Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Ligand- and Structure-Based Drug Design and Optimization using KNIME

Author(s): Michael P. Mazanetz*, Charlotte H.F. Goode and Ewa I. Chudyk

Volume 27, Issue 38, 2020

Page: [6458 - 6479] Pages: 22

DOI: 10.2174/0929867326666190409141016

Price: $65

conference banner
Abstract

In recent years there has been a paradigm shift in how data is being used to progress early drug discovery campaigns from hit identification to candidate selection. Significant developments in data mining methods and the accessibility of tools for research scientists have been instrumental in reducing drug discovery timelines and in increasing the likelihood of a chemical entity achieving drug development milestones. KNIME, the Konstanz Information Miner, is a leading open source data analytics platform and has supported drug discovery endeavours for over a decade. KNIME provides a rich palette of tools supported by an extensive community of contributors to enable ligandand structure-based drug design. This review will examine recent developments within the KNIME platform to support small-molecule drug design and provide a perspective on the challenges and future developments within this field.

Keywords: Hit expansion, virtual screening, predictive toxicology, ligand optimisation, data mining, KNIME, ADME modelling, big data, workflows, computer-aided drug design.

[1]
Mazanetz, M.P.; Marmon, R.J.; Reisser, C.B.T.; Morao, I. Drug discovery applications for KNIME: an open source data mining platform. Curr. Top. Med. Chem., 2012, 12(18), 1965-1979.
[http://dx.doi.org/10.2174/156802612804910331] [PMID: 23110532]
[2]
Berthold, M.; Cebron, N.; Dill, F.; Gabriel, T.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME - the konstanz information miner: version 2.0 and beyond. SIGKDD Explor., 2009, 11, 26-31.
[http://dx.doi.org/10.1145/1656274.1656280]
[3]
Berthold, M.R.; Borgelt, C.; Hoppner, F. Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data, 2010 edition; Springer: London, 2010.
[http://dx.doi.org/10.1007/978-1-84882-260-3]
[4]
Fillbrunn, A.; Dietz, C.; Pfeuffer, J.; Rahn, R.; Landrum, G.A.; Berthold, M.R. KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol., 2017, 261, 149-156.
[http://dx.doi.org/10.1016/j.jbiotec.2017.07.028] [PMID: 28757290]
[5]
Magic quadrant for data science and machine-learning platforms https://www.gartner.com/doc/3860063/2018
[6]
Curcin, V.; Ghanem, M.; Guo, Y. Web services in the life sciences. Drug Discov. Today, 2005, 10(12), 865-871.
[http://dx.doi.org/10.1016/S1359-6446(05)03481-1] [PMID: 15970269]
[7]
Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J.P. The ChEMBL bioactivity database: an update. Nucleic Acids Res., 2014, 42(Database issue), D1083-D1090.
[http://dx.doi.org/10.1093/nar/gkt1031] [PMID: 24214965]
[8]
Jupp, S.; Malone, J.; Bolleman, J.; Brandizi, M.; Davies, M.; Garcia, L.; Gaulton, A.; Gehant, S.; Laibe, C.; Redaschi, N.; Wimalaratne, S.M.; Martin, M.; Le Novère, N.; Parkinson, H.; Birney, E.; Jenkinson, A.M. The EBI RDF platform: linked open data for the life sciences. Bioinformatics, 2014, 30(9), 1338-1339.
[http://dx.doi.org/10.1093/bioinformatics/btt765] [PMID: 24413672]
[9]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. Pubchem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[10]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K.; Binding, D.B. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[11]
Nicola, G.; Berthold, M.R.; Hedrick, M.P.; Gilson, M.K. Connecting proteins with drug-like compounds: Open source drug discovery workflows with BindingDB and KNIME. Database (Oxford), 2015, 2015bav087
[http://dx.doi.org/10.1093/database/bav087] [PMID: 26384374]
[12]
Parasuraman, S. Protein data bank. J. Pharmacol. Pharmacother., 2012, 3(4), 351-352.
[http://dx.doi.org/10.4103/0976-500X.103704] [PMID: 23326114]
[13]
Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V.; Turner, S.; Swainston, N.; Mendes, P.; Steinbeck, C. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res., 2016, 44(D1), D1214-D1219.
[http://dx.doi.org/10.1093/nar/gkv1031] [PMID: 26467479]
[14]
Chichester, C.; Mons, B. Collaboration and the semantic web in: Collaborative Computational Technologies for Biomedical Research; Ekins, S.; Hupkey, M.A.Z; Williams, A.J., Ed.; Wiley-Blackwell, 2011, pp. 453-466.
[http://dx.doi.org/10.1002/9781118026038.ch26]
[15]
Pence, H.E.; Williams, A. ChemSpider: An online chemical information resource. J. Chem. Educ., 2010, 87, 1123-1124.
[http://dx.doi.org/10.1021/ed100697w]
[16]
Piñero, J.; Queralt-Rosinach, N.; Bravo, À.; Deu-Pons, J.; Bauer-Mehren, A.; Baron, M.; Sanz, F.; Furlong, L.I. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (Oxford), 2015, 2015bav028
[http://dx.doi.org/10.1093/database/bav028] [PMID: 25877637]
[17]
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res., 2017, 45(D1), D833-D839.
[http://dx.doi.org/10.1093/nar/gkw943] [PMID: 27924018]
[18]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[19]
Law, V.; Knox, C.; Djoumbou, Y.; Jewison, T.; Guo, A.C.; Liu, Y.; Maciejewski, A.; Arndt, D.; Wilson, M.; Neveu, V.; Tang, A.; Gabriel, G.; Ly, C.; Adamjee, S.; Dame, Z.T.; Han, B.; Zhou, Y.; Wishart, D.S. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res., 2014, 42(Database issue), D1091-D1097.
[http://dx.doi.org/10.1093/nar/gkt1068] [PMID: 24203711]
[20]
Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.
Pon, A.; Banco, K.; Mak, C.; Neveu, V.; Djoumbou, Y.
Eisner, R.; Guo, A.C.; Wishart, D.S. DrugBank 3.0: a com-prehensive resource for ‘omics’ research on drugs. Nucleic Acids Res., 2011, 39(Database issue), D1035-D1041.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]
[21]
Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 2008, 36(Database issue), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[22]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(Database issue), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[23]
Bairoch, A. The ENZYME database in 2000. Nucleic Acids Res., 2000, 28(1), 304-305.
[http://dx.doi.org/10.1093/nar/28.1.304] [PMID: 10592255]
[24]
Mullard, A. FDA unveils searchable adverse events system. Nat. Rev. Drug Discov., 2017, 16(11), 743.
[http://dx.doi.org/10.1038/nrd.2017.224] [PMID: 29081521]
[25]
Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G. The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat. Genet., 2000, 25(1), 25-29.
[http://dx.doi.org/10.1038/75556] [PMID: 10802651]
[26]
Gene Ontology Consortium. Gene Ontology Consortium : going forward. Nucleic Acids Res., 2015, 43(Database issue), D1049-D1056.
[http://dx.doi.org/10.1093/nar/gku1179] [PMID: 25428369]
[27]
The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res., 2017, 45(D1), D331-D338.
[http://dx.doi.org/10.1093/nar/gkw1108] [PMID: 27899567]
[28]
Southan, C.; Sharman, J.L.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Alexander, S.P.H.; Buneman, O.P.; Davenport, A.P.; McGrath, J.C.; Peters, J.A.; Spedding, M.; Catterall, W.A.; Fabbro, D.; Davies, J.A. NC-IUPHAR. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Res., 2016, 44(D1), D1054-D1068.
[http://dx.doi.org/10.1093/nar/gkv1037] [PMID: 26464438]
[29]
Lane, L.; Argoud-Puy, G.; Britan, A.; Cusin, I.; Duek, P.D.; Evalet, O.; Gateau, A.; Gaudet, P.; Gleizes, A.; Masselot, A.; Zwahlen, C.; Bairoch, A. neXtProt: a knowledge platform for human proteins. Nucleic Acids Res., 2012, 40(Database issue), D76-D83.
[http://dx.doi.org/10.1093/nar/gkr1179] [PMID: 22139911]
[30]
Papadatos, G.; Davies, M.; Dedman, N.; Chambers, J.; Gaulton, A.; Siddle, J.; Koks, R.; Irvine, S.A.; Pettersson, J.; Goncharoff, N.; Hersey, A.; Overington, J.P. SureChEMBL: a large-scale, chemically annotated patent document database. Nucleic Acids Res., 2016, 44(D1), D1220-D1228.
[http://dx.doi.org/10.1093/nar/gkv1253] [PMID: 26582922]
[31]
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res., 2015, 43(Database issue), D204-D212.
[http://dx.doi.org/10.1093/nar/gku989] [PMID: 25348405]
[32]
Kelder, T.; van Iersel, M.P.; Hanspers, K.; Kutmon, M.; Conklin, B.R.; Evelo, C.T.; Pico, A.R. WikiPathways: building research communities on biological pathways. Nucleic Acids Res., 2012, 40(Database issue), D1301-D1307.
[http://dx.doi.org/10.1093/nar/gkr1074] [PMID: 22096230]
[33]
Kutmon, M.; Riutta, A.; Nunes, N.; Hanspers, K.; Willighagen, E.L.; Bohler, A.; Mélius, J.; Waagmeester, A.; Sinha, S.R.; Miller, R.; Coort, S.L.; Cirillo, E.; Smeets, B.; Evelo, C.T.; Pico, A.R. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res., 2016, 44(D1), D488-D494.
[http://dx.doi.org/10.1093/nar/gkv1024] [PMID: 26481357]
[34]
Beisken, S.; Meinl, T.; Wiswedel, B.; de Figueiredo, L.F.; Berthold, M.; Steinbeck, C. KNIME-CDK: Workflow-driven cheminformatics. BMC Bioinformatics, 2013, 14, 257.
[http://dx.doi.org/10.1186/1471-2105-14-257] [PMID: 24103053]
[35]
Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, I.I.; Palyulin, V.A.; Radchenko, E.V.; Welsh, W.J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q-Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I.V. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des., 2011, 25(6), 533-554.
[http://dx.doi.org/10.1007/s10822-011-9440-2] [PMID: 21660515]
[36]
Lindenbaum, P.; Le Scouarnec, S.; Portero, V.; Redon, R. Knime4Bio: a set of custom nodes for the interpretation of next-generation sequencing data with KNIME. Bioinformatics, 2011, 27(22), 3200-3201.
[http://dx.doi.org/10.1093/bioinformatics/btr554] [PMID: 21984761]
[37]
Digles, D.; Zdrazil, B.; Neefs, J-M.; Van Vlijmen, H.; Herhaus, C.; Caracoti, A.; Brea, J.; Roibás, B.; Loza, M.I.; Queralt-Rosinach, N.; Furlong, L.I.; Gaulton, A.; Bartek, L.; Senger, S.; Chichester, C.; Engkvist, O.; Evelo, C.T.; Franklin, N.I.; Marren, D.; Ecker, G.F.; Jacoby, E. Open PHACTS computational protocols for in silico target validation of cellular phenotypic screens: knowing the knowns. MedChemComm, 2016, 7(6), 1237-1244.
[http://dx.doi.org/10.1039/C6MD00065G] [PMID: 27774140]
[38]
Stierand, K.; Harder, T.; Marek, T.; Hilbig, M.; Lemmen, C.; Rarey, M. Internet as scientific knowledge base: navigating the chem-bio space. Mol. Inform., 2012, 31(8), 543-546.
[http://dx.doi.org/10.1002/minf.201200037] [PMID: 23293679]
[39]
Carrascosa, M.C.; Massaguer, O.L.; Mestres, J. Pharmatrek: A semantic web explorer for open innovation in multitarget drug discovery. Mol. Inform., 2012, 31(8), 537-541.
[http://dx.doi.org/10.1002/minf.201200070] [PMID: 23548981]
[40]
Kooistra, A.J.; Vass, M.; McGuire, R.; Leurs, R.; de Esch, I.J.P.; Vriend, G.; Verhoeven, S.; de Graaf, C. 3D-e-chem: structural cheminformatics workflows for computer-aided drug discovery. ChemMedChem, 2018, 13(6), 614-626.
[http://dx.doi.org/10.1002/cmdc.201700754] [PMID: 29337438]
[41]
McGuire, R.; Verhoeven, S.; Vass, M.; Vriend, G.; de Esch, I.J.P.; Lusher, S.J.; Leurs, R.; Ridder, L.; Kooistra, A.J.; Ritschel, T.; de Graaf, C. 3D-e-Chem-VM: structural cheminformatics research infrastructure in a freely available virtual machine. J. Chem. Inf. Model., 2017, 57(2), 115-121.
[http://dx.doi.org/10.1021/acs.jcim.6b00686] [PMID: 28125221]
[42]
Vernalis Cheminformatics Nodes. 2018. Available at: https://www.knime.com/book/vernalis-cheminformatics-nodes (Accessed Date: April 23, 2018).
[43]
MolPort KNIME Node. 2018. Available at: https://www.molport. com/shop/knime-nodes (Accessed Date: April 23, 2018).
[44]
EMBL-EBI Nodes for KNIME. 2018. Available at: https://www.knime.com/book/embl-ebi-nodes-for-knime-trusted-extension (Accessed Date: April 23, 2018).
[45]
Togo workflow, life science database integration web, computation biology researach center, AIST. 2018. Available at: https://togo.medals.jp/active.eng.html (Accessed Date: April 23, 2018)
[46]
Yoshikawa, T.; Fukui, K. The development of an affinity evaluation and prediction system by using protein-protein docking simulations and parameter tuning. Adv. Appl. Bioinform. Chem., 2009, 2, 1-15.
[http://dx.doi.org/10.2147/AABC.S3646]
[47]
Sequime. The Nodes for KNIME project 0.1. 2018. Available at: https://the-nodes-for-knime-project.soft112.com/download.html (Accessed Date: April 23, 2018).
[48]
Plowright, A.T.; Johnstone, C.; Kihlberg, J.; Pettersson, J.; Robb, G.; Thompson, R.A. Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle. Drug Discov. Today, 2012, 17(1-2), 56-62.
[http://dx.doi.org/10.1016/j.drudis.2011.09.012] [PMID: 21963616]
[49]
Golbraikh, A.; Wang, X.; Zhu, H.; Tropsha, A. Predictive QSAR modeling: methods and applications in drug discovery and chemical risk assessment. In: Handbook of Computational Chemistry; , 2011; pp. 1-36.
[http://dx.doi.org/10.1007/978-94-007-0711-5_37]
[50]
Example, K.N.I.M.E. 2018. Available at: https://www.knime.com/ (Accessed Date: April 23, 2018).
[51]
My Experiment . 2018. https://www.myexperiment. org/home (Accessed Date: April 23, 2018).
[52]
KNIME workflows developed in project using nodes developed in project. 2018. https://github.com/3D-e-Chem/workflows (Accessed Date: April 23, 2018).
[53]
ChemAxon Kft. 2018. www.chemaxon.com (Accessed Date: April 23, 2018).
[54]
Infocom corporation: chemaxon node for KNIME JChem extensions_English. 2018. http://infocom-science.jp/product/detail/jchemextensions_english.html (Accessed Date: April 23, 2018).
[55]
BioSolveIT tools - KNIME Interfaces. https://www.biosolveit.de/KNIME/ (Accessed Date: April 23, 2018).
[56]
R Development Core Team. R: a language and environment for statistical computing. 2018. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing (Accessed Date: April 23, 2018).
[57]
Guha, R. Generating, using and visualizing molecular information in R. R News, 2006, 3, 28-33.
[58]
Filzmoser, P.; Varmuza, K. Chemometrics: multivariate statistical analysis in chemo-metrics. 2018. https://cran.r-project.org/web/packages/chemometrics/index.html (Accessed Date: April 23, 2018).
[59]
Wehrens, R. ChemometricsWithR: chemometrics with r - multivariate data analysis in the natural sciences and life sciences. 2018. https://cran.r-project.org/web/packages/ChemometricsWithR/index.html(Accessed Date: April 23, 2018)..
[60]
Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The chemistry development kit (CDK): an open-source java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci., 2003, 43(2), 493-500.
[http://dx.doi.org/10.1021/ci025584y] [PMID: 12653513]
[61]
Steinbeck, C.; Hoppe, C.; Kuhn, S.; Floris, M.; Guha, R.; Willighagen, E.L. Recent developments of the chemistry development kit (CDK) - an open-source java library for chemo- and bioinformatics. Curr. Pharm. Des., 2006, 12(17), 2111-2120.
[http://dx.doi.org/10.2174/138161206777585274] [PMID: 16796559]
[62]
Saubern, S.; Guha, R.; Baell, J.B. KNIME workflow to assess pains filters in smarts format. comparison of rdkit and indigo cheminformatics libraries. Mol. Inform., 2011, 30(10), 847-850.
[http://dx.doi.org/10.1002/minf.201100076] [PMID: 27468104]
[63]
Erl Wood Cheminformatics nodes for KNIME. 2018. https://www.knime.com/commu-nity/erlwood (Accessed Date: April 23, 2018.).
[64]
GGA Software Services LLC. Nodes for KNIME., http://lifescience.opensource.epam.com/indigo/knime. html (Accessed Date: April 23, 2018).
[65]
RDKit. Open-Source Cheminformatics and Machine Learning., http://www.rdkit.org/ (Accessed Date: April 23, 2018).
[66]
Lhasa nodes for KNIME. 2018. https://www.knime.com/lhasa-nodes-for-knime (Accessed Date: April 23, 2018).
[67]
OCHEM Nodes. 2018.https://www.knime.com/book/ochem-nodes (Accessed Date: April 23, 2018).
[68]
Chemical identifier resolver for KNIME. 2018. https://www.knime.com/book/chemical-identifier-resolver-for-knime-trusted-extension (Accessed Date: April 23, 2018).
[69]
Gütlein, M.; Karwath, A.; Kramer, S. CheS-Mapper 2.0 for Visual Validation of (Q)SAR Models. J. Cheminform., 2014, 6, 41.
[http://dx.doi.org/10.1186/s13321-014-0041-7]
[70]
Chemical Computing Group Inc. 2018. Available at: https://www.chemcomp.com (Accessed Date: April 23, 2018).
[71]
Cresset Group. 2018. Available at: https://www.cresset-group.com (Accessed Date: April 23, 2018).
[72]
Novamechanics. 2018. Available at: http://enalosplus.nova-mechanics.com/ (Accessed Date: April 23, 2018).
[73]
Inte:Ligand. 2018. Available at: http://www.inteligand.com (Accessed Date: April 23, 2018).
[74]
Kode Chemoinformtics. 2018. Available at: https://chm.kode-solutions.net/ (Accessed Date: April 23, 2018).
[75]
Schrödinger. 2018. Available at: http://www.schrodinger.com (Accessed Date: April 23, 2018).
[76]
Treweren Consultants Ltd. 2018. Available at: http://www.treweren.com (Accessed Date: April 23, 2018).
[77]
Mannhold, R.; Kubinyi, H.; Folkers, G. Virtual Screening: Principles, Challenges, and Practical Guidelines; Sotriffer, C; Wiley, V.C.H., Ed.; Weinheim, 2011, p. 48.
[78]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[79]
The Protein Data Bank. 2018.http://www.pdbj.org (Accessed Date: April 23, 2018).
[80]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma., 2016, 54, 5.6.1-5.6.37.,
[http://dx.doi.org/10.1002/cpbi.3] [PMID: 27322406]
[81]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[82]
Schmidtke, P.; Bidon-Chanal, A.; Luque, F.J.; Barril, X. MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics, 2011, 27(23), 3276-3285.
[http://dx.doi.org/10.1093/bioinformatics/btr550] [PMID: 21967761]
[83]
Pencheva, T.; Lagorce, D.; Pajeva, I.; Villoutreix, B.O.; Miteva, M.A. AMMOS: automated molecular mechanics optimization tool for in silico screening. BMC Bioinformatics, 2008, 9, 438.
[http://dx.doi.org/10.1186/1471-2105-9-438] [PMID: 18925937]
[84]
Kruggel, S.; Lemcke, T. Generation and evaluation of a homology model of PfGSK-3. Arch. Pharm. (Weinheim), 2009, 342(6), 327-332.
[http://dx.doi.org/10.1002/ardp.200800158] [PMID: 19475596]
[85]
Varnek, A., Ed.; Tutorials in Chemoinformatics; Har/Psc edition; Wiley-Blackwell, 2017.
[http://dx.doi.org/10.1002/9781119161110]
[86]
Webb, S.J.; Hanser, T.; Howlin, B.; Krause, P.; Vessey, J.D. Feature combination networks for the interpretation of statistical machine learning models: application to Ames mutagenicity. J. Cheminform., 2014, 6(1), 8.
[http://dx.doi.org/10.1186/1758-2946-6-8] [PMID: 24661325]
[87]
Geldenhuys, W.J.; Darvesh, A.S.; Funk, M.O.; Van der Schyf, C.J.; Carroll, R.T. Identification of novel monoamine oxidase B inhibitors by structure-based virtual screening. Bioorg. Med. Chem. Lett., 2010, 20(17), 5295-5298.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.128] [PMID: 20650633]
[88]
Gally, J-M.; Bourg, S.; Do, Q-T.; Aci-Sèche, S.; Bonnet, P. VSPrep: A general KNIME workflow for the preparation of molecules for virtual screening. Mol. Inform., 2017, 36(10), 36.
[http://dx.doi.org/10.1002/minf.201700023] [PMID: 28586180]
[89]
Tiwari, A.; Sekhar, A.K.T. Workflow based framework for life science informatics. Comput. Biol. Chem., 2007, 31(5-6), 305-319.
[http://dx.doi.org/10.1016/j.compbiolchem.2007.08.009] [PMID: 17931570]
[90]
Morao, I.; Mazanetz, M.P. ChemAxon toolkits: invisible contribution but visible suc-cess; ChemAxon User Group Meeting: Budapest, 2014.
[91]
Parel, S.P. Farewell, pipelinepilot migrating the exquiron cheminfor-matics platform to knime and the chemaxon technology, che-maxon user group meeting, budapest, 2014.
[92]
Ray, P.C.; Kiczun, M.; Huggett, M.; Lim, A.; Prati, F.; Gilbert, I.H.; Wyatt, P.G. Fragment library design, synthesis and expansion: nurturing a synthesis and training platform. Drug Discov. Today, 2017, 22(1), 43-56.
[http://dx.doi.org/10.1016/j.drudis.2016.10.005] [PMID: 27793744]
[93]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Combining molecular scaffolds from FDA approved drugs: Application to drug discovery. J. Med. Chem., 2017, 60(5), 1638-1647.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01367] [PMID: 27935308]
[94]
Craven, P.; Aimon, A.; Dow, M.; Fleury-Bregeot, N.; Guilleux, R.; Morgentin, R.; Roche, D.; Kalliokoski, T.; Foster, R.; Marsden, S.P.; Nelson, A. Design, synthesis and decoration of molecular scaffolds for exploitation in the production of alkaloid-like libraries. Bioorg. Med. Chem., 2015, 23(11), 2629-2635.
[http://dx.doi.org/10.1016/j.bmc.2014.12.048] [PMID: 25600406]
[95]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[96]
Schiedel, M.; Herp, D.; Hammelmann, S.; Swyter, S.; Lehotzky, A.; Robaa, D.; Oláh, J.; Ovádi, J.; Sippl, W.; Jung, M. Chemically induced degradation of sirtuin 2 (sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (sirreals). J. Med. Chem., 2018, 61(2), 482-491.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01872] [PMID: 28379698]
[97]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[98]
Krejsa, C.M.; Horvath, D.; Rogalski, S.L.; Penzotti, J.E.; Mao, B.; Barbosa, F.; Migeon, J.C. Predicting ADME properties and side effects: the BioPrint approach. Curr. Opin. Drug Discov. Devel., 2003, 6(4), 470-480.
[PMID: 12951810]
[99]
Olah, M.; Mracec, M.; Ostopovici, L.; Rad, R.; Bora, A.; Hadaruga, N.; Olah, I.; Banda, M.; Simon, Z.; Mracec, M.; Oprea, T.I. WOMBAT: World of molecular bioactivity in: Chemoinformatics n Drug Discovery; Wiley-Blackwell, 2005, pp. 221-239.
[100]
Okuno, Y.; Tamon, A.; Yabuuchi, H.; Niijima, S.; Minowa, Y.; Tonomura, K.; Kunimoto, R.; Feng, C. GLIDA: GPCR--ligand database for chemical genomics drug discovery--database and tools update. Nucleic Acids Res., 2008, 36(Database issue), D907-D912.
[http://dx.doi.org/10.1093/nar/gkm948] [PMID: 17986454]
[101]
Jensen, N.H.; Roth, B.L. Massively parallel screening of the receptorome. Comb. Chem. High Throughput Screen., 2008, 11(6), 420-426.
[http://dx.doi.org/10.2174/138620708784911483] [PMID: 18673270]
[102]
Harding, S.D.; Sharman, J.L.; Faccenda, E.; Southan, C.; Pawson, A.J.; Ireland, S.; Gray, A.J.G.; Bruce, L.; Alexander, S.P.H.; Anderton, S.; Bryant, C.; Davenport, A.P.; Doerig, C.; Fabbro, D.; Levi-Schaffer, F.; Spedding, M.; Davies, J.A. NC-IUPHAR. The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res., 2018, 46(D1), D1091-D1106.
[http://dx.doi.org/10.1093/nar/gkx1121] [PMID: 29149325]
[103]
Steri, R.; Achenbach, J.; Steinhilber, D.; Schubert-Zsilavecz, M.; Proschak, E. Investigation of imatinib and other approved drugs as starting points for antidiabetic drug discovery with FXR modulating activity. Biochem. Pharmacol., 2012, 83(12), 1674-1681.
[http://dx.doi.org/10.1016/j.bcp.2012.02.027] [PMID: 22414727]
[104]
Hutt, O.E.; Saubern, S.; Winkler, D.A. Modeling the molecular basis for α4β1 integrin antagonism. Bioorg. Med. Chem., 2011, 19(19), 5903-5911.
[http://dx.doi.org/10.1016/j.bmc.2011.08.011] [PMID: 21889349]
[105]
Guha, R. Flexible Web service infrastructure for the development and deployment of predictive models. J. Chem. Inf. Model., 2008, 48(2), 456-464.
[http://dx.doi.org/10.1021/ci700188u] [PMID: 18217738]
[106]
Dong, X.; Gilbert, K.E.; Guha, R.; Heiland, R.; Kim, J.; Pierce, M.E.; Fox, G.C.; Wild, D.J. Web service infrastructure for chemoinformatics. J. Chem. Inf. Model., 2007, 47(4), 1303-1307.
[http://dx.doi.org/10.1021/ci6004349] [PMID: 17602467]
[107]
Takada, N.; Ohmori, N.; Okada, T. Mining basic active structures from a large-scale database. J. Cheminform., 2013, 5(1), 15.
[http://dx.doi.org/10.1186/1758-2946-5-15] [PMID: 23497729]
[108]
Hahsler, M.; Buchta, C.; Gruen, B.; Hornik, K.; Johnson, I.; Borgelt, C. Arules: mining association rules and frequent itemsets., 2018. Available at:.https://cran.r-project.org/web/packages/arules/index.html (Acessed date: 23 April 2018).
[109]
Hornik, K.; Grün, B.; Hahsler, M. Arules - a computational environment for mining association rules and frequent item sets. J. Stat. Softw., 2005, 14(15)
[http://dx.doi.org/10.18637/jss.v014.i15]
[110]
Hahsler, M.; Chelluboina, S.; Hornik, K.; Buchta, C. The arules r-package ecosystem: analyzing interesting patterns from large transaction data Sets. J. Mach. Learn. Res., 2011, 12, 2021-2025.
[111]
Subramaniam, S.; Mehrotra, M.; Gupta, D. Virtual high throughput screening (vHTS)--a perspective. Bioinformation, 2008, 3(1), 14-17.
[http://dx.doi.org/10.6026/97320630003014] [PMID: 19052660]
[112]
Corso, G.; Alisi, M.A.; Cazzolla, N.; Coletta, I.; Furlotti, G.; Garofalo, B.; Mangano, G.; Mancini, F.; Vitiello, M.; Ombrato, R. A Novel multi-step virtual screening for the identification of human and mouse MPGES-1 inhibitors. Mol. Inform., 2016, 35(8-9), 358-368.
[http://dx.doi.org/10.1002/minf.201600024] [PMID: 27546040]
[113]
Sala, E.; Guasch, L.; Iwaszkiewicz, J.; Mulero, M.; Salvadó, M-J.; Pinent, M.; Zoete, V.; Grosdidier, A.; Garcia-Vallvé, S.; Michielin, O.; Pujadas, G. Identification of human IKK-2 inhibitors of natural origin (part I): modeling of the IKK-2 kinase domain, virtual screening and activity assays. PLoS One, 2011, 6(2)e16903
[http://dx.doi.org/10.1371/journal.pone.0016903] [PMID: 21390216]
[114]
Motto, I.; Bordogna, A.; Soshilov, A.A.; Denison, M.S.; Bonati, L. New aryl hydrocarbon receptor homology model targeted to improve docking reliability. J. Chem. Inf. Model., 2011, 51(11), 2868-2881.
[http://dx.doi.org/10.1021/ci2001617] [PMID: 21981577]
[115]
Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of automatic three-dimensional model builders using 639 X-ray structures. J. Chem. Inf. Comput. Sci., 1994, 34, 1000-1008.
[http://dx.doi.org/10.1021/ci00020a039]
[116]
Bertini, S.; Asso, V.; Ghilardi, E.; Granchi, C.; Manera, C.; Minutolo, F.; Saccomanni, G.; Bortolato, A.; Mason, J.; Moro, S.; Macchia, M. Carbazole-containing arylcarboxamides as BACE1 inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(22), 6657-6661.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.064] [PMID: 21986588]
[117]
www.python.org2018. (Accessed date: 1st December, 2019).
[118]
Tzanetou, E.; Liekens, S.; Kasiotis, K.M.; Melagraki, G.; Afantitis, A.; Fokialakis, N.; Haroutounian, S.A. Antiproliferative novel isoxazoles: modeling, virtual screening, synthesis, and bioactivity evaluation. Eur. J. Med. Chem., 2014, 81, 139-149.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.011] [PMID: 24836066]
[119]
Screen Suite. https://chemaxon.com/products/screen-suite (Accessed date: 1st December, 2019).
[120]
Gabrielsen, M.; Kurczab, R.; Siwek, A.; Wolak, M.; Ravna, A.W.; Kristiansen, K.; Kufareva, I.; Abagyan, R.; Nowak, G.; Chilmonczyk, Z.; Sylte, I.; Bojarski, A.J. Identification of novel serotonin transporter compounds by virtual screening. J. Chem. Inf. Model., 2014, 54(3), 933-943.
[http://dx.doi.org/10.1021/ci400742s] [PMID: 24521202]
[121]
Ijjaali, I.; Barrere, C.; Nargeot, J.; Petitet, F.; Bourinet, E. Ligand-based virtual screening to identify new T-type calcium channel blockers. Channels (Austin), 2007, 1(4), 300-304.
[http://dx.doi.org/10.4161/chan.4999] [PMID: 18708747]
[122]
Ruddigkeit, L.; Awale, M.; Reymond, J-L. Expanding the fragrance chemical space for virtual screening. J. Cheminform., 2014, 6, 27.
[http://dx.doi.org/10.1186/1758-2946-6-27] [PMID: 24876890]
[123]
Chiriano, G.; Sartini, A.; Mancini, F.; Andrisano, V.; Bolognesi, M.L.; Roberti, M.; Recanatini, M.; Carloni, P.; Cavalli, A. Sequential virtual screening approach to the identification of small organic molecules as potential BACE-1 inhibitors. Chem. Biol. Drug Des., 2011, 77(4), 268-271.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01087.x] [PMID: 21244641]
[124]
ChemAxon: madfast similarity search. 2018. Available at: https://chemaxon.com/products/madfast (Accessed date: April 23, 2018).,
[125]
Korb, O.; Ten Brink, T.; Victor Paul Raj, F.R.D.; Keil, M.; Exner, T.E. Are predefined decoy sets of ligand poses able to quantify scoring function accuracy? J. Comput. Aided Mol. Des., 2012, 26(2), 185-197.
[http://dx.doi.org/10.1007/s10822-011-9539-5] [PMID: 22231069]
[126]
Moser, D.; Wisniewska, J.M.; Hahn, S.; Achenbach, J.; Buscató, El.; Klingler, F-M.; Hofmann, B.; Steinhilber, D.; Proschak, E. Dual-target virtual screening by pharmacophore elucidation and molecular shape filtering. ACS Med. Chem. Lett., 2012, 3(2), 155-158.
[http://dx.doi.org/10.1021/ml200286e] [PMID: 24900445]
[127]
Vainio, M.J.; Puranen, J.S.; Johnson, M.S.; Sha, E.P. ShaEP: molecular overlay based on shape and electrostatic potential. J. Chem. Inf. Model., 2009, 49(2), 492-502.
[http://dx.doi.org/10.1021/ci800315d] [PMID: 19434847]
[128]
Meinl, T.; Ostermann, C.; Berthold, M.R. Maximum-score diversity selection for early drug discovery. J. Chem. Inf. Model., 2011, 51(2), 237-247.
[http://dx.doi.org/10.1021/ci100426r] [PMID: 21309543]
[129]
Molecular fragment mining for drug discovery in: Symbolic and quantitative approaches to reasoning with uncertainty; Borgelt, C.; Berthold, M.R.; Patterson, D.E. Lecture Notes in Computer ScienceSpringer: Berlin, Heidelberg, 2005, 1002-1013.
[http://dx.doi.org/10.1007/11518655_84]
[130]
Borgelt, C. Canonical forms for frequent graph mining in: Advances in data analysis; studies in classification, data analysis, and knowledge organization; Springer: Berlin, Heidelberg, 2007, pp. 337-349.
[http://dx.doi.org/10.1007/978-3-540-70981-7_38]
[131]
Borgelt, C.; Berthold, M.R. Mining molecular fragments: Finding relevant substructures of molecules 2002 IEEE International Conference on Data Mining, 2002, pp. 51-58.
[http://dx.doi.org/10.1109/ICDM.2002.1183885]
[132]
Strobelt, H.; Bertini, E.; Braun, J.; Deussen, O.; Groth, U.; Mayer, T.U.; Merhof, D. HiTSEE KNIME: a visualization tool for hit selection and analysis in high-throughput screening experiments for the KNIME platform. BMC Bioinformatics, 2012, 13(Suppl. 8), S4.
[http://dx.doi.org/10.1186/1471-2105-13-S8-S4] [PMID: 22607449]
[133]
StarDrop. A product by Optibrium. Customisation and Integration.. 2018. Available at:.https://www.optibrium.com/stardrop/stardrop-customisation.php (Accessed date: 23 April, 2018).
[134]
Segall, M.; Champness, E.; Leeding, C.; Chisholm, J.; Hunt, P.; Elliott, A.; Garcia-Martinez, H.; Foster, N.; Dowling, S. Breaking free from chemical spreadsheets. Drug Discov. Today, 2015, 20(9), 1093-1103.
[http://dx.doi.org/10.1016/j.drudis.2015.03.008] [PMID: 26050579]
[135]
Yusof, I.; Shah, F.; Hashimoto, T.; Segall, M.D.; Greene, N. Finding the rules for successful drug optimisation. Drug Discov. Today, 2014, 19(5), 680-687.
[http://dx.doi.org/10.1016/j.drudis.2014.01.005] [PMID: 24451293]
[136]
Segall, M.D. Multi-parameter optimization: identifying high quality compounds with a balance of properties. Curr. Pharm. Des., 2012, 18(9), 1292-1310.
[http://dx.doi.org/10.2174/138161212799436430] [PMID: 22316157]
[137]
ChemAxon. Plexus suite. 2018. https://chemaxon.com/products/plexus-suite (Accessed date: 23 April, 2018).
[138]
Tarcsay, A. (ChemAxon): cheminformatics solutions portfolio. 2018 . https://chemaxon.com/presentation/akos-tarcsay-chemaxon-cheminformatics-solutions-portfolio (Accessed date: 23 April, 2018).
[139]
Ochoa, R.; Davies, M.; Papadatos, G.; Atkinson, F.; Overington, J.P. myChEMBL: a virtual machine implementation of open data and cheminformatics tools. Bioinformatics, 2014, 30(2), 298-300.
[http://dx.doi.org/10.1093/bioinformatics/btt666] [PMID: 24262214]
[140]
Vass, M.; Kooistra, A.J.; Ritschel, T.; Leurs, R.; de Esch, I.J.; de Graaf, C. Molecular interaction fingerprint approaches for GPCR drug discovery. Curr. Opin. Pharmacol., 2016, 30, 59-68.
[http://dx.doi.org/10.1016/j.coph.2016.07.007] [PMID: 27479316]
[141]
Marcou, G.; Rognan, D. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J. Chem. Inf. Model., 2007, 47(1), 195-207.
[http://dx.doi.org/10.1021/ci600342e] [PMID: 17238265]
[142]
van Linden, O.P.J.; Kooistra, A.J.; Leurs, R.; de Esch, I.J.P.; de Graaf, C. KLIFS: a knowledge-based structural database to navigate kinase-ligand interaction space. J. Med. Chem., 2014, 57(2), 249-277.
[http://dx.doi.org/10.1021/jm400378w] [PMID: 23941661]
[143]
Kooistra, A.J.; Kanev, G.K.; van Linden, O.P.J.; Leurs, R.; de Esch, I.J.P.; de Graaf, C. KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Res., 2016, 44(D1), D365-D371.
[http://dx.doi.org/10.1093/nar/gkv1082] [PMID: 26496949]
[144]
Korb, O.; Stützle, T.; Exner, T.E. Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 2009, 49(1), 84-96.
[http://dx.doi.org/10.1021/ci800298z] [PMID: 19125657]
[145]
Korb, O.; Stützle, T.; Exner, T.E. An ant colony optimization approach to flexible protein-ligand docking. Swarm Intell., 2007, 1, 115-134.
[http://dx.doi.org/10.1007/s11721-007-0006-9]
[146]
Pierce, A.C.; Rao, G.; Bemis, G.W. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease. J. Med. Chem., 2004, 47(11), 2768-2775.
[http://dx.doi.org/10.1021/jm030543u] [PMID: 15139755]
[147]
Wood, D.J.; de Vlieg, J.; Wagener, M.; Ritschel, T. Pharmacophore fingerprint-based approach to binding site subpocket similarity and its application to bioisostere replacement. J. Chem. Inf. Model., 2012, 52(8), 2031-2043.
[http://dx.doi.org/10.1021/ci3000776] [PMID: 22830492]
[148]
Schultes, S.; Kooistra, A.J.; Vischer, H.F.; Nijmeijer, S.; Haaksma, E.E.J.; Leurs, R.; de Esch, I.J.P.; de Graaf, C. Combinatorial consensus scoring for ligand-based virtual fragment screening: A comparative case study for serotonin 5-HT(3)A, histamine H(1), and histamine H(4) receptors. J. Chem. Inf. Model., 2015, 55(5), 1030-1044.
[http://dx.doi.org/10.1021/ci500694c] [PMID: 25815783]
[149]
Patel, H.; Bodkin, M.J.; Chen, B.; Gillet, V.J. Knowledge-based approach to de novo design using reaction vectors. J. Chem. Inf. Model., 2009, 49(5), 1163-1184.
[http://dx.doi.org/10.1021/ci800413m] [PMID: 19382767]
[150]
Taylor, K.T. The status of electronic laboratory notebooks for chemistry and biology. Curr. Opin. Drug Discov. Devel., 2006, 9(3), 348-353.
[PMID: 16729731]
[151]
Roughley, S.D.; Jordan, A.M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem., 2011, 54(10), 3451-3479.
[http://dx.doi.org/10.1021/jm200187y] [PMID: 21504168]
[152]
Zakharov, A.V.; Peach, M.L.; Sitzmann, M.; Filippov, I.V.; McCartney, H.J.; Smith, L.H.; Pugliese, A.; Nicklaus, M.C. Computational tools and resources for metabolism-related property predictions. 2. Application to prediction of half-life time in human liver microsomes. Future Med. Chem., 2012, 4(15), 1933-1944.
[http://dx.doi.org/10.4155/fmc.12.152] [PMID: 23088274]
[153]
Ranninger, C.; Rurik, M.; Limonciel, A.; Ruzek, S.; Reischl, R.; Wilmes, A.; Jennings, P.; Hewitt, P.; Dekant, W.; Kohlbacher, O.; Huber, C.G. Nephron toxicity profiling via untargeted metabolome analysis employing a high performance liquid chromatography-mass spectrometry-based experimental and computational pipeline. J. Biol. Chem., 2015, 290(31), 19121-19132.
[http://dx.doi.org/10.1074/jbc.M115.644146] [PMID: 26055719]
[154]
Maunz, A.; Helma, C. Prediction of toxic effects of pharmaceutical agents in: Pharmaceutical Data Mining; Ekins, S., Ed.; Wiley-Blackwell, 2009, pp. 145-173.
[http://dx.doi.org/10.1002/9780470567623.ch5]
[155]
Enoch, S.J.; Cronin, M.T.D. Development of new structural alerts suitable for chemical category formation for assigning covalent and non-covalent mechanisms relevant to DNA binding. Mutat. Res., 2012, 743(1-2), 10-19.
[http://dx.doi.org/10.1016/j.mrgentox.2011.12.029] [PMID: 22260876]
[156]
Enoch, S.J.; Cronin, M.T.D. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit. Rev. Toxicol., 2010, 40(8), 728-748.
[http://dx.doi.org/10.3109/10408444.2010.494175] [PMID: 20722585]
[157]
Toolbox, Q.S.A.R. https://www.qsartool-box.org (Access date: December 2019).
[158]
Guha, R.; Van Drie, J.H. Structure--activity landscape index: identifying and quantifying activity cliffs. J. Chem. Inf. Model., 2008, 48(3), 646-658.
[http://dx.doi.org/10.1021/ci7004093] [PMID: 18303878]
[159]
Bajorath, J.; Peltason, L.; Wawer, M.; Guha, R.; Lajiness, M.S.; Van Drie, J.H. Navigating structure-activity landscapes. Drug Discov. Today, 2009, 14(13-14), 698-705.
[http://dx.doi.org/10.1016/j.drudis.2009.04.003] [PMID: 19410012]
[160]
Parthasarathi, R.; Dhawan, A. In silico approaches for predictive toxicology. In Vitro Toxicology; Academic Press, 2018, pp. 91-109.
[161]
European Chemicals Agency (ECHA). Read-across assessment framework (RAAF). Available at: https://echa.europa.eu/documents/10162/13628/raaf_en.pdf (Accessed date: 1st December, 2019).
[162]
Mellor, C.L.; Steinmetz, F.P.; Cronin, M.T.D. Using molecular initiating events to develop a structural alert based screening workflow for nuclear receptor ligands associated with hepatic steatosis. Chem. Res. Toxicol., 2016, 29(2), 203-212.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00480] [PMID: 26787004]
[163]
Steinmetz, F.P.; Mellor, C.L.; Meinl, T.; Cronin, M.T.D. Screening chemicals for receptor-mediated toxicological and pharmacological endpoints: using public data to build screening tools within a KNIME workflow. Mol. Inform., 2015, 34(2-3), 171-178.
[http://dx.doi.org/10.1002/minf.201400188] [PMID: 27490039]
[164]
Legehar, A.; Xhaard, H.; Ghemtio, L. IDAAPM: integrated database of ADMET and adverse effects of predictive modeling based on FDA approved drug data. J. Cheminform., 2016, 8, 33.
[http://dx.doi.org/10.1186/s13321-016-0141-7] [PMID: 27303447]
[165]
Drakakis, G.; Koutsoukas, A.; Brewerton, S.C.; Bodkin, M.J.; Evans, D.A.; Bender, A. Comparing global and local likelihood score thresholds in multiclass laplacian-modified Naive Bayes protein target prediction. Comb. Chem. High Throughput Screen., 2015, 18(3), 323-330.
[http://dx.doi.org/10.2174/1386207318666150305145012] [PMID: 25747441]
[166]
Montanari, F.; Zdrazil, B.; Digles, D.; Ecker, G.F. Selectivity profiling of BCRP versus P-gp inhibition: from automated collection of polypharmacology data to multi-label learning. J. Cheminform., 2016, 8, 7.
[http://dx.doi.org/10.1186/s13321-016-0121-y] [PMID: 26855674]
[167]
Goldmann, D.; Zdrazil, B.; Digles, D.; Ecker, G.F. Empowering pharmacoinformatics by linked life science data. J. Comput. Aided Mol. Des., 2017, 31(3), 319-328.
[http://dx.doi.org/10.1007/s10822-016-9990-4] [PMID: 27830428]
[168]
Nowotka, M.M.; Gaulton, A.; Mendez, D.; Bento, A.P.; Hersey, A.; Leach, A. Using ChEMBL web services for building applications and data processing workflows relevant to drug discovery. Expert Opin. Drug Discov., 2017, 12(8), 757-767.
[PMID: 28602100]
[169]
Montes, R.C.; Perez, A.L.; Medeiros, C.I.; Araújo, M.O.; Lima, E.O.; Scotti, M.T.; Sousa, D.P. Synthesis, antifungal evaluation and in silico study of n-(4-halobenzyl)amides. Molecules, 2016, 21(12)E1716
[http://dx.doi.org/10.3390/molecules21121716] [PMID: 27983602]
[170]
Witten, I.; Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P. The WEKA data mining software: an update. SIGKDD Explor., 2009, 11, 10-18.
[http://dx.doi.org/10.1145/1656274.1656278]
[171]
Yap, C.W. PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[172]
Yin, Y.; Xu, C.; Gu, S.; Li, W.; Liu, G.; Tang, Y. Quantitative regression models for the prediction of chemical properties by an efficient workflow. Mol. Inform., 2015, 34(10), 679-688.
[http://dx.doi.org/10.1002/minf.201400119] [PMID: 27490968]
[173]
Moorthy, N.S.H.N.; Poongavanam, V. The KNIME based classification models for yellow fever virus inhibition. RSC Advances, 2015, 5, 14663-14669.
[http://dx.doi.org/10.1039/C4RA15317K]
[174]
Wijnegem. Silicos-it. Open source tools: Align-it, Filter-it, Shape-it, Strip-it, Qed, Silicos-it. 2018. Available at: http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/index.html (Accessed date: 23 April, 2018).
[175]
Bemis, G.W.; Murcko, M.A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem., 1996, 39(15), 2887-2893.
[http://dx.doi.org/10.1021/jm9602928] [PMID: 8709122]
[176]
Pollock, S.N.; Coutsias, E.A.; Wester, M.J.; Oprea, T.I. Scaffold topologies. 1. Exhaustive enumeration up to eight rings. J. Chem. Inf. Model., 2008, 48(7), 1304-1310.
[http://dx.doi.org/10.1021/ci7003412] [PMID: 18605680]
[177]
Schuffenhauer, A.; Ertl, P.; Roggo, S.; Wetzel, S.; Koch, M.A.; Waldmann, H. The scaffold tree--visualization of the scaffold universe by hierarchical scaffold classification. J. Chem. Inf. Model., 2007, 47(1), 47-58.
[http://dx.doi.org/10.1021/ci600338x] [PMID: 17238248]
[178]
Fuller, J. Predicting cancer type with KNIME deep learning and keras - DZone AI. 2018. Available at: https://dzone.com/articles/predicting-cancer-type-with-knime-deep-learning-an (Accessed date: 23 April, 2018).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy