.doi.org/10.4049/jimmunol.0904020] [PMID: 20696859]
[49]
Chen, X.; Quinn, E.M.; Ni, H.; Wang, J.; Blankson, S.; Redmond, H.P.; Wang, J.H.; Feng, X. B7-H3 participates in the development of experimental pneumococcal meningitis by augmentation of the inflammatory response via a TLR2-dependent mechanism. J. Immunol., 2012, 189(1), 347-355.
[http://dx.doi.org/10.4049/jimmunol.1103715] [PMID: 22661093]
[50]
Chen, X.; Bai, Y.; Cui, W.; Wang, Z.; Zhang, G.; Xu, Y.; Zhu, X.; Li, Y.; Wang, J.H. Effects of B7-H3 on the inflammatory response and expression of MMP-9 in mice with pneumococcal meningitis. J. Mol. Neurosci., 2013, 50(1), 146-153.
[http://dx.doi.org/10.1007/s12031-012-9885-3] [PMID: 23054584]
[51]
Veenstra, R.G.; Flynn, R.; Kreymborg, K.; McDonald-Hyman, C.; Saha, A.; Taylor, P.A.; Osborn, M.J.; Panoskaltsis-Mortari, A.; Schmitt-Graeff, A.; Lieberknecht, E.; Murphy, W.J.; Serody, J.S.; Munn, D.H.; Freeman, G.J.; Allison, J.P.; Mak, T.W.; van den Brink, M.; Zeiser, R.; Blazar, B.R. B7-H3 expression in donor T cells and host cells negatively regulates acute graft-versus-host disease lethality. Blood, 2015, 125(21), 3335-3346.
[http://dx.doi.org/10.1182/blood-2014-09-603357] [PMID: 25814530]
[52]
Chen, Z.; Zhang, G.; Wang, Y.; Yan, Y.; Zhu, C.; Huang, L.; Wang, M.; Hao, C.; Ji, W. B7-H3 expression in children with asthma exacerbation Allergy and asthma proceedings the official journal of regional and state allergy societies, 2015, 36(4), 37-43.
[http://dx.doi.org/10.2500/aap.2015.36.3838]
[53]
Chen, Z.R.; Zhang, G.B.; Wang, Y.Q.; Yan, Y.D.; Zhou, W.F.; Zhu, C.; Chen, Y.; Wang, J.; Ji, W. Therapeutic effects of anti-B7-H3 antibody in an ovalbumin-induced mouse asthma model. Ann. Allergy Asthma Immunol., 2013, 111(4), 276-281.
[http://dx.doi.org/10.1016/j.anai.2013.06.030] [PMID: 24054363]
[54]
Gu, W.; Zhang, X.; Yan, Y.; Wang, Y.; Huang, L.; Wang, M.; Shao, X.; Chen, Z.; Ji, W. B7-H3 participates in the development of Asthma by augmentation of the inflammatory response independent of TLR2 pathway. Sci. Rep., 2017, 7, 40398.
[http://dx.doi.org/10.1038/srep40398] [PMID: 28094276]
[55]
Chen, X.; Li, Y.; Blankson, S.; Liu, M.; Huang, D.; Redmond, H.P.; Huang, J.; Wang, J.H.; Wang, J. B7-H3 Augments inflammatory responses and exacerbates brain damage via amplifying NF-κB p65 and MAPK p38 activation during experimental pneumococcal meningitis. PLoS One, 2017, 12(1)e0171146
[http://dx.doi.org/10.1371/journal.pone.0171146] [PMID: 28141831]
[56]
Luan, Y.; Ju, J.; Luo, L.; Zhang, Z.; Wang, J.; Zhu, D.M.; Cheng, L.; Zhang, S.Y.; Chen, L.; Wang, F.S.; Wang, S. Potential role of soluble B7-H3 in liver immunopathogenesis during chronic HBV infection. J. Viral Hepat., 2012, 19(1), 23-31.
[http://dx.doi.org/10.1111/j.1365-2893.2010.01421.x] [PMID: 22187944]
[57]
Burugu, S.; Dancsok, A.R.; Nielsen, T.O. Emerging targets in cancer immunotherapy. Semin. Cancer Biol., 2018, 52(Pt 2), 39-52.
[http://dx.doi.org/10.1016/j.semcancer.2017.10.001] [PMID: 28987965]
[58]
Ni, L.; Dong, C. New B7 family checkpoints in human cancers. Mol. Cancer Ther., 2017, 16(7), 1203-1211.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0761] [PMID: 28679835]
[59]
Burvenich, I.J.G.; Parakh, S.; Lee, F.T.; Guo, N.; Liu, Z.; Gan, H.K.; Rigopoulos, A.; O’Keefe, G.J.; Gong, S.J.; Goh, Y.W.; Tochon-Danguy, H.; Scott, F.E.; Kotsuma, M.; Hirotani, K.; Senaldi, G.; Scott, A.M. Molecular imaging of T cell co-regulator factor B7-H3 with 89Zr-DS-5573a. Theranostics, 2018, 8(15), 4199-4209.
[http://dx.doi.org/10.7150/thno.25575] [PMID: 30128047]
[60]
Wilson, K.E.; Bachawal, S.V.; Willmann, J.K. Intraoperative resection guidance with photoacoustic and fluorescence molecular imaging using an anti-B7-H3 antibody-indocyanine green dual contrast agent. Clin. Cancer Res., 2018, 24(15), 3572-3582.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0417] [PMID: 29712688]
[61]
Bachawal, S.V.; Jensen, K.C.; Wilson, K.E.; Tian, L.; Lutz, A.M.; Willmann, J.K. Breast cancer detection by B7-H3-targeted ultrasound molecular imaging. Cancer Res., 2015, 75(12), 2501-2509.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3361] [PMID: 25899053]
[62]
Picarda, E.; Ohaegbulam, K.C.; Zang, X. Molecular pathways: targeting B7-H3 (CD276) for human cancer immunotherapy. Clin. Cancer Res., 2016, 22(14), 3425-3431.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2428] [PMID: 27208063]
[63]
Castellanos, J.R.; Purvis, I.J.; Labak, C.M.; Guda, M.R. B7-H3 role in the immune landscape of cancer. Am. J. Clin. Exp. Immunol., 2017, 6(4), 66-75.
[PMID: 28695059]
[64]
Fauci, J.M.; Sabbatino, F.; Wang, Y.; Londoño-Joshi, A.I.; Straughn, J.M., Jr; Landen, C.N.; Ferrone, S.; Buchsbaum, D.J. Monoclonal antibody-based immunotherapy of ovarian cancer: targeting ovarian cancer cells with the B7-H3-specific mAb 376.96. Gynecol. Oncol., 2014, 132(1), 203-210.
[http://dx.doi.org/10.1016/j.ygyno.2013.10.038] [PMID: 24216048]
[65]
Kasten, B.B.; Arend, R.C.; Katre, A.A.; Kim, H.; Fan, J.; Ferrone, S.; Zinn, K.R.; Buchsbaum, D.J. B7-H3-targeted 212Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl. Med. Biol., 2017, 47, 23-30.
[http://dx.doi.org/10.1016/j.nucmedbio.2017.01.003] [PMID: 28104527]
[66]
Du, H.; Hirabayashi, K.; Ahn, S.; Kren, N.P.; Montgomery, S.A.; Wang, X.; Tiruthani, K.; Mirlekar, B.; Michaud, D.; Greene, K.; Herrera, S.G.; Xu, Y.; Sun, C.; Chen, Y.; Ma, X.; Ferrone, C.R.; Pylayeva-Gupta, Y.; Yeh, J.J.; Liu, R.; Savoldo, B.; Ferrone, S.; Dotti, G. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell, 2019, 35(2), 221-237.e8.
[http://dx.doi.org/10.1016/j.ccell.2019.01.002] [PMID: 30753824]
[67]
Wang, G.; Wu, Z.; Wang, Y.; Li, X.; Zhang, G.; Hou, J. Therapy to target renal cell carcinoma using 131I-labeled B7-H3 monoclonal antibody. Oncotarget, 2016, 7(17), 24888-24898.
[http://dx.doi.org/10.18632/oncotarget.8550] [PMID: 27058890]
[68]
Kramer, K.; Kushner, B.H.; Modak, S.; Pandit-Taskar, N.; Smith-Jones, P.; Zanzonico, P.; Humm, J.L.; Xu, H.; Wolden, S.L.; Souweidane, M.M.; Larson, S.M.; Cheung, N.K. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J. Neurooncol., 2010, 97(3), 409-418.
[http://dx.doi.org/10.1007/s11060-009-0038-7] [PMID: 19890606]
[69]
Ahmed, M.; Cheng, M.; Zhao, Q.; Goldgur, Y.; Cheal, S.M.; Guo, H.F.; Larson, S.M.; Cheung, N.K. Humanized affinity-matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3. J. Biol. Chem., 2015, 290(50), 30018-30029.
[http://dx.doi.org/10.1074/jbc.M115.679852] [PMID: 26487718]
[70]
Kasten, B.B.; Ferrone, S.; Zinn, K.R.; Buchsbaum, D.J. B7-H3-targeted radioimmunotherapy of human cancer. Curr. Med. Chem., 2019..
[http://dx.doi.org/10.2174/0929867326666190228120908] [PMID: 30836909]
[71]
Lee, Y.H.; Martin-Orozco, N.; Zheng, P.; Li, J.; Zhang, P.; Tan, H.; Park, H.J.; Jeong, M.; Chang, S.H.; Kim, B.S.; Xiong, W.; Zang, W.; Guo, L.; Liu, Y.; Dong, Z.J.; Overwijk, W.W.; Hwu, P.; Yi, Q.; Kwak, L.; Yang, Z.; Mak, T.W.; Li, W.; Radvanyi, L.G.; Ni, L.; Liu, D.; Dong, C. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res., 2017, 27(8), 1034-1045.
[http://dx.doi.org/10.1038/cr.2017.90] [PMID: 28685773]
[72]
Majzner, R.G.; Theruvath, J.L.; Nellan, A.; Heitzeneder, S.; Cui, Y.; Mount, C.W.; Rietberg, S.P.; Linde, M.H.; Xu, P.; Rota, C.; Sotillo, E.; Labanieh, L.; Lee, D.W.; Orentas, R.J.; Dimitrov, D.S.; Zhu, Z.; Croix, B.S.; Delaidelli, A.; Sekunova, A.; Bonvini, E.; Mitra, S.S.; Quezado, M.M.; Majeti, R.; Monje, M.; Sorensen, P.H.B.; Maris, J.M.; Mackall, C.L. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin. Cancer Res., 2019, 25(8), 2560-2574.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0432] [PMID: 30655315]
[73]
Ma, J.; Usui, Y.; Kezuka, T.; Okunuki, Y.; Zhang, L.; An, X.; Mizota, A.; Goto, H. Costimulatory molecule expression on human uveal melanoma cells: functional analysis of CD40 and B7-H1. Exp. Eye Res., 2012, 96(1), 98-106.
[http://dx.doi.org/10.1016/j.exer.2011.12.014] [PMID: 22200489]
[74]
Ma, W.; Ma, J.; Ma, P.; Lei, T.; Zhao, M.; Zhang, M. Targeting immunotherapy for bladder cancer using anti-CD3× B7-H3 bispecific antibody. Cancer Med., 2018, 7(10), 5167-5177.
[http://dx.doi.org/10.1002/cam4.1775] [PMID: 30253078]
[75]
Loo, D.; Alderson, R.F.; Chen, F.Z.; Huang, L.; Zhang, W.; Gorlatov, S.; Burke, S.; Ciccarone, V.; Li, H.; Yang, Y.; Son, T.; Chen, Y.; Easton, A.N.; Li, J.C.; Rillema, J.R.; Licea, M.; Fieger, C.; Liang, T.W.; Mather, J.P.; Koenig, S.; Stewart, S.J.; Johnson, S.; Bonvini, E.; Moore, P.A. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent antitumor activity. Clin. Cancer Res., 2012, 18(14), 3834-3845.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0715] [PMID: 22615450]
[76]
Flem-Karlsen, K.; Fodstad, Ø.; Tan, M.; Nunes-Xavier, C.E. B7-H3 in cancer - beyond immune regulation. Trends Cancer, 2018, 4(6), 401-404.
[http://dx.doi.org/10.1016/j.trecan.2018.03.010] [PMID: 29860983]
[77]
Powderly, J.; Cote, G.; Flaherty, K.; Szmulewitz, R.Z.; Ribas, A.; Weber, J.; Loo, D.; Baughman, J.; Chen, F.; Moore, P.; Bonvini, E.; Vasselli, J.; Wigginton, J.; Cohen, R.; Burris, H.; Chmielowski, B. Interim results of an ongoing Phase I, dose escalation study of MGA271 (Fc-optimized humanized anti-B7-H3 monoclonal antibody) in patients with refractory B7-H3-expressing neoplasms or neoplasms whose vasculature expresses B7-H3. J. Immunother. Cancer, 2015, 3(2), O8.
[http://dx.doi.org/10.1186/2051-1426-3-S2-O8]
[78]
Souweidane, M.M.; Kramer, K.; Pandit-Taskar, N.; Zanzonico, P.; Zhou, Z.; Donzelli, M.; Lyashchenko, S.K.; Haque, S.; Thakur, S.B.; Cheung, N.-K.V.; Larson, S.M.; Dunkel, I.J. A phase I study of convection enhanced delivery (CED) of 124I-8H9 radio-labeled monoclonal antibody in children with diffuse intrinsic pontine glioma (DIPG). Journal of Clinical Oncology, 2017, 351, 2010.
[79]
Bailey, K.; Pandit-Taskar, N.; Humm, J.L.; Zanzonico, P.; Gilheeney, S.; Cheung, N.V.; Kramer, K. Targeted radioimmunotherapy for embryonal tumor with multilayered rosettes. J. Neurooncol., 2019, 143(1), 101-106.
[http://dx.doi.org/10.1007/s11060-019-03139-6] [PMID: 30879172]
[80]
Li, M.; Zhang, G.; Zhang, X.; Lv, G.; Wei, X.; Yuan, H.; Hou, J. Overexpression of B7-H3 in CD14+ monocytes is associated with renal cell carcinoma progression. Med. Oncol., 2014, 31(12), 349.
[http://dx.doi.org/10.1007/s12032-014-0349-1] [PMID: 25416051]
[81]
Kraan, J.; van den Broek, P.; Verhoef, C.; Grunhagen, D.J.; Taal, W.; Gratama, J.W.; Sleijfer, S. Endothelial CD276 (B7-H3) expression is increased in human malignancies and distinguishes between normal and tumour-derived circulating endothelial cells. Br. J. Cancer, 2014, 111(1), 149-156.
[http://dx.doi.org/10.1038/bjc.2014.286] [PMID: 24892449]
[82]
Zang, X.; Sullivan, P.S.; Soslow, R.A.; Waitz, R.; Reuter, V.E.; Wilton, A.; Thaler, H.T.; Arul, M.; Slovin, S.F.; Wei, J.; Spriggs, D.R.; Dupont, J.; Allison, J.P. Tumor associated endothelial expression of B7-H3 predicts survival in ovarian carcinomas. Mod. Pathol., 2010, 23(8), 1104-1112.
[http://dx.doi.org/10.1038/modpathol.2010.95] [PMID: 20495537]
[83]
Zhang, X.; Ji, J.; Zhang, G.; Fang, C.; Jiang, F.; Ma, S.; Hou, J. Expression and significance of B7-H3 and Tie-2 in the tumor vasculature of clear cell renal carcinoma. OncoTargets Ther., 2017, 10, 5417-5424.
[http://dx.doi.org/10.2147/OTT.S147041] [PMID: 29180874]
[84]
Crispen, P.L.; Sheinin, Y.; Roth, T.J.; Lohse, C.M.; Kuntz, S.M.; Frigola, X.; Thompson, R.H.; Boorjian, S.A.; Dong, H.; Leibovich, B.C.; Blute, M.L.; Kwon, E.D. Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin. Canc. Res., 2008, 14(16), 5150-5157.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0536]
[85]
Brunner, A.; Hinterholzer, S.; Riss, P.; Heinze, G.; Brustmann, H. Immunoexpression of B7-H3 in endometrial cancer: relation to tumor T-cell infiltration and prognosis. Gynecol. Oncol., 2012, 124(1), 105-111.
[http://dx.doi.org/10.1016/j.ygyno.2011.09.012] [PMID: 21982044]
[86]
Aung, P.P.; Parra, E.R.; Barua, S.; Sui, D.; Ning, J.; Mino, B.; Ledesma, D.A.; Curry, J.L.; Nagarajan, P.; Torres-Cabala, C.A.; Efstathiou, E.; Hoang, A.G.; Wong, M.K.; Wargo, J.A.; Lazar, A.J.; Rao, A.; Prieto, V.G.; Wistuba, I.; Tetzlaff, M.T. B7-H3 Expression in merkel cell carcinoma-associated endothelial cells correlates with locally aggressive primary tumor features and increased vascular density. Clin. Cancer Res., 2019, 25(11), 3455-3467.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2355] [PMID: 30808776]
[87]
Inamura, K.; Amori, G.; Yuasa, T.; Yamamoto, S.; Yonese, J.; Ishikawa, Y. Relationship of B7-H3 expression in tumor cells and tumor vasculature with FOXP3+ regulatory T cells in renal cell carcinoma. Cancer Manag. Res., 2019, 11, 7021-7030.
[http://dx.doi.org/10.2147/CMAR.S209205] [PMID: 31440091]
[88]
Nagase-Zembutsu, A.; Hirotani, K.; Yamato, M.; Yamaguchi, J.; Takata, T.; Yoshida, M.; Fukuchi, K.; Yazawa, M.; Takahashi, S.; Agatsuma, T. Development of DS-5573a: A novel afucosylated mAb directed at B7-H3 with potent antitumor activity. Cancer Sci., 2016, 107(5), 674-681.
[http://dx.doi.org/10.1111/cas.12915] [PMID: 26914241]
[89]
Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.B.; Watari, H. B7H3 as a promoter of metastasis and promising therapeutic target. Front. Oncol., 2018, 8, 264.
[http://dx.doi.org/10.3389/fonc.2018.00264] [PMID: 30035102]
[90]
Son, Y.; Kwon, S.M.; Cho, J.Y. CD276 (B7-H3) maintains proliferation and regulates differentiation in angiogenic function in late endothelial progenitor cells. Stem Cells, 2019, 37(3), 382-394.
[http://dx.doi.org/10.1002/stem.2944] [PMID: 30379377]
[91]
Yu, T.T.; Zhang, T.; Lu, X.; Wang, R.Z. B7-H3 promotes metastasis, proliferation, and epithelial-mesenchymal transition in lung adenocarcinoma. OncoTargets Ther., 2018, 11, 4693-4700.
[http://dx.doi.org/10.2147/OTT.S169811] [PMID: 30127617]
[92]
Jiang, B.; Zhang, T.; Liu, F.; Sun, Z.; Shi, H.; Hua, D.; Yang, C. The co-stimulatory molecule B7-H3 promotes the epithelial-mesenchymal transition in colorectal cancer. Oncotarget, 2016, 7(22), 31755-31771.
[http://dx.doi.org/10.18632/oncotarget.9035] [PMID: 27145365]
[93]
Kang, F.B.; Wang, L.; Jia, H.C.; Li, D.; Li, H.J.; Zhang, Y.G.; Sun, D.X. B7-H3 promotes aggression and invasion of hepatocellular carcinoma by targeting epithelial-to-mesenchymal transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int., 2015, 15, 45.
[http://dx.doi.org/10.1186/s12935-015-0195-z] [PMID: 25908926]
[94]
Nygren, M.K.; Tekle, C.; Ingebrigtsen, V.A.; Mäkelä, R.; Krohn, M.; Aure, M.R.; Nunes-Xavier, C.E.; Perälä, M.; Tramm, T.; Alsner, J.; Overgaard, J.; Nesland, J.M.; Borgen, E.; Børresen-Dale, A.L.; Fodstad, Ø.; Sahlberg, K.K.; Leivonen, S.K. Identifying microRNAs regulating B7-H3 in breast cancer: the clinical impact of microRNA-29c. Br. J. Cancer, 2014, 110(8), 2072-2080.
[http://dx.doi.org/10.1038/bjc.2014.113] [PMID: 24577056]
[95]
Xu, H.; Cheung, I.Y.; Guo, H.F.; Cheung, N.K. MicroRNA miR-29 modulates expression of immunoinhibitory molecule B7-H3: potential implications for immune based therapy of human solid tumors. Cancer Res., 2009, 69(15), 6275-6281.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4517] [PMID: 19584290]
[96]
Wang, J.; Chong, K.K.; Nakamura, Y.; Nguyen, L.; Huang, S.K.; Kuo, C.; Zhang, W.; Yu, H.; Morton, D.L.; Hoon, D.S. B7-H3 associated with tumor progression and epigenetic regulatory activity in cutaneous melanoma. J. Invest. Dermatol., 2013, 133(8), 2050-2058.
[http://dx.doi.org/10.1038/jid.2013.114] [PMID: 23474948]
[97]
Zhao, J.; Lei, T.; Xu, C.; Li, H.; Ma, W.; Yang, Y.; Fan, S.; Liu, Y. MicroRNA-187, down-regulated in clear cell renal cell carcinoma and associated with lower survival, inhibits cell growth and migration though targeting B7-H3. Biochem. Biophys. Res. Commun., 2013, 438(2), 439-444.
[http://dx.doi.org/10.1016/j.bbrc.2013.07.095] [PMID: 23916610]
[98]
Wang, L.; Kang, F.B.; Sun, N.; Wang, J.; Chen, W.; Li, D.; Shan, B.E. The tumor suppressor miR-124 inhibits cell proliferation and invasion by targeting B7-H3 in osteosarcoma. Tumour Biol., 2016, 37(11), 14939-14947.
[http://dx.doi.org/10.1007/s13277-016-5386-2] [PMID: 27644254]
[99]
Zhou, X.; Mao, Y.; Zhu, J.; Meng, F.; Chen, Q.; Tao, L.; Li, R.; Fu, F.; Liu, C.; Hu, Y.; Wang, W.; Zhang, H.; Hua, D.; Chen, W.; Zhang, X. TGF-β1 promotes colorectal cancer immune escape by elevating B7-H3 and B7-H4 via the miR-155/miR-143 axis. Oncotarget, 2016, 7(41), 67196-67211.
[http://dx.doi.org/10.18632/oncotarget.11950] [PMID: 27626488]
[100]
Zhu, X.W.; Wang, J.; Zhu, M.X.; Wang, Y.F.; Yang, S.Y.; Ke, X.Y. MicroRNA-506 inhibits the proliferation and invasion of mantle cell lymphoma cells by targeting B7H3. Biochem. Biophys. Res. Commun., 2019, 508(4), 1067-1073.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.055] [PMID: 30553455]
[101]
Li, R.G.; Gao, Z.; Jiang, Y. B7-H3 repression by miR-539 suppresses cell proliferation in human gliomas. Int. J. Clin. Exp. Pathol., 2017, 10(4), 4363-4369.
[102]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[103]
Liberti, M.V.; Locasale, J.W. The warburg effect: how does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[104]
Lim, S.; Liu, H.; Madeira da Silva, L.; Arora, R.; Liu, Z.; Phillips, J.B.; Schmitt, D.C.; Vu, T.; McClellan, S.; Lin, Y.; Lin, W.; Piazza, G.A.; Fodstad, O.; Tan, M. Immunoregulatory protein B7-H3 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of HIF1α. Cancer Res., 2016, 76(8), 2231-2242.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1538] [PMID: 27197253]
[105]
Nunes-Xavier, C.E.; Karlsen, K.F.; Tekle, C.; Pedersen, C.; Øyjord, T.; Hongisto, V.; Nesland, J.M.; Tan, M.; Sahlberg, K.K.; Fodstad, Ø. Decreased expression of B7-H3 reduces the glycolytic capacity and sensitizes breast cancer cells to AKT/mTOR inhibitors. Oncotarget, 2016, 7(6), 6891-6901.
[http://dx.doi.org/10.18632/oncotarget.6902] [PMID: 26771843]
[106]
Shi, T.; Ma, Y.; Cao, L.; Zhan, S.; Xu, Y.; Fu, F.; Liu, C.; Zhang, G.; Wang, Z.; Wang, R.; Lu, H.; Lu, B.; Chen, W.; Zhang, X. B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death Dis., 2019, 10(4), 308.
[http://dx.doi.org/10.1038/s41419-019-1549-6] [PMID: 30952834]
[107]
Li, Z.; Liu, J.; Que, L.; Tang, X. The immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway. J. Cancer, 2019, 10(23), 5770-5784.
[http://dx.doi.org/10.7150/jca.29838] [PMID: 31737114]
[108]
Zhang, P.; Yu, S.; Li, H.; Liu, C.; Li, J.; Lin, W.; Gao, A.; Wang, L.; Gao, W.; Sun, Y. ILT4 drives B7-H3 expression via PI3K/AKT/mTOR signalling and ILT4/B7-H3 co-expression correlates with poor prognosis in non-small cell lung cancer. FEBS Lett., 2015, 589(17), 2248-2256.
[http://dx.doi.org/10.1016/j.febslet.2015.06.037] [PMID: 26149216]
[109]
Barthel, A.; Okino, S.T.; Liao, J.; Nakatani, K.; Li, J.; Whitlock, J.P., Jr; Roth, R.A. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem., 1999, 274(29), 20281-20286.
[http://dx.doi.org/10.1074/jbc.274.29.20281] [PMID: 10400647]
[110]
Frauwirth, K.A.; Riley, J.L.; Harris, M.H.; Parry, R.V.; Rathmell, J.C.; Plas, D.R.; Elstrom, R.L.; June, C.H.; Thompson, C.B. The CD28 signaling pathway regulates glucose metabolism. Immunity, 2002, 16(6), 769-777.
[http://dx.doi.org/10.1016/S1074-7613(02)00323-0] [PMID: 12121659]
[111]
Wieman, H.L.; Wofford, J.A.; Rathmell, J.C. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol. Biol. Cell, 2007, 18(4), 1437-1446.
[http://dx.doi.org/10.1091/mbc.e06-07-0593] [PMID: 17301289]
[112]
McDonald, O.G.; Li, X.; Saunders, T.; Tryggvadottir, R.; Mentch, S.J.; Warmoes, M.O.; Word, A.E.; Carrer, A.; Salz, T.H.; Natsume, S.; Stauffer, K.M.; Makohon-Moore, A.; Zhong, Y.; Wu, H.; Wellen, K.E.; Locasale, J.W.; Iacobuzio-Donahue, C.A.; Feinberg, A.P. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet., 2017, 49(3), 367-376.
[http://dx.doi.org/10.1038/ng.3753] [PMID: 28092686]
[113]
Alderton, G.K. Tumour evolution: Epigenetic and genetic heterogeneity in metastasis. Nat. Rev. Cancer, 2017, 17(3), 141.
[http://dx.doi.org/10.1038/nrc.2017.11] [PMID: 28228644]
[114]
Zuo, J.; Wang, B.; Long, M.; Gao, Z.; Zhang, Z.; Wang, H.; Wang, X.; Li, R.; Dong, K.; Zhang, H. The type 1 transmembrane glycoprotein B7-H3 interacts with the glycolytic enzyme ENO1 to promote malignancy and glycolysis in HeLa cells. FEBS Lett., 2018, 592(14), 2476-2488.
[http://dx.doi.org/10.1002/1873-3468.13164] [PMID: 29924389]
[115]
Luo, D.; Xiao, H.; Dong, J.; Li, Y.; Feng, G.; Cui, M.; Fan, S. B7-H3 regulates lipid metabolism of lung cancer through SREBP1-mediated expression of FASN. Biochem. Biophys. Res. Commun., 2017, 482(4), 1246-1251.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.021] [PMID: 27939887]
[116]
Liu, Z.; Zhang, W.; Phillips, J.B.; Arora, R.; McClellan, S.; Li, J.; Kim, J.H.; Sobol, R.W.; Tan, M. Immunoregulatory protein B7-H3 regulates cancer stem cell enrichment and drug resistance through MVP-mediated MEK activation. Oncogene, 2019, 38(1), 88-102.
[http://dx.doi.org/10.1038/s41388-018-0407-9] [PMID: 30082909]
[117]
Flem-Karlsen, K.; Tekle, C.; Øyjord, T.; Flørenes, V.A.; Mælandsmo, G.M.; Fodstad, Ø.; Nunes-Xavier, C.E. p38 MAPK activation through B7-H3-mediated DUSP10 repression promotes chemoresistance. Sci. Rep., 2019, 9(1), 5839.
[http://dx.doi.org/10.1038/s41598-019-42303-w] [PMID: 30967582]
[118]
Yonesaka, K.; Haratani, K.; Takamura, S.; Sakai, H.; Kato, R.; Takegawa, N.; Takahama, T.; Tanaka, K.; Hayashi, H.; Takeda, M.; Kato, S.; Maenishi, O.; Sakai, K.; Chiba, Y.; Okabe, T.; Kudo, K.; Hasegawa, Y.; Kaneda, H.; Yamato, M.; Hirotani, K.; Miyazawa, M.; Nishio, K.; Nakagawa, K. B7-H3 negatively modulates CTL-mediated cancer immunity. Clin. Cancer Res., 2018, 24(11), 2653-2664.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2852] [PMID: 29530936]
[119]
Linsley, P.S.; Clark, E.A.; Ledbetter, J.A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. USA, 1990, 87(13), 5031-5035.
[http://dx.doi.org/10.1073/pnas.87.13.5031] [PMID: 2164219]
[120]
van der Merwe, P.A.; Bodian, D.L.; Daenke, S.; Linsley, P.; Davis, S.J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med., 1997, 185(3), 393-403.
[http://dx.doi.org/10.1084/jem.185.3.393] [PMID: 9053440]
[121]
Linsley, P.S.; Greene, J.L.; Brady, W.; Bajorath, J.; Ledbetter, J.A.; Peach, R. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity, 1994, 1(9), 793-801.
[http://dx.doi.org/10.1016/S1074-7613(94)80021-9] [PMID: 7534620]
[122]
Zhang, H.L.; Xi, Y.Z.; Kong, F.H. [Cloning of B7-1 and B7-2 genes from human Burkitt’s B lymphocyte line]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2001, 17(2), 117-120.
[PMID: 21171393]
[123]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[124]
Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; Greenfield, E.A.; Bourque, K.; Boussiotis, V.A.; Carter, L.L.; Carreno, B.M.; Malenkovich, N.; Nishimura, H.; Okazaki, T.; Honjo, T.; Sharpe, A.H.; Freeman, G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol., 2001, 2(3), 261-268.
[http://dx.doi.org/10.1038/85330] [PMID: 11224527]
[125]
Butte, M.J.; Peña-Cruz, V.; Kim, M.J.; Freeman, G.J.; Sharpe, A.H. Interaction of human PD-L1 and B7-1. Mol. Immunol., 2008, 45(13), 3567-3572.
[http://dx.doi.org/10.1016/j.molimm.2008.05.014] [PMID: 18585785]
[126]
Chaudhri, A.; Xiao, Y.; Klee, A.N.; Wang, X.; Zhu, B.; Freeman, G.J. PD-L1 binds to B7-1 Only in cis on the same cell surface. Cancer Immunol. Res., 2018, 6(8), 921-929.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0316] [PMID: 29871885]
[127]
Wang, S.; Zhu, G.; Chapoval, A.I.; Dong, H.; Tamada, K.; Ni, J.; Chen, L. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood, 2000, 96(8), 2808-2813.
[http://dx.doi.org/10.1182/blood.V96.8.2808] [PMID: 11023515]
[128]
Yao, S.; Zhu, Y.; Zhu, G.; Augustine, M.; Zheng, L.; Goode, D.J.; Broadwater, M.; Ruff, W.; Flies, S.; Xu, H.; Flies, D.; Luo, L.; Wang, S.; Chen, L. B7-h2 is a costimulatory ligand for CD28 in human. Immunity, 2011, 34(5), 729-740.
[http://dx.doi.org/10.1016/j.immuni.2011.03.014] [PMID: 21530327]
[129]
Jung, K.; Choi, I. Emerging co-signaling networks in T cell immune regulation. Immune Netw., 2013, 13(5), 184-193.
[http://dx.doi.org/10.4110/in.2013.13.5.184] [PMID: 24198743]
[130]
Guery, T.; Roumier, C.; Berthon, C.; Renneville, A.; Preudhomme, C.; Quesnel, B. B7-H3 protein expression in acute myeloid leukemia. Cancer Med., 2015, 4(12), 1879-1883.
[http://dx.doi.org/10.1002/cam4.522] [PMID: 26376842]
[131]
Hu, Y.; Lv, X.; Wu, Y.; Xu, J.; Wang, L.; Chen, W.; Zhang, W.; Li, J.; Zhang, S.; Qiu, H. Expression of costimulatory molecule B7-H3 and its prognostic implications in human acute leukemia. Hematology, 2015, 20(4), 187-195.
[http://dx.doi.org/10.1179/1607845414Y.0000000186] [PMID: 25130683]
[132]
Lin, L.; Cao, L.; Liu, Y.; Wang, K.; Zhang, X.; Qin, X.; Zhao, D.; Hao, J.; Chang, Y.; Huang, X.; Liu, B.; Zhang, J.; Lu, J.; Ge, Q. B7-H3 promotes multiple myeloma cell survival and proliferation by ROS-dependent activation of Src/STAT3 and c-Cbl-mediated degradation of SOCS3. Leukemia, 2019, 33(6), 1475-1486.
[http://dx.doi.org/10.1038/s41375-018-0331-6] [PMID: 30573782]
[133]
Zhang, W.; Wang, J.; Wang, Y.; Dong, F.; Zhu, M.; Wan, W.; Li, H.; Wu, F.; Yan, X.; Ke, X. B7-H3 silencing by RNAi inhibits tumor progression and enhances chemosensitivity in U937 cells. OncoTargets Ther., 2015, 8, 1721-1733.
[http://dx.doi.org/10.2147/OTT.S85272] [PMID: 26203263]
[134]
Zhang, W.; Wang, Y.; Wang, J.; Dong, F.; Zhu, M.; Wan, W.; Li, H.; Wu, F.; Yan, X.; Ke, X. B7-H3 silencing inhibits tumor progression of mantle cell lymphoma and enhances chemosensitivity. Int. J. Oncol., 2015, 46(6), 2562-2572.
[http://dx.doi.org/10.3892/ijo.2015.2962] [PMID: 25872657]
[135]
Sun, J.; Guo, Y.D.; Li, X.N.; Zhang, Y.Q.; Gu, L.; Wu, P.P.; Bai, G.H.; Xiao, Y. B7-H3 expression in breast cancer and upregulation of VEGF through gene silence. OncoTargets Ther., 2014, 7, 1979-1986.
[http://dx.doi.org/10.2147/OTT.S63424] [PMID: 25378933]
[136]
Wilson, K.E.; Bachawal, S.V.; Abou-Elkacem, L.; Jensen, K.; Machtaler, S.; Tian, L.; Willmann, J.K. Spectroscopic photoacoustic molecular imaging of breast cancer using a B7-H3-targeted ICG contrast agent. Theranostics, 2017, 7(6), 1463-1476.
[http://dx.doi.org/10.7150/thno.18217] [PMID: 28529630]
[137]
Maeda, N.; Yoshimura, K.; Yamamoto, S.; Kuramasu, A.; Inoue, M.; Suzuki, N.; Watanabe, Y.; Maeda, Y.; Kamei, R.; Tsunedomi, R.; Shindo, Y.; Inui, M.; Tamada, K.; Yoshino, S.; Hazama, S.; Oka, M. Expression of B7-H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients. Ann. Surg. Oncol., 2014, 21(Suppl. 4), S546-S554.
[http://dx.doi.org/10.1245/s10434-014-3564-2] [PMID: 24562936]
[138]
Cong, F.; Yu, H.; Gao, X. Expression of CD24 and B7-H3 in breast cancer and the clinical significance. Oncol. Lett., 2017, 14(6), 7185-7190.
[http://dx.doi.org/10.3892/ol.2017.7142] [PMID: 29344150]
[139]
Liu, C.; Liu, J.; Wang, J.; Liu, Y.; Zhang, F.; Lin, W.; Gao, A.; Sun, M.; Wang, Y.; Sun, Y. B7-H3 expression in ductal and lobular breast cancer and its association with IL-10. Mol. Med. Rep., 2013, 7(1), 134-138.
[http://dx.doi.org/10.3892/mmr.2012.1158] [PMID: 23128494]
[140]
Ignatiadis, M.; Van den Eynden, G.; Roberto, S.; Fornili, M.; Bareche, Y.; Desmedt, C.; Rothé, F.; Maetens, M.; Venet, D.; Holgado, E.; McNally, V.; Kiermaier, A.; Savage, H.M.; Wilson, T.R.; Cortes, J.; Schneeweiss, A.; Willard-Gallo, K.; Biganzoli, E.; Sotiriou, C. Tumor-infiltrating lymphocytes in patients receiving trastuzumab/pertuzumab-based chemotherapy: a TRYPHAENA substudy. J. Natl. Cancer Inst., 2019, 111(1), 69-77.
[http://dx.doi.org/10.1093/jnci/djy076] [PMID: 29788230]
[141]
Pizon, M.; Schott, D.S.; Pachmann, U.; Pachmann, K. B7-H3 on circulating epithelial tumor cells correlates with the proliferation marker, Ki-67, and may be associated with the aggressiveness of tumors in breast cancer patients. Int. J. Oncol., 2018, 53(5), 2289-2299.
[http://dx.doi.org/10.3892/ijo.2018.4551] [PMID: 30226585]
[142]
Kim, G.E.; Kim, N.I.; Park, M.H.; Lee, J.S. B7-H3 and B7-H4 expression in phyllodes tumors of the breast detected by RNA in situ hybridization and immunohistochemistry: Association with clinicopathological features and T-cell infiltration. Tumour Biol., 2018, 40(11)1010428318815032
[http://dx.doi.org/10.1177/1010428318815032] [PMID: 30486739]
[143]
Liu, H.; Tekle, C.; Chen, Y.W.; Kristian, A.; Zhao, Y.; Zhou, M.; Liu, Z.; Ding, Y.; Wang, B.; Mælandsmo, G.M.; Nesland, J.M.; Fodstad, O.; Tan, M. B7-H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Mol. Cancer Ther., 2011, 10(6), 960-971.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0072] [PMID: 21518725]
[144]
Li, Y.; Zhang, J.; Han, S.; Qian, Q.; Chen, Q.; Liu, L.; Zhang, Y. B7-H3 promotes the proliferation, migration and invasiveness of cervical cancer cells and is an indicator of poor prognosis. Oncol. Rep., 2017, 38(2), 1043-1050.
[http://dx.doi.org/10.3892/or.2017.5730] [PMID: 28627681]
[145]
Brustmann, H.; Igaz, M.; Eder, C.; Brunner, A. Epithelial and tumor-associated endothelial expression of B7-H3 in cervical carcinoma: relation with CD8+ intraepithelial lymphocytes, FIGO stage, and phosphohistone H3 (PHH3) reactivity. Int. J. Gynecol. Pathol., 2015, 34(2), 187-195.
[http://dx.doi.org/10.1097/PGP.0000000000000116] [PMID: 25675190]
[146]
Han, S.; Shi, X.; Liu, L.; Zong, L.; Zhang, J.; Chen, Q.; Qian, Q.; Chen, L.; Wang, Y.; Jin, J.; Ma, Y.; Cui, B.; Yang, X.; Zhang, Y. roles of b7-h3 in cervical cancer and its prognostic value. J. Cancer, 2018, 9(15), 2612-2624.
[http://dx.doi.org/10.7150/jca.24959] [PMID: 30087701]
[147]
Huang, C.; Zhou, L.; Chang, X.; Pang, X.; Zhang, H.; Zhang, S. B7-H3, B7-H4, Foxp3 and IL-2 expression in cervical cancer: Associations with patient outcome and clinical significance. Oncol. Rep., 2016, 35(4), 2183-2190.
[http://dx.doi.org/10.3892/or.2016.4607] [PMID: 26848032]
[148]
Li, Y.; Yang, X.; Wu, Y.; Zhao, K.; Ye, Z.; Zhu, J.; Xu, X.; Zhao, X.; Xing, C. B7-H3 promotes gastric cancer cell migration and invasion. Oncotarget, 2017, 8(42), 71725-71735.
[http://dx.doi.org/10.18632/oncotarget.17847] [PMID: 29069741]
[149]
Han, S.; Wang, Y.; Shi, X.; Zong, L.; Liu, L.; Zhang, J.; Qian, Q.; Jin, J.; Ma, Y.; Cui, B.; Yang, X.; Kong, B.; Zhang, Y. Negative roles of B7-H3 and B7-H4 in the microenvironment of cervical cancer. Exp. Cell Res., 2018, 371(1), 222-230.
[http://dx.doi.org/10.1016/j.yexcr.2018.08.014] [PMID: 30099052]
[150]
Bin, Z.; Guangbo, Z.; Yan, G.; Huan, Z.; Desheng, L.; Xueguang, Z. Overexpression of B7-H3 in CD133+ colorectal cancer cells is associated with cancer progression and survival in human patients. J. Surg. Res., 2014, 188(2), 396-403.
[http://dx.doi.org/10.1016/j.jss.2014.01.014] [PMID: 24630518]
[151]
Mao, Y.; Sun, J.; Wang, W.P.; Zhang, X.G.; Hua, D. Clinical significance of costimulatory molecule B7-H3 expression on CD3(+) T cells in colorectal carcinoma. Chin. Med. J. (Engl.), 2013, 126(16), 3035-3038.
[PMID: 23981607]
[152]
Sun, J.; Chen, L.J.; Zhang, G.B.; Jiang, J.T.; Zhu, M.; Tan, Y.; Wang, H.T.; Lu, B.F.; Zhang, X.G. Clinical significance and regulation of the costimulatory molecule B7-H3 in human colorectal carcinoma. Cancer Immunol. Immunother., 2010, 59(8), 1163-1171.
[http://dx.doi.org/10.1007/s00262-010-0841-1] [PMID: 20333377]
[153]
Zhang, T.; Wang, F.; Wu, J.Y.; Qiu, Z.C.; Wang, Y.; Liu, F.; Ge, X.S.; Qi, X.W.; Mao, Y.; Hua, D. Clinical correlation of B7-H3 and B3GALT4 with the prognosis of colorectal cancer. World J. Gastroenterol., 2018, 24(31), 3538-3546.
[http://dx.doi.org/10.3748/wjg.v24.i31.3538] [PMID: 30131660]
[154]
Fan, H.; Zhu, J.H.; Yao, X.Q. Prognostic significance of B7-H3 expression in patients with colorectal cancer: A meta-analysis. Pak. J. Med. Sci., 2016, 32(6), 1568-1573.
[http://dx.doi.org/10.12669/pjms.326.11511] [PMID: 28083066]
[155]
Mao, Y.; Chen, L.; Wang, F.; Zhu, D.; Ge, X.; Hua, D.; Sun, J. Cancer cell-expressed B7-H3 regulates the differentiation of tumor-associated macrophages in human colorectal carcinoma. Oncol. Lett., 2017, 14(5), 6177-6183.
[http://dx.doi.org/10.3892/ol.2017.6935] [PMID: 29113264]
[156]
Zhang, T.; Jiang, B.; Zou, S.T.; Liu, F.; Hua, D. Overexpression of B7-H3 augments anti-apoptosis of colorectal cancer cells by Jak2-STAT3. World J. Gastroenterol., 2015, 21(6), 1804-1813.
[http://dx.doi.org/10.3748/wjg.v21.i6.1804] [PMID: 25684945]
[157]
Wang, Z.S.; Zhong, M.; Bian, Y.H.; Mu, Y.F.; Qin, S.L.; Yu, M.H.; Qin, J. MicroRNA-187 inhibits tumor growth and invasion by directly targeting CD276 in colorectal cancer. Oncotarget, 2016, 7(28), 44266-44276.
[http://dx.doi.org/10.18632/oncotarget.10023] [PMID: 27329595]
[158]
Liu, F.; Zhang, T.; Zou, S.; Jiang, B.; Hua, D. B7‑H3 promotes cell migration and invasion through the Jak2/Stat3/MMP9 signaling pathway in colorectal cancer. Mol. Med. Rep., 2015, 12(4), 5455-5460.
[http://dx.doi.org/10.3892/mmr.2015.4050] [PMID: 26151358]
[159]
Ingebrigtsen, V.A.; Boye, K.; Nesland, J.M.; Nesbakken, A.; Flatmark, K.; Fodstad, Ø. B7-H3 expression in colorectal cancer: associations with clinicopathological parameters and patient outcome. BMC Cancer, 2014, 14, 602.
[http://dx.doi.org/10.1186/1471-2407-14-602] [PMID: 25139714]
[160]
Chen, L.; Chen, J.; Xu, B.; Wang, Q.; Zhou, W.; Zhang, G.; Sun, J.; Shi, L.; Pei, H.; Wu, C.; Jiang, J. B7-H3 expression associates with tumor invasion and patient’s poor survival in human esophageal cancer. Am. J. Transl. Res., 2015, 7(12), 2646-2660.
[PMID: 26885263]
[161]
Song, J.; Shi, W.; Zhang, Y.; Sun, M.; Liang, X.; Zheng, S. Epidermal growth factor receptor and B7-H3 expression in esophageal squamous tissues correlate to patient prognosis. OncoTargets Ther., 2016, 9, 6257-6263.
[http://dx.doi.org/10.2147/OTT.S111691] [PMID: 27785073]
[162]
Wang, L.; Cao, N.N.; Wang, S.; Man, H.W.; Li, P.F.; Shan, B.E. Roles of coinhibitory molecules B7-H3 and B7-H4 in esophageal squamous cell carcinoma. Tumour Biol., 2016, 37(3), 2961-2971.
[http://dx.doi.org/10.1007/s13277-015-4132-5] [PMID: 26411671]
[163]
Chen, L.; Xie, Q.; Wang, Z.; Shi, L.; Wu, C.; Jiang, J. Assessment of combined expression of B7-H3 and B7-H4 as prognostic marker in esophageal cancer patients. Oncotarget, 2016, 7(47), 77237-77243.
[http://dx.doi.org/10.18632/oncotarget.12628] [PMID: 27764786]
[164]
Dai, W.; Shen, G.; Qiu, J.; Zhao, X.; Gao, Q. Aberrant expression of B7-H3 in gastric adenocarcinoma promotes cancer cell metastasis. Oncol. Rep., 2014, 32(5), 2086-2092.
[http://dx.doi.org/10.3892/or.2014.3405] [PMID: 25120098]
[165]
Wu, C.P.; Jiang, J.T.; Tan, M.; Zhu, Y.B.; Ji, M.; Xu, K.F.; Zhao, J.M.; Zhang, G.B.; Zhang, X.G. Relationship between co-stimulatory molecule B7-H3 expression and gastric carcinoma histology and prognosis. World J. Gastroenterol., 2006, 12(3), 457-459.
[http://dx.doi.org/10.3748/wjg.v12.i3.457] [PMID: 16489649]
[166]
Arigami, T.; Uenosono, Y.; Hirata, M.; Yanagita, S.; Ishigami, S.; Natsugoe, S. B7-H3 expression in gastric cancer: a novel molecular blood marker for detecting circulating tumor cells. Cancer Sci., 2011, 102(5), 1019-1024.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01877.x] [PMID: 21251161]
[167]
Guo, L.; Liu, Z.; Zhang, Y.; Quan, Q.; Huang, L.; Xu, Y.; Cao, L.; Zhang, X. Association of increased B7 protein expression by infiltrating immune cells with progression of gastric carcinogenesis. Medicine (Baltimore), 2019, 98(8)e14663
[http://dx.doi.org/10.1097/MD.0000000000014663] [PMID: 30813210]
[168]
Baral, A.; Ye, H.X.; Jiang, P.C.; Yao, Y.; Mao, Y. B7-H3 and B7-H1 expression in cerebral spinal fluid and tumor tissue correlates with the malignancy grade of glioma patients. Oncol. Lett., 2014, 8(3), 1195-1201.
[http://dx.doi.org/10.3892/ol.2014.2268] [PMID: 25120686]
[169]
Wang, Z.; Wang, Z.; Zhang, C.; Liu, X.; Li, G.; Liu, S.; Sun, L.; Liang, J.; Hu, H.; Liu, Y.; Zhang, W.; Jiang, T. Genetic and clinical characterization of B7-H3 (CD276) expression and epigenetic regulation in diffuse brain glioma. Cancer Sci., 2018, 109(9), 2697-2705.
[http://dx.doi.org/10.1111/cas.13744] [PMID: 30027617]
[170]
Zhang, C.; Zhang, Z.; Li, F.; Shen, Z.; Qiao, Y.; Li, L.; Liu, S.; Song, M.; Zhao, X.; Ren, F.; He, Q.; Yang, B.; Fan, R.; Zhang, Y. Large-scale analysis reveals the specific clinical and immune features of B7-H3 in glioma. OncoImmunology, 2018, 7(11)e1461304
[http://dx.doi.org/10.1080/2162402X.2018.1461304] [PMID: 30377558]
[171]
Proctor, D.T.; Patel, Z.; Lama, S.; Resch, L.; van Marle, G.; Sutherland, G.R. Identification of PD-L2, B7-H3 and CTLA-4 immune checkpoint proteins in genetic subtypes of meningioma. OncoImmunology, 2018, 8(1)e1512943
[http://dx.doi.org/10.1080/2162402X.2018.1512943] [PMID: 30546952]
[172]
Mao, L.; Fan, T.F.; Wu, L.; Yu, G.T.; Deng, W.W.; Chen, L.; Bu, L.L.; Ma, S.R.; Liu, B.; Bian, Y.; Kulkarni, A.B.; Zhang, W.F.; Sun, Z.J. Selective blockade of B7-H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma. J. Cell. Mol. Med., 2017, 21(9), 2199-2210.
[http://dx.doi.org/10.1111/jcmm.13143] [PMID: 28401653]
[173]
Varki, V.; Ioffe, O.B.; Bentzen, S.M.; Heath, J.; Cellini, A.; Feliciano, J.; Zandberg, D.P. PD-L1, B7-H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma. Cancer Immunol. Immunother., 2018, 67(5), 805-814.
[http://dx.doi.org/10.1007/s00262-018-2138-8] [PMID: 29484464]
[174]
Yang, L.L.; Wu, L.; Yu, G.T.; Zhang, W.F.; Liu, B.; Sun, Z.J. CD317 Signature in Head and Neck Cancer Indicates Poor Prognosis. J. Dent. Res., 2018, 97(7), 787-794.
[http://dx.doi.org/10.1177/0022034518758604] [PMID: 29486141]
[175]
Kang, F.B.; Wang, L.; Li, D.; Zhang, Y.G.; Sun, D.X. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression. Oncol. Rep., 2015, 33(1), 274-282.
[http://dx.doi.org/10.3892/or.2014.3587] [PMID: 25370943]
[176]
Wang, F.; Wang, G.; Liu, T.; Yu, G.; Zhang, G.; Luan, X. B7-H3 was highly expressed in human primary hepatocellular carcinoma and promoted tumor progression. Cancer Invest., 2014, 32(6), 262-271.
[http://dx.doi.org/10.3109/07357907.2014.909826] [PMID: 24787022]
[177]
Sun, T.W.; Gao, Q.; Qiu, S.J.; Zhou, J.; Wang, X.Y.; Yi, Y.; Shi, J.Y.; Xu, Y.F.; Shi, Y.H.; Song, K.; Xiao, Y.S.; Fan, J. B7-H3 is expressed in human hepatocellular carcinoma and is associated with tumor aggressiveness and postoperative recurrence. Cancer Immunol. Immunother., 2012, 61(11), 2171-2182.
[http://dx.doi.org/10.1007/s00262-012-1278-5] [PMID: 22729558]
[178]
Zhao, L.; Xie, C.; Liu, D.; Li, T.; Zhang, Y.; Wan, C. Early Detection of Hepatocellular Carcinoma in Patients with Hepatocirrhosis by Soluble B7-H3. J. Gastrointest. Surg., 2017, 21(5), 807-812.
[http://dx.doi.org/10.1007/s11605-017-3386-1] [PMID: 28243980]
[179]
Gao, F.; Xu, J.C.; Zhu, L.; Chen, H.; Zhu, X.Y.; You, X.R.; Li, S.X.; Zhu, C.L.; Yang, C.; Zhu, C.W.; Xu, P. clinical significance of b7-h3 expression during the progression of hepatitis B virus infection. Viral Immunol., 2018, 31(10), 668-675.
[http://dx.doi.org/10.1089/vim.2018.0102] [PMID: 30481143]
[180]
Liu, L.Z.; Zhang, Z.; Zheng, B.H.; Shi, Y.; Duan, M.; Ma, L.J.; Wang, Z.C.; Dong, L.Q.; Dong, P.P.; Shi, J.Y.; Zhang, S.; Ding, Z.B.; Ke, A.W.; Cao, Y.; Zhang, X.M.; Xi, R.; Zhou, J.; Fan, J.; Wang, X.Y.; Gao, Q. CCL15 recruits suppressive monocytes to facilitate immune escape and disease progression in hepatocellular carcinoma. Hepatology, 2019, 69(1), 143-159.
[http://dx.doi.org/10.1002/hep.30134] [PMID: 30070719]
[181]
Cheng, R.; Chen, Y.; Zhou, H.; Wang, B.; Du, Q.; Chen, Y. B7-H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma. APMIS, 2018, 126(5), 396-402.
[http://dx.doi.org/10.1111/apm.12837] [PMID: 29696716]
[182]
Kim, A.K.; Gani, F.; Layman, A.J.; Besharati, S.; Zhu, Q.; Succaria, F.; Engle, E.L.; Bhaijee, F.; Goggins, M.B.; Llosa, N.J.; Pawlik, T.M.; Yarchoan, M.; Jaffee, E.M.; Simons, H.C.; Taube, J.M.; Anders, R.A. Multiple immune-suppressive mechanisms in fibrolamellar carcinoma. Cancer Immunol. Res., 2019, 7(5), 805-812.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0499] [PMID: 30902819]
[183]
Altan, M.; Pelekanou, V.; Schalper, K.A.; Toki, M.; Gaule, P.; Syrigos, K.; Herbst, R.S.; Rimm, D.L. B7-H3 expression in NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating lymphocytes. Clin. Cancer Res., 2017, 23(17), 5202-5209.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-3107] [PMID: 28539467]
[184]
Mao, Y.; Li, W.; Chen, K.; Xie, Y.; Liu, Q.; Yao, M.; Duan, W.; Zhou, X.; Liang, R.; Tao, M. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget, 2015, 6(5), 3452-3461.
[http://dx.doi.org/10.18632/oncotarget.3097] [PMID: 25609202]
[185]
Sun, Y.; Wang, Y.; Zhao, J.; Gu, M.; Giscombe, R.; Lefvert, A.K.; Wang, X. B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer, 2006, 53(2), 143-151.
[http://dx.doi.org/10.1016/j.lungcan.2006.05.012] [PMID: 16782226]
[186]
Schneider, T.; Hoffmann, H.; Dienemann, H.; Schnabel, P.A.; Enk, A.H.; Ring, S.; Mahnke, K. Non-small cell lung cancer induces an immunosuppressive phenotype of dendritic cells in tumor microenvironment by upregulating B7-H3. J. Thorac. Oncol., 2011, 6(7), 1162-1168.
[http://dx.doi.org/10.1097/JTO.0b013e31821c421d] [PMID: 21597388]
[187]
Carvajal-Hausdorf, D.; Altan, M.; Velcheti, V.; Gettinger, S.N.; Herbst, R.S.; Rimm, D.L.; Schalper, K.A. Expression and clinical significance of PD-L1, B7-H3, B7-H4 and TILs in human small cell lung Cancer (SCLC). J. Immunother. Cancer, 2019, 7(1), 65.
[http://dx.doi.org/10.1186/s40425-019-0540-1] [PMID: 30850021]
[188]
Parra, E.R.; Villalobos, P.; Zhang, J.; Behrens, C.; Mino, B.; Swisher, S.; Sepesi, B.; Weissferdt, A.; Kalhor, N.; Heymach, J.V.; Moran, C.; Zhang, J.; Lee, J.; Rodriguez-Canales, J.; Gibbons, D.; Wistuba, I.I. Immunohistochemical and image analysis-based study shows that several immune checkpoints are co-expressed in non-small cell lung carcinoma tumors. J. Thorac. Oncol., 2018, 13(6), 779-791.
[http://dx.doi.org/10.1016/j.jtho.2018.03.002] [PMID: 29526824]
[189]
Nakagomi, T.; Goto, T.; Hirotsu, Y.; Shikata, D.; Yokoyama, Y.; Higuchi, R.; Otake, S.; Amemiya, K.; Oyama, T.; Mochizuki, H.; Omata, M. Genomic characteristics of invasive mucinous adenocarcinomas of the lung and potential therapeutic targets of B7-H3. Cancers (Basel), 2018, 10(12)E478
[http://dx.doi.org/10.3390/cancers10120478] [PMID: 30513627]
[190]
Chen, L.; Zhang, G.; Sheng, S.; Zhou, Q.; Pan, Y.; Guan, S. Upregulation of soluble B7-H3 in NSCLC-derived malignant pleural effusion: A potential diagnostic biomarker correlated with NSCLC staging. Clin. Chim. Acta, 2016, 457, 81-85.
[http://dx.doi.org/10.1016/j.cca.2016.04.009] [PMID: 27071700]
[191]
Jin, Y.; Zhang, P.; Li, J.; Zhao, J.; Liu, C.; Yang, F.; Yang, D.; Gao, A.; Lin, W.; Ma, X.; Sun, Y. B7-H3 in combination with regulatory T cell is associated with tumor progression in primary human non-small cell lung cancer. Int. J. Clin. Exp. Pathol., 2015, 8(11), 13987-13995.
[PMID: 26823710]
[192]
Zhang, G.; Huang, H.; Zhu, Y.; Yu, G.; Gao, X.; Xu, Y.; Liu, C.; Hou, J.; Zhang, X. A novel subset of B7-H3+CD14+HLA-DR-/low myeloid-derived suppressor cells are associated with progression of human NSCLC. OncoImmunology, 2015, 4(2)e977164
[http://dx.doi.org/10.4161/2162402X.2014.977164] [PMID: 25949876]
[193]
Xu, Y.H.; Zhang, G.B.; Wang, J.M.; Hu, H.C. B7-H3 and CD133 expression in non-small cell lung cancer and correlation with clinicopathologic factors and prognosis. Saudi Med. J., 2010, 31(9), 980-986.
[PMID: 20844808]
[194]
Inamura, K.; Yokouchi, Y.; Kobayashi, M.; Sakakibara, R.; Ninomiya, H.; Subat, S.; Nagano, H.; Nomura, K.; Okumura, S.; Shibutani, T.; Ishikawa, Y. Tumor B7-H3 (CD276) expression and smoking history in relation to lung adenocarcinoma prognosis. Lung Cancer, 2017, 103, 44-51.
[http://dx.doi.org/10.1016/j.lungcan.2016.11.013] [PMID: 28024695]
[195]
Boland, J.M.; Kwon, E.D.; Harrington, S.M.; Wampfler, J.A.; Tang, H.; Yang, P.; Aubry, M.C. Tumor B7-H1 and B7-H3 expression in squamous cell carcinoma of the lung. Clin. Lung Cancer, 2013, 14(2), 157-163.
[http://dx.doi.org/10.1016/j.cllc.2012.05.006] [PMID: 22868219]
[196]
Chen, C.; Shen, Y.; Qu, Q.X.; Chen, X.Q.; Zhang, X.G.; Huang, J.A. Induced expression of B7-H3 on the lung cancer cells and macrophages suppresses T-cell mediating anti-tumor immune response. Exp. Cell Res., 2013, 319(1), 96-102.
[http://dx.doi.org/10.1016/j.yexcr.2012.09.006] [PMID: 22999863]
[197]
Cheung, I.Y.; Farazi, T.A.; Ostrovnaya, I.; Xu, H.; Tran, H.; Mihailovic, A.; Tuschl, T.; Cheung, N.K. Deep MicroRNA sequencing reveals downregulation of miR-29a in neuroblastoma central nervous system metastasis. Genes Chromosomes Cancer, 2014, 53(10), 803-814.
[http://dx.doi.org/10.1002/gcc.22189] [PMID: 24898736]
[198]
Dondero, A.; Pastorino, F.; Della Chiesa, M.; Corrias, M.V.; Morandi, F.; Pistoia, V.; Olive, D.; Bellora, F.; Locatelli, F.; Castellano, A.; Moretta, L.; Moretta, A.; Bottino, C.; Castriconi, R. PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. OncoImmunology, 2015, 5(1)e1064578
[http://dx.doi.org/10.1080/2162402X.2015.1064578] [PMID: 26942080]
[199]
Marimpietri, D.; Petretto, A.; Raffaghello, L.; Pezzolo, A.; Gagliani, C.; Tacchetti, C.; Mauri, P.; Melioli, G.; Pistoia, V. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One, 2013, 8(9)e75054
[http://dx.doi.org/10.1371/journal.pone.0075054] [PMID: 24069378]
[200]
Zhang, S.S.; Tang, J.; Yu, S.Y.; Ma, L.I.; Wang, F.; Xie, S.L.; Jin, L.; Yang, H.Y. Expression levels of B7-H3 and TLT-2 in human oral squamous cell carcinoma. Oncol. Lett., 2015, 10(2), 1063-1068.
[http://dx.doi.org/10.3892/ol.2015.3274] [PMID: 26622626]
[201]
Chen, J.T.; Chen, C.H.; Ku, K.L.; Hsiao, M.; Chiang, C.P.; Hsu, T.L.; Chen, M.H.; Wong, C.H. Glycoprotein B7-H3 overexpression and aberrant glycosylation in oral cancer and immune response. Proc. Natl. Acad. Sci. USA, 2015, 112(42), 13057-13062.
[http://dx.doi.org/10.1073/pnas.1516991112] [PMID: 26438868]
[202]
Fan, T.F.; Deng, W.W.; Bu, L.L.; Wu, T.F.; Zhang, W.F.; Sun, Z.J. B7-H3 regulates migration and invasion in salivary gland adenoid cystic carcinoma via the JAK2/STAT3 signaling pathway. Am. J. Transl. Res., 2017, 9(3), 1369-1380.
[PMID: 28386362]
[203]
Yang, H.Y.; Chu, M.; Zheng, L.W.; Zwahlen, R.A.; Luo, J.; Zou, D.H.; Sun, S.T. Transgenic B7-H3 therapy induces tumor-specific immune response in human oral squamous cell cancer: an in vitro study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2008, 106(5), 721-728.
[http://dx.doi.org/10.1016/j.tripleo.2008.08.012] [PMID: 18929994]
[204]
Wang, L.; Zhang, Q.; Chen, W.; Shan, B.; Ding, Y.; Zhang, G.; Cao, N.; Liu, L.; Zhang, Y. B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis. PLoS One, 2013, 8(8)e70689
[http://dx.doi.org/10.1371/journal.pone.0070689] [PMID: 23940627]
[205]
McEachron, T.A.; Triche, T.J.; Sorenson, L.; Parham, D.M.; Carpten, J.D. Profiling targetable immune checkpoints in osteosarcoma. OncoImmunology, 2018, 7(12)e1475873
[http://dx.doi.org/10.1080/2162402X.2018.1475873] [PMID: 30524885]
[206]
Wang, L.; Kang, F.B.; Zhang, G.C.; Wang, J.; Xie, M.F.; Zhang, Y.Z. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma. Cancer Cell Int., 2018, 18, 115.
[http://dx.doi.org/10.1186/s12935-018-0614-z] [PMID: 30123093]
[207]
Yin, S.J.; Wang, W.J.; Zhang, J.Y. Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice. Genet. Mol. Res., 2015, 14(4), 14253-14261.
[http://dx.doi.org/10.4238/2015.November.13.9] [PMID: 26600483]
[208]
Lutz, A.M.; Bachawal, S.V.; Drescher, C.W.; Pysz, M.A.; Willmann, J.K.; Gambhir, S.S. Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model. Clin. Cancer Res., 2014, 20(5), 1313-1322.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1642] [PMID: 24389327]
[209]
Yan, R.; Yang, S.; Gu, A.; Zhan, F.; He, C.; Qin, C.; Zhang, X.; Feng, P. Murine b7-h3 is a co-stimulatory molecule for T cell activation. Monoclon. Antib. Immunodiagn. Immunother., 2013, 32(6), 395-398.
[http://dx.doi.org/10.1089/mab.2013.0052] [PMID: 24328742]
[210]
Xu, H.; Chen, X.; Tao, M.; Chen, K.; Chen, C.; Xu, G.; Li, W.; Yuan, S.; Mao, Y. B7-H3 and B7-H4 are independent predictors of a poor prognosis in patients with pancreatic cancer. Oncol. Lett., 2016, 11(3), 1841-1846.
[http://dx.doi.org/10.3892/ol.2016.4128] [PMID: 26998087]
[211]
Chen, Y.; Sun, J.; Zhao, H.; Zhu, D.; Zhi, Q.; Song, S.; Zhang, L.; He, S.; Kuang, Y.; Zhang, Z.; Li, D. The coexpression and clinical significance of costimulatory molecules B7-H1, B7-H3, and B7-H4 in human pancreatic cancer. OncoTargets Ther., 2014, 7, 1465-1472.
[http://dx.doi.org/10.2147/OTT.S66809] [PMID: 25170273]
[212]
Zhao, X.; Zhang, G.B.; Gan, W.J.; Xiong, F.; Li, Z.; Zhao, H.; Zhu, D.M.; Zhang, B.; Zhang, X.G.; Li, D.C. Silencing of B7-H3 increases gemcitabine sensitivity by promoting apoptosis in pancreatic carcinoma. Oncol. Lett., 2013, 5(3), 805-812.
[http://dx.doi.org/10.3892/ol.2013.1118] [PMID: 23426281]
[213]
Zhao, X.; Li, D.C.; Zhu, X.G.; Gan, W.J.; Li, Z.; Xiong, F.; Zhang, Z.X.; Zhang, G.B.; Zhang, X.G.; Zhao, H. B7-H3 overexpression in pancreatic cancer promotes tumor progression. Int. J. Mol. Med., 2013, 31(2), 283-291.
[http://dx.doi.org/10.3892/ijmm.2012.1212] [PMID: 23242015]
[214]
Xu, L.; Ding, X.; Tan, H.; Qian, J. Correlation between B7-H3 expression and matrix metalloproteinases 2 expression in pancreatic cancer. Cancer Cell Int., 2013, 13(1), 81.
[http://dx.doi.org/10.1186/1475-2867-13-81] [PMID: 23947693]
[215]
Loos, M.; Hedderich, D.M.; Ottenhausen, M.; Giese, N.A.; Laschinger, M.; Esposito, I.; Kleeff, J.; Friess, H. Expression of the costimulatory molecule B7-H3 is associated with prolonged survival in human pancreatic cancer. BMC Cancer, 2009, 9, 463.
[http://dx.doi.org/10.1186/1471-2407-9-463] [PMID: 20035626]
[216]
Zhao, J.; Meng, Z.; Xie, C.; Yang, C.; Liu, Z.; Wu, S.; Wang, B.; Fan, P.; Jin, X.; Wu, H. B7-H3 is regulated by BRD4 and promotes TLR4 expression in pancreatic ductal adenocarcinoma. Int. J. Biochem. Cell Biol., 2019, 108, 84-91.
[http://dx.doi.org/10.1016/j.biocel.2019.01.011] [PMID: 30664982]
[217]
Li, D.; Wang, J.; Zhou, J.; Zhan, S.; Huang, Y.; Wang, F.; Zhang, Z.; Zhu, D.; Zhao, H.; Li, D.; Chen, G.; Zhu, X.; Zhao, X. B7-H3 combats apoptosis induced by chemotherapy by delivering signals to pancreatic cancer cells. Oncotarget, 2017, 8(43), 74856-74868.
[http://dx.doi.org/10.18632/oncotarget.20421] [PMID: 29088829]
[218]
Inamura, K.; Takazawa, Y.; Inoue, Y.; Yokouchi, Y.; Kobayashi, M.; Saiura, A.; Shibutani, T.; Ishikawa, Y. Tumor B7-H3 (CD276) expression and survival in pancreatic cancer. J. Clin. Med., 2018, 7(7)E172
[http://dx.doi.org/10.3390/jcm7070172] [PMID: 29996538]
[219]
Yamato, I.; Sho, M.; Nomi, T.; Akahori, T.; Shimada, K.; Hotta, K.; Kanehiro, H.; Konishi, N.; Yagita, H.; Nakajima, Y. Clinical importance of B7-H3 expression in human pancreatic cancer. Br. J. Cancer, 2009, 101(10), 1709-1716.
[http://dx.doi.org/10.1038/sj.bjc.6605375] [PMID: 19844235]
[220]
Benzon, B.; Zhao, S.G.; Haffner, M.C.; Takhar, M.; Erho, N.; Yousefi, K.; Hurley, P.; Bishop, J.L.; Tosoian, J.; Ghabili, K.; Alshalalfa, M.; Glavaris, S.; Simons, B.W.; Tran, P.; Davicioni, E.; Karnes, R.J.; Boudadi, K.; Antonarakis, E.S.; Schaeffer, E.M.; Drake, C.G.; Feng, F.; Ross, A.E. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: an expression-based analysis. Prostate Cancer Prostatic Dis., 2017, 20(1), 28-35.
[http://dx.doi.org/10.1038/pcan.2016.49] [PMID: 27801901]
[221]
Yuan, H.; Wei, X.; Zhang, G.; Li, C.; Zhang, X.; Hou, J. B7-H3 over expression in prostate cancer promotes tumor cell progression. J. Urol., 2011, 186(3), 1093-1099.
[http://dx.doi.org/10.1016/j.juro.2011.04.103] [PMID: 21784485]
[222]
Roth, T.J.; Sheinin, Y.; Lohse, C.M.; Kuntz, S.M.; Frigola, X.; Inman, B.A.; Krambeck, A.E.; McKenney, M.E.; Karnes, R.J.; Blute, M.L.; Cheville, J.C.; Sebo, T.J.; Kwon, E.D. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res., 2007, 67(16), 7893-7900.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1068] [PMID: 17686830]
[223]
Zang, X.; Thompson, R.H.; Al-Ahmadie, H.A.; Serio, A.M.; Reuter, V.E.; Eastham, J.A.; Scardino, P.T.; Sharma, P.; Allison, J.P. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19458-19463.
[http://dx.doi.org/10.1073/pnas.0709802104] [PMID: 18042703]
[224]
Chavin, G.; Sheinin, Y.; Crispen, P.L.; Boorjian, S.A.; Roth, T.J.; Rangel, L.; Blute, M.L.; Sebo, T.J.; Tindall, D.J.; Kwon, E.D.; Karnes, R.J. Expression of immunosuppresive B7-H3 ligand by hormone-treated prostate cancer tumors and metastases. Clin. Cancer Res., 2009, 15(6), 2174-2180.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2262] [PMID: 19276267]
[225]
Liu, Y.; Vlatkovic, L.; Sæter, T.; Servoll, E.; Waaler, G.; Nesland, J.M.; Giercksky, K.E.; Axcrona, K. Is the clinical malignant phenotype of prostate cancer a result of a highly proliferative immune-evasive B7-H3-expressing cell population? Int. J. Urol., 2012, 19(8), 749-756.
[http://dx.doi.org/10.1111/j.1442-2042.2012.03017.x] [PMID: 22487487]
[226]
Parker, A.S.; Heckman, M.G.; Sheinin, Y.; Wu, K.J.; Hilton, T.W.; Diehl, N.N.; Pisansky, T.M.; Schild, S.E.; Kwon, E.D.; Buskirk, S.J. Evaluation of B7-H3 expression as a biomarker of biochemical recurrence after salvage radiation therapy for recurrent prostate cancer. Int. J. Radiat. Oncol. Biol. Phys., 2011, 79(5), 1343-1349.
[http://dx.doi.org/10.1016/j.ijrobp.2010.01.061] [PMID: 20598810]
[227]
Di Desidero, T.; Derosa, L.; Galli, L.; Orlandi, P.; Fontana, A.; Fioravanti, A.; Marconcini, R.; Giorgi, M.; Campi, B.; Saba, A.; Lucchesi, S.; Felipetto, R.; Danesi, R.; Francia, G.; Allegrini, G.; Falcone, A.; Bocci, G. Clinical, pharmacodynamic and pharmacokinetic results of a prospective phase II study on oral metronomic vinorelbine and dexamethasone in castration-resistant prostate cancer patients. Invest. New Drugs, 2016, 34(6), 760-770.
[http://dx.doi.org/10.1007/s10637-016-0385-0] [PMID: 27557783]
[228]
Kreymborg, K.; Haak, S.; Murali, R.; Wei, J.; Waitz, R.; Gasteiger, G.; Savage, P.A.; van den Brink, M.R.; Allison, J.P. Ablation of B7-H3 but not B7-H4 results in highly increased tumor burden in a murine model of spontaneous prostate cancer. Cancer Immunol. Res., 2015, 3(8), 849-854.
[http://dx.doi.org/10.1158/2326-6066.CIR-15-0100] [PMID: 26122284]
[229]
Lehmann, B.D.; Paine, M.S.; Brooks, A.M.; McCubrey, J.A.; Renegar, R.H.; Wang, R.; Terrian, D.M. Senescence-associated exosome release from human prostate cancer cells. Cancer Res., 2008, 68(19), 7864-7871.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6538] [PMID: 18829542]
[230]
Qin, X.; Zhang, H.; Ye, D.; Dai, B.; Zhu, Y.; Shi, G. B7-H3 is a new cancer-specific endothelial marker in clear cell renal cell carcinoma. OncoTargets Ther., 2013, 6, 1667-1673.
[http://dx.doi.org/10.2147/OTT.S53565] [PMID: 24265557]
[231]
Mischinger, J.; Fröhlich, E.; Mannweiler, S.; Meindl, C.; Absenger-Novak, M.; Hutterer, G.C.; Seles, M.; Augustin, H.; Chromecki, T.F.; Jesche-Chromecki, J.; Pummer, K.; Zigeuner, R. Prognostic value of B7-H1, B7-H3 and the stage, size, grade and necrosis (SSIGN) score in metastatic clear cell renal cell carcinoma. Cent. European J. Urol., 2019, 72(1), 23-31.
[PMID: 31011436]
[232]
Masuda, A.; Arai, K.; Nishihara, D.; Mizuno, T.; Yuki, H.; Kambara, T.; Betsunoh, H.; Abe, H.; Yashi, M.; Fukabori, Y.; Yoshida, K.; Kamai, T. Clinical significance of serum soluble T cell regulatory molecules in clear cell renal cell carcinoma. BioMed Res. Int., 2014, 2014396064
[http://dx.doi.org/10.1155/2014/396064] [PMID: 25089268]
[233]
Quandt, D.; Fiedler, E.; Boettcher, D.; Marsch, W.Ch.; Seliger, B. B7-h4 expression in human melanoma: its association with patients’ survival and antitumor immune response. Clin. Cancer Res., 2011, 17(10), 3100-3111.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2268] [PMID: 21378130]
[234]
Tekle, C.; Nygren, M.K.; Chen, Y.W.; Dybsjord, I.; Nesland, J.M.; Maelandsmo, G.M.; Fodstad, O. B7-H3 contributes to the metastatic capacity of melanoma cells by modulation of known metastasis-associated genes. Int. J. Cancer, 2012, 130(10), 2282-2290.
[http://dx.doi.org/10.1002/ijc.26238] [PMID: 21671471]
[235]
Ma, J.; Shang, T.; Ma, P.; Sun, X.; Zhao, J.; Sun, X.; Zhang, M. Bispecific anti-CD3 x anti-B7-H3 antibody mediates T cell cytotoxic ability to human melanoma in vitro and in vivo. Invest. New Drugs, 2019, 37(5), 1036-1043.
[http://dx.doi.org/10.1007/s10637-018-00719-7] [PMID: 30706335]
[236]
Wu, D.; Zhang, Z.; Pan, H.; Fan, Y.; Qu, P.; Zhou, J. Upregulation of the B7/CD28 family member B7-H3 in bladder cancer. Oncol. Lett., 2015, 9(3), 1420-1424.
[http://dx.doi.org/10.3892/ol.2014.2828] [PMID: 25663925]
[237]
Xylinas, E.; Robinson, B.D.; Kluth, L.A.; Volkmer, B.G.; Hautmann, R.; Küfer, R.; Zerbib, M.; Kwon, E.; Thompson, R.H.; Boorjian, S.A.; Shariat, S.F. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur. J. Surg. Oncol., 2014, 40(1), 121-127.
[http://dx.doi.org/10.1016/j.ejso.2013.08.023] [PMID: 24140000]
[238]
Boorjian, S.A.; Sheinin, Y.; Crispen, P.L.; Farmer, S.A.; Lohse, C.M.; Kuntz, S.M.; Leibovich, B.C.; Kwon, E.D.; Frank, I. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin. Cancer Res., 2008, 14(15), 4800-4808.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0731] [PMID: 18676751]
[239]
Li, Y.; Guo, G.; Song, J.; Cai, Z.; Yang, J.; Chen, Z.; Wang, Y.; Huang, Y.; Gao, Q. B7-H3 promotes the migration and invasion of human bladder cancer cells via the PI3K/Akt/STAT3 signaling pathway. J. Cancer, 2017, 8(5), 816-824.
[http://dx.doi.org/10.7150/jca.17759] [PMID: 28382144]
[240]
Xu, Z.; Wang, L.; Tian, J.; Man, H.; Li, P.; Shan, B. High expression of B7-H3 and CD163 in cancer tissues indicates malignant clinicopathological status and poor prognosis of patients with urothelial cell carcinoma of the bladder. Oncol. Lett., 2018, 15(5), 6519-6526.
[http://dx.doi.org/10.3892/ol.2018.8173] [PMID: 29725402]
[241]
He, C.S.; Liu, Y.C.; Xu, Z.P.; Dai, P.C.; Chen, X.W.; Jin, D.H.; Astragaloside, I.V.; Astragaloside, I.V. Astragaloside IV enhances cisplatin chemosensitivity in non-small cell lung cancer cells through inhibition of B7-H3. Cell. Physiol. Biochem., 2016, 40(5), 1221-1229.
[http://dx.doi.org/10.1159/000453175] [PMID: 27960166]
[242]
Tan, W.Q.; Chen, G.; Ye, M.; Jia, B. Artemether regulates chemosensitivity to doxorubicin via regulation of B7-H3 in human neuroblastoma Cells. Med. Sci. Monit., 2017, 23, 4252-4259.
[http://dx.doi.org/10.12659/MSM.902068] [PMID: 28866709]
[243]
Jiang, B.; Liu, F.; Liu, Z.; Zhang, T.; Hua, D. B7-H3 increases thymidylate synthase expression via the PI3k-Akt pathway. Tumour Biol., 2016, 37(7), 9465-9472.
[http://dx.doi.org/10.1007/s13277-015-4740-0] [PMID: 26787540]
[244]
Zhang, P.; Chen, Z.; Ning, K.; Jin, J.; Han, X. Inhibition of B7-H3 reverses oxaliplatin resistance in human colorectal cancer cells. Biochem. Biophys. Res. Commun., 2017, 490(3), 1132-1138.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.001] [PMID: 28676400]
[245]
Kim, A.K.; Gani, F.; Layman, A.J.; Besharati, S.; Zhu, Q.; Succaria, F.; Engle, E.L.; Bhaijee, F.; Goggins, M.B.; Llosa, N.J.; Pawlik, T.M.; Yarchoan, M.; Jaffee, E.M.; Simons, H.C.; Taube, J.M.; Anders, R.A. Multiple immune suppressive mechanisms in fibrolamellar carcinoma. Cancer Immunol. Res., 2019, 7(5), 805-812.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0499] [PMID: 30902819]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy