Generic placeholder image

Current Drug Metabolism


ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Decreased Disposition of Anticancer Drugs Predominantly Eliminated via the Liver in Patients with Renal Failure

Author(s): Ken-ichi Fujita *, Natsumi Matsumoto, Hiroo Ishida, Yutaro Kubota, Shinichi Iwai, Motoko Shibanuma and Yukio Kato

Volume 20 , Issue 5 , 2019

Page: [361 - 376] Pages: 16

DOI: 10.2174/1389200220666190402143125


Background: Evidence has revealed that renal impairment can affect the systemic exposure of drugs which are predominantly eliminated via the liver. The modulation of drug-metabolizing enzymes and transporters expressed in the liver and/or small intestine by diverse entities, including uremic toxins, in systemic circulation of patients with severe renal failure is considered as the cause of atypical pharmacokinetics, which sometimes induce undesirable adverse events that are especially critical for drugs with narrow therapeutic window such as anticancer drugs. A dosing strategy for anticancer drugs in these patients needs to be established.

Methods: The effects of renal impairment on the systemic exposure and safety of anticancer drugs were summarized. The proposed mechanisms for the alterations in the pharmacokinetics of these anticancer drugs were also discussed.

Results: Changes in pharmacokinetics and clinical response were reported in 9 out of 10 cytotoxic anticancer drugs investigated, although available information was limited and sometimes controversial. Systemic exposure of 3 out of 16 tyrosine kinase inhibitors was higher in patients with severe renal failure than that in patients with normal kidney function. An increase in systemic exposure of anticancer drugs in patients with renal impairment is likely to be observed for substrates of OATP1B1, despite the limited evidence.

Conclusion: The molecular basis for the effect of uremia on non-renal drug elimination still needed to be clarified with further studies to generate generalizable concepts, which may provide insights into establishing better clinical usage of anticancer drugs, i.e. identifying patients at risk and dose adjustment.

Keywords: Renal failure, cytotoxic anticancer drug, tyrosine kinase inhibitor, non-renal clearance, systemic exposure, drug-metabolizing enzyme, transporter, organic-anion transporting polypeptide 1B1.

Graphical Abstract
Miners, J.O.; Yang, X.; Knights, K.M.; Zhang, L. The role of the kidney in drug elimination: Transport, metabolism, and the impact of kidney disease on drug clearance. Clin. Pharmacol. Ther., 2017, 102(3), 436-449.
Nolin, T.D.; Naud, J.; Leblond, F.A.; Pichette, V. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin. Pharmacol. Ther., 2008, 83(6), 898-903.
Hall, B.E.; Willett, F.M.; Feichtmeir, T.V.; Reed, E.B.; Dowling, W.F. Current trends in cancer chemotherapy. Calif. Med., 1956, 84(1), 1-9.
Lyman, G.H. Impact of chemotherapy dose intensity on cancer patient outcomes. J. Natl. Compr. Canc. Netw., 2009, 7(1), 99-108.
Gilman, A. The initial clinical trial of nitrogen mustard. Am. J. Surg., 1963, 105, 574-578.
Fujita, K.I.; Ishida, H.; Kubota, Y.; Sasaki, Y. Toxicities of receptor tyrosine kinase inhibitors in cancer pharmacotherapy: Management with clinical pharmacology. Curr. Drug Metab., 2017, 18(3), 186-198.
Dienstmann, R.; Brana, I.; Rodon, J.; Tabernero, J. Toxicity as a biomarker of efficacy of molecular targeted therapies: Focus on EGFR and VEGF inhibiting anticancer drugs. Oncologist, 2011, 16(12), 1729-1740.
De Wit, D.; Guchelaar, H.J.; Den Hartigh, J.; Gelderblom, H.; Van Erp, N.P. Individualized dosing of tyrosine kinase inhibitors: Are we there yet? Drug Discov. Today, 2015, 20(1), 18-36.
Kim, I.W.; Yun, H.Y.; Choi, B.; Han, N.; Kim, M.G.; Park, S.; Oh, J.M. Population pharmacokinetics analysis of cyclophosphamide with genetic effects in patients undergoing hematopoietic stem cell transplantation. Eur. J. Clin. Pharmacol., 2013, 69(8), 1543-1551.
Chang, T.K.; Weber, G.F.; Crespi, C.L.; Waxman, D.J. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res., 1993, 53(23), 5629-5637.
Roy, P.; Yu, L.J.; Crespi, C.L.; Waxman, D.J. Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos., 1999, 27(6), 655-666.
Dimeloe, S.; Frick, C.; Fischer, M.; Gubser, P.M.; Razik, L.; Bantug, G.R.; Ravon, M.; Langenkamp, A.; Hess, C. Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis. Eur. J. Immunol., 2014, 44(12), 3614-3620.
Marre, F.; Sanderink, G.J.; De Sousa, G.; Gaillard, C.; Martinet, M.; Rahmani, R. Hepatic biotransformation of docetaxel (Taxotere) in vitro: Involvement of the CYP3A subfamily in humans. Cancer Res., 1996, 56(6), 1296-1302.
Baker, S.D.; Verweij, J.; Cusatis, G.A.; Van Schaik, R.H.; Marsh, S.; Orwick, S.J.; Franke, R.M.; Hu, S. Schuetz, E.G.; Lamba, V.; Messersmith, W.A.; Wolff, A.C.; Carducci, M.A.; Sparreboom, A. Pharmacogenetic pathway analysis of docetaxel elimination. Clin. Pharmacol. Ther., 2009, 85(2), 155-163.
De Graan, A.J.; Lancaster, C.S.; Obaidat, A.; Hagenbuch, B.; Elens, L.; Friberg, L.E.; De Bruijn, P.; Hu, S.; Gibson, A.A.; Bruun, G.H.; Corydon, T.J.; Mikkelsen, T.S.; Walker, A.L.; Du, G.; Loos, W.J.; van Schaik, R.H.; Baker, S.D.; Mathijssen, R.H.; Sparreboom, A. Influence of polymorphic OATP1B-type carriers on the disposition of docetaxel. Clin. Cancer Res., 2012, 18(16), 4433-4440.
Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.; Lee, E.J.; Chowbay, B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci., 2008, 99(4), 816-823.
Mross, K.; Maessen, P.; Van Der Vijgh, W.J.; Gall, H.; Boven, E.; Pinedo, H.M. Pharmacokinetics and metabolism of epidoxorubicin and doxorubicin in humans. J. Clin. Oncol., 1988, 6(3), 517-526.
Piska, K.; Koczurkiewicz, P.; Bucki, A.; Wojcik-Pszczola, K.; Kolaczkowski, M.; Pekala, E. Metabolic carbonyl reduction of anthracyclines - role in cardiotoxicity and cancer resistance. Reducing enzymes as putative targets for novel cardioprotective and chemosensitizing agents. Invest. New Drugs, 2017, 35(3), 375-385.
Salvatorelli, E.; Guarnieri, S.; Menna, P.; Liberi, G.; Calafiore, A.M.; Mariggio, M.A.; Mordente, A.; Gianni, L.; Minotti, G. Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. J. Biol. Chem., 2006, 281(16), 10990-11001.
Robey, R.W.; Honjo, Y.; Morisaki, K.; Nadjem, T.A.; Runge, S.; Risbood, M.; Poruchynsky, M.S.; Bates, S.E. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br. J. Cancer, 2003, 89(10), 1971-1978.
Swami, U.; Chaudhary, I.; Ghalib, M.H.; Goel, S. Eribulin - a review of preclinical and clinical studies. Crit. Rev. Oncol. Hematol., 2012, 81(2), 163-184.
Cui, Y.; Konig, J.; Buchholz, J.K.; Spring, H.; Leier, I.; Keppler, D. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol., 1999, 55(5), 929-937.
Kool, M.; Van Der Linden, M.; De Haas, M.; Scheffer, G.L.; De Vree, J.M.; Smith, A.J.; Jansen, G.; Peters, G.J.; Ponne, N.; Scheper, R.J.; Elferink, R.P.; Baas, F.; Borst, P. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc. Natl. Acad. Sci. USA, 1999, 96(12), 6914-6919.
Eddabra, L.; Wenner, T.; El Btaouri, H.; Baranek, T.; Madoulet, C.; Cornillet-Lefebvre, P.; Morjani, H. Arginine 482 to glycine mutation in ABCG2/BCRP increases etoposide transport and resistance to the drug in HEK-293 cells. Oncol. Rep., 2012, 27(1), 232-237.
Yang, Z.; Wu, D.; Bui, T.; Ho, R.J. A novel human multidrug resistance gene MDR1 variant G571A (G191R) modulates cancer drug resistance and efflux transport. J. Pharmacol. Exp. Ther., 2008, 327(2), 474-481.
Mathijssen, R.H.; Marsh, S.; Karlsson, M.O.; Xie, R.; Baker, S.D.; Verweij, J.; Sparreboom, A.; McLeod, H.L. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin. Cancer Res., 2003, 9(9), 3246-3253.
Mathijssen, R.H.; Van Alphen, R.J.; Verweij, J.; Loos, W.J.; Nooter, K.; Stoter, G.; Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res., 2001, 7(8), 2182-2194.
Fujita, K.; Sugiura, T.; Okumura, H.; Umeda, S.; Nakamichi, N.; Watanabe, Y.; Suzuki, H.; Sunakawa, Y.; Shimada, K.; Kawara, K.; Sasaki, Y.; Kato, Y. Direct inhibition and down-regulation by uremic plasma components of hepatic uptake transporter for SN-38, an active metabolite of irinotecan, in humans. Pharm. Res., 2014, 31(1), 204-215.
Cresteil, T.; Monsarrat, B.; Alvinerie, P.; Treluyer, J.M.; Vieira, I.; Wright, M. Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res., 1994, 54(2), 386-392.
Rahman, A.; Korzekwa, K.R.; Grogan, J.; Gonzalez, F.J.; Harris, J.W. Selective biotransformation of taxol to 6 alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res., 1994, 54(21), 5543-5546.
Smith, N.F.; Marsh, S.; Scott-Horton, T.J.; Hamada, A.; Mielke, S.; Mross, K.; Figg, W.D.; Verweij, J.; McLeod, H.L.; Sparreboom, A. Variants in the SLCO1B3 gene: Interethnic distribution and association with paclitaxel pharmacokinetics. Clin. Pharmacol. Ther., 2007, 81(1), 76-82.
Nieuweboer, A.J.; Hu, S.; Gui, C.; Hagenbuch, B.; Ghobadi Moghaddam-Helmantel, I.M.; Gibson, A.A.; De Bruijn, P.; Mathijssen, R.H.; Sparreboom, A. Influence of drug formulation on OATP1B-mediated transport of paclitaxel. Cancer Res., 2014, 74(11), 3137-3145.
Sparreboom, A.; Van Asperen, J.; Mayer, U.; Schinkel, A.H.; Smit, J.W.; Meijer, D.K.; Borst, P.; Nooijen, W.J.; Beijnen, J.H.; Van Tellingen, O. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc. Natl. Acad. Sci. USA, 1997, 94(5), 2031-2035.
Beulz-Riche, D.; Grude, P.; Puozzo, C.; Sautel, F.; Filaquier, C.; Riche, C.; Ratanasavanh, D. Characterization of human cytochrome P450 isoenzymes involved in the metabolism of vinorelbine. Fundam. Clin. Pharmacol., 2005, 19(5), 545-553.
Kajita, J.; Kuwabara, T.; Kobayashi, H.; Kobayashi, S. CYP3A4 is mainly responsibile for the metabolism of a new vinca alkaloid, vinorelbine, in human liver microsomes. Drug Metab. Dispos., 2000, 28(9), 1121-1127.
Lagas, J.S.; Damen, C.W.; Van Waterschoot, R.A.; Iusuf, D.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein, multidrug-resistance associated protein 2, Cyp3a, and carboxylesterase affect the oral availability and metabolism of vinorelbine. Mol. Pharmacol., 2012, 82(4), 636-644.
Wong, M.; Balleine, R.L.; Blair, E.Y.; McLachlan, A.J.; Ackland, S.P.; Garg, M.B.; Evans, S.; Farlow, D.; Collins, M.; Rivory, L.P.; Hoskins, J.M.; Mann, G.J.; Clarke, C.L.; Gurney, H. Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J. Clin. Oncol., 2006, 24(16), 2448-2455.
Van Hoppe, S.; Schinkel, A.H. What next? Preferably development of drugs that are no longer transported by the ABCB1 and ABCG2 efflux transporters. Pharmacol. Res., 2017, 123, 144.
Stopfer, P.; Marzin, K.; Narjes, H.; Gansser, D.; Shahidi, M.; Uttereuther-Fischer, M.; Ebner, T. Afatinib pharmacokinetics and metabolism after oral administration to healthy male volunteers. Cancer Chemother. Pharmacol., 2012, 69(4), 1051-1061.
Li, J.; Zhao, M.; He, P.; Hidalgo, M.; Baker, S.D. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin. Cancer Res., 2007, 13(12), 3731-3737.
Marchetti, S.; De Vries, N.A.; Buckle, T.; Bolijn, M.J.; Van Eijndhoven, M.A.; Beijnen, J.H.; Mazzanti, R.; Van Tellingen, O.; Schellens, J.H. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/1b-/- (triple-knockout) and wild-type mice. Mol. Cancer Ther., 2008, 7(8), 2280-2287.
Zimmerman, E.I.; Hu, S.; Roberts, J.L.; Gibson, A.A.; Orwick, S.J.; Li, L.; Sparreboom, A.; Baker, S.D. Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin. Cancer Res., 2013, 19(6), 1458-1466.
Castellino, S.; O’Mara, M.; Koch, K.; Borts, D.J.; Bowers, G.D.; MacLauchlin, C. Human metabolism of lapatinib, a dual kinase inhibitor: Implications for hepatotoxicity. Drug Metab. Dispos., 2012, 40(1), 139-150.
Polli, J.W.; Humphreys, J.E.; Harmon, K.A.; Castellino, S.; O’Mara, M.J.; Olson, K.L.; John-Williams, L.S.; Koch, K.M.; Serabjit-Singh, C.J. The role of efflux and uptake transporters in [N-3-chloro-4-[(3-fluorobenzyl)oxy]phenyl-6-[5-([2-(methylsulfonyl)ethyl]amino methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab. Dispos., 2008, 36(4), 695-701.
Dickinson, P.A.; Cantarini, M.V.; Collier, J.; Frewer, P.; Martin, S.; Pickup, K.; Ballard, P. Metabolic disposition of osimertinib in rats, dogs, and humans: Insights into a drug designed to bind covalently to a cysteine residue of epidermal growth factor receptor. Drug Metab. Dispos., 2016, 44(8), 1201-1212.
MacLeod, A.K. Lin; Huang, J.T.; McLaughlin, L.A.; Henderson, C.J.; Wolf, C.R. Identification of novel pathways of osimertinib disposition and potential implications for the outcome of lung cancer therapy. Clin. Cancer Res., 2018, 24(9), 2138-2147.
Zientek, M.A.; Goosen, T.C.; Tseng, E.; Lin, J.; Bauman, J.N.; Walker, G.S.; Kang, P.; Jiang, Y.; Freiwald, S.; Neul, D.; Smith, B.J. In vitro kinetic characterization of axitinib metabolism. Drug Metab. Dispos., 2016, 44(1), 102-114.
Chen, Y.; Tortorici, M.A.; Garrett, M.; Hee, B.; Klamerus, K.J.; Pithavala, Y.K. Clinical pharmacology of axitinib. Clin. Pharmacokinet., 2013, 52(9), 713-725.
Poller, B.; Iusuf, D.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Differential impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on axitinib brain accumulation and oral plasma pharmacokinetics. Drug Metab. Dispos., 2011, 39(5), 729-735.
Shumaker, R.C.; Aluri, J.; Fan, J.; Martinez, G.; Thompson, G.A.; Ren, M. Effect of rifampicin on the pharmacokinetics of lenvatinib in healthy adults. Clin. Drug Investig., 2014, 34(9), 651-659.
Verheijen, R.B.; Beijnen, J.H.; Schellens, J.H.M.; Huitema, A.D.R.; Steeghs, N. Clinical pharmacokinetics and pharmacodynamics of pazopanib: Towards optimized dosing. Clin. Pharmacokinet., 2017, 56(9), 987-997.
Nieto, M.; Borregaard, J.; Ersboll, J.; ten Bosch, G.J.; Van Zwieten-Boot, B.; Abadie, E.; Schellens, J.H.; Pignatti, F. The european medicines agency review of pazopanib for the treatment of advanced renal cell carcinoma: Summary of the scientific assessment of the Committee for Medicinal Products for Human Use. Clin. Cancer Res., 2011, 17(21), 6608-6614.
Ellawatty, W.E.A.; Masuo, Y.; Fujita, K.I.; Yamazaki, E.; Ishida, H.; Arakawa, H.; Nakamichi, N.; Abdelwahed, R.; Sasaki, Y.; Kato, Y. Organic cation transporter 1 is responsible for hepatocellular uptake of the tyrosine kinase inhibitor pazopanib. Drug Metab. Dispos., 2018, 46(1), 33-40.
Ohya, H.; Shibayama, Y.; Ogura, J.; Narumi, K.; Kobayashi, M.; Iseki, K. Regorafenib is transported by the organic anion transporter 1B1 and the multidrug resistance protein 2. Biol. Pharm. Bull., 2015, 38(4), 582-586.
Fujita, K.I.; Masuo, Y.; Yamazaki, E.; Shibutani, T.; Kubota, Y.; Nakamichi, N.; Sasaki, Y.; Kato, Y. Involvement of the transporters P-glycoprotein and breast cancer resistance protein in dermal distribution of the multikinase inhibitor regorafenib and its active metabolites. J. Pharm. Sci., 2017, 106(9), 2632-2641.
Lathia, C.; Lettieri, J.; Cihon, F.; Gallentine, M.; Radtke, M.; Sundaresan, P. Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother. Pharmacol., 2006, 57(5), 685-692.
Vasilyeva, A.; Durmus, S.; Li, L.; Wagenaar, E.; Hu, S.; Gibson, A.A.; Panetta, J.C.; Mani, S.; Sparreboom, A.; Baker, S.D.; Schinkel, A.H. Hepatocellular shuttling and recirculation of sorafenib-glucuronide is dependent on Abcc2, Abcc3, and Oatp1a/1b. Cancer Res., 2015, 75(13), 2729-2736.
Hu, S.; Chen, Z.; Franke, R.; Orwick, S.; Zhao, M.; Rudek, M.A.; Sparreboom, A.; Baker, S.D. Interaction of the multikinase inhibitors sorafenib and sunitinib with solute carriers and ATP-binding cassette transporters. Clin. Cancer Res., 2009, 15(19), 6062-6069.
Poller, B.; Wagenaar, E.; Tang, S.C.; Schinkel, A.H. Double-transduced MDCKII cells to study human P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) interplay in drug transport across the blood-brain barrier. Mol. Pharm., 2011, 8(2), 571-582.
Amaya, G.M.; Durandis, R.; Bourgeois, D.S.; Perkins, J.A.; Abouda, A.A.; Wines, K.J.; Mohamud, M.; Starks, S.A.; Daniels, R.N.; Jackson, K.D. Cytochromes P450 1A2 and 3A4 catalyze the metabolic activation of sunitinib. Chem. Res. Toxicol., 2018, 31(7), 570-584.
Thornton, K.; Kim, G.; Maher, V.E.; Chattopadhyay, S.; Tang, S.; Moon, Y.J.; Song, P.; Marathe, A.; Balakrishnan, S.; Zhu, H.; Garnett, C.; Liu, Q.; Booth, B.; Gehrke, B.; Dorsam, R.; Verbois, L.; Ghosh, D.; Wilson, W.; Duan, J.; Sarker, H.; Miksinski, S.P.; Skarupa, L.; Ibrahim, A.; Justice, R.; Murgo, A.; Pazdur, R. Vandetanib for the treatment of symptomatic or progressive medullary thyroid cancer in patients with unresectable locally advanced or metastatic disease: U.S. Food and Drug Administration drug approval summary. Clin. Cancer Res., 2012, 18(14), 3722-3730.
Khurana, V.; Minocha, M.; Pal, D.; Mitra, A.K. Role of OATP-1B1 and/or OATP-1B3 in hepatic disposition of tyrosine kinase inhibitors. Drug Metabol. Drug Interact., 2014, 29(3), 179-190.
Nakagawa, T.; Fowler, S.; Takanashi, K.; Youdim, K.; Yamauchi, T.; Kawashima, K.; Sato-Nakai, M.; Yu, L.; Ishigai, M. In vitro metabolism of alectinib, a novel potent ALK inhibitor, in human: Contribution of CYP3A enzymes. Xenobiotica, 2018, 48(6), 546-554.
Nix, N.M.; Brown, K.S. Ceritinib for ALK-rearrangement-positive non-small cell lung cancer. J. Adv. Pract. Oncol., 2015, 6(2), 156-160.
Kort, A.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Brain accumulation of the EML4-ALK inhibitor ceritinib is restricted by P-glycoprotein (P-GP/ABCB1) and breast cancer resistance protein (BCRP/ABCG2). Pharmacol. Res., 2015, 102, 200-207.
Fujiwara, Y.; Hamada, A.; Mizugaki, H.; Aikawa, H.; Hata, T.; Horinouchi, H.; Kanda, S.; Goto, Y.; Itahashi, K.; Nokihara, H.; Yamamoto, N.; Ohe, Y. Pharmacokinetic profiles of significant adverse events with crizotinib in Japanese patients with ABCB1 polymorphism. Cancer Sci., 2016, 107(8), 1117-1123.
Tang, S.C.; Nguyen, L.N.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int. J. Cancer, 2014, 134(6), 1484-1494.
Haubitz, M.; Bohnenstengel, F.; Brunkhorst, R.; Schwab, M.; Hofmann, U.; Busse, D. Cyclophosphamide pharmacokinetics and dose requirements in patients with renal insufficiency. Kidney Int., 2002, 61(4), 1495-1501.
US Food and Drug Administration. Drug Information: Cyclophosphamide.,012142s112lbl.pdf (Accessed November 30, 2018)
Yang, L.; Zhang, X.C.; Yu, S.F.; Zhu, H.Q.; Hu, A.P.; Chen, J.; Shen, P. Pharmacokinetics and safety of cyclophosphamide and docetaxel in a hemodialysis patient with early stage breast cancer: A case report. BMC Cancer, 2015, 15, 917.
Ekhart, C.; Kerst, J.M.; Rodenhuis, S.; Beijnen, J.H.; Huitema, A.D. Altered cyclophosphamide and thiotepa pharmacokinetics in a patient with moderate renal insufficiency. Cancer Chemother. Pharmacol., 2009, 63(2), 375-379.
Kaneda, H.; Okamoto, I.; Nakagawa, K. Pharmacokinetics of docetaxel in a patient with non-small cell lung cancer undergoing continuous ambulatory peritoneal dialysis. J. Thorac. Oncol., 2012, 7(3), 621-622.
Dimopoulos, M.A.; Deliveliotis, C.; Moulopoulos, L.A.; Papadimitriou, C.; Mitropoulos, D.; Anagnostopoulos, A.; Athanassiades, P.; Dimopoulos, C. Treatment of patients with metastatic urothelial carcinoma and impaired renal function with single-agent docetaxel. Urology, 1998, 52(1), 56-60.
Yoshida, H.; Goto, M.; Honda, A.; Nabeshima, T.; Kumazawa, T.; Inagaki, J.; Yamanaka, N.; Ota, K. Pharmacokinetics of doxorubicin and its active metabolite in patients with normal renal function and in patients on hemodialysis. Cancer Chemother. Pharmacol., 1994, 33(6), 450-454.
Li, Y.F.; Fu, S.; Hu, W.; Liu, J.H.; Finkel, K.W.; Gershenson, D.M.; Kavanagh, J.J. Systemic anticancer therapy in gynecological cancer patients with renal dysfunction. Int. J. Gynecol. Cancer, 2007, 17(4), 739-763.
Galsky, M.D.; Iasonos, A.; Mironov, S.; Scattergood, J.; Boyle, M.G.; Bajorin, D.F. Phase II trial of dose-dense doxorubicin plus gemcitabine followed by paclitaxel plus carboplatin in patients with advanced urothelial carcinoma and impaired renal function. Cancer, 2007, 109(3), 549-555.
Li, Y.; Finkel, K.W.; Hu, W.; Fu, S.; Liu, J.; Coleman, R.; Kavanagh, J.J. Pegylated liposomal doxorubicin treatment in recurrent gynecologic cancer patients with renal dysfunction. Gynecol. Oncol., 2007, 106(2), 375-380.
Gori, S.; Rulli, A.; Mosconi, A.M.; Sidoni, A.; Colozza, M.; Crino, L. Safety of epirubicin adjuvant chemotherapy in a breast cancer patient with chronic renal failure undergoing hemodialytic treatment. Tumori, 2006, 92(4), 364-365.
Tan, A.R.; Sarantopoulos, J.; Lee, L.; Reyderman, L.; He, Y.; Olivo, M.; Goel, S. Pharmacokinetics of eribulin mesylate in cancer patients with normal and impaired renal function. Cancer Chemother. Pharmacol., 2015, 76(5), 1051-1061.
US Food and Drug Administration. Drug Information: Eribulin. (Accessed November 30, 2018)
D’Incalci, M.; Rossi, C.; Zucchetti, M.; Urso, R.; Cavalli, F.; Mangioni, C.; Willems, Y.; Sessa, C. Pharmacokinetics of etoposide in patients with abnormal renal and hepatic function. Cancer Res., 1986, 46(5), 2566-2571.
US Food and Drug Administration. Drug Information: Etoposide. (Accessed November 30, 2018)
Takezawa, K.; Okamoto, I.; Fukuoka, M.; Nakagawa, K. Pharmacokinetic analysis of carboplatin and etoposide in a small cell lung cancer patient undergoing hemodialysis. J. Thorac. Oncol., 2008, 3(9), 1073-1075.
Suzuki, S.; Koide, M.; Sakamoto, S.; Matsuo, T. Pharmacokinetics of carboplatin and etoposide in a haemodialysis patient with Merkel-cell carcinoma. Nephrol. Dial. Transplant., 1997, 12(1), 137-140.
Watanabe, R.; Takiguchi, Y.; Moriya, T.; Oda, S.; Kurosu, K.; Tanabe, N.; Tatsumi, K.; Nagao, K.; Kuriyama, T. Feasibility of combination chemotherapy with cisplatin and etoposide for haemodialysis patients with lung cancer. Br. J. Cancer, 2003, 88(1), 25-30.
Inoue, A. Pharmacokinetic analysis of combination chemotherapy with carboplatin and etoposide in small-cell lung cancer patients undergoing hemodialysis. Ann. Oncol., 2004, 15(1), 51-54.
Yeung, C.K.; Shen, D.D.; Thummel, K.E.; Himmelfarb, J. Effects of chronic kidney disease and uremia on hepatic drug metabolism and transport. Kidney Int., 2014, 85(3), 522-528.
Fleming, G.F. Phase I and pharmacokinetic study of 24-hour infusion 5-fluorouracil and leucovorin in patients with organ dysfunction. Ann. Oncol., 2003, 14(7), 1142-1147.
Rengelshausen, J.; Hull, W.E.; Schwenger, V.; Göggelmann, C.; Walter-Sack, I.; Bommer, J. Pharmacokinetics of 5-fluorouracil and its catabolites determined by 19F nuclear magnetic resonance spectroscopy for a patient on chronic hemodialysis. Am. J. Kidney Dis., 2002, 39(2), e10.11-e10.17.
Gusella, M.; Rebeschini, M.; Cartei, G.; Ferrazzi, E.; Ferrari, M.; Padrini, R. Effect of hemodialysis on the metabolic clearance of 5-fluorouracil in a patient with end-stage renal failure. Ther. Drug Monit., 2005, 27(6), 816-818.
Fujita, K.; Sunakawa, Y.; Miwa, K.; Akiyama, Y.; Sugiyama, M.; Kawara, K.; Ishida, H.; Yamashita, K.; Mizuno, K.; Saji, S.; Ichikawa, W.; Yamamoto, W.; Nagashima, F.; Miya, T.; Narabayashi, M.; Ando, Y.; Hirose, T.; Sasaki, Y. Delayed elimination of SN-38 in cancer patients with severe renal failure. Drug Metab. Dispos., 2011, 39(2), 161-164.
Fujita, K.; Masuo, Y.; Okumura, H.; Watanabe, Y.; Suzuki, H.; Sunakawa, Y.; Shimada, K.; Kawara, K.; Akiyama, Y.; Kitamura, M.; Kunishima, M.; Sasaki, Y.; Kato, Y. Increased plasma concentrations of unbound SN-38, the active metabolite of irinotecan, in cancer patients with severe renal failure. Pharm. Res., 2016, 33(2), 269-282.
Kehrer, D.F.; Yamamoto, W.; Verweij, J.; de Jonge, M.J.; de Bruijn, P.; Sparreboom, A. Factors involved in prolongation of the terminal disposition phase of SN-38: Clinical and experimental studies. Clin. Cancer Res., 2000, 6(9), 3451-3458.
Czock, D.; Rasche, F.M.; Boesler, B.; Shipkova, M.; Keller, F. Irinotecan in cancer patients with end-stage renal failure. Ann. Pharmacother., 2009, 43(2), 363-369.
De Jong, F.A.; Van Der Bol, J.M.; Mathijssen, R.H.; Van Gelder, T.; Wiemer, E.A.; Sparreboom, A.; Verweij, J. Renal function as a predictor of irinotecan-induced neutropenia. Clin. Pharmacol. Ther., 2008, 84(2), 254-262.
Venook, A.P. A phase I and pharmacokinetic study of irinotecan in patients with hepatic or renal dysfunction or with prior pelvic radiation: CALGB 9863. Ann. Oncol., 2003, 14(12), 1783-1790.
Gelderblom, H.; Verweij, J.; Brouwer, E.; Pillay, M.; De Bruijn, P.; Nooter, K.; Stoter, G.; Sparreboom, A. Disposition of [G-(3)H]paclitaxel and cremophor EL in a patient with severely impaired renal function. Drug Metab. Dispos., 1999, 27(11), 1300-1305.
Heijns, J.B.; van der Burg, M.E.; van Gelder, T.; Fieren, M.W.; De Bruijn, P.; Van Der Gaast, A.; Loos, W.J. Continuous ambulatory peritoneal dialysis: pharmacokinetics and clinical outcome of paclitaxel and carboplatin treatment. Cancer Chemother. Pharmacol., 2008, 62(5), 841-847.
Kodama, J.; Sasaki, A.; Masahiro, S.; Seki, N.; Kusumoto, T.; Nakamura, K.; Hongo, A.; Hiramatsu, Y. Pharmacokinetics of combination chemotherapy with paclitaxel and carboplatin in a patient with advanced epithelial ovarian cancer undergoing hemodialysis. Oncol. Lett., 2010, 1(3), 511-513.
Baur, M.; Fazeny-Doerner, B.; Olsen, S.J.; Dittrich, C. High dose single-agent paclitaxel in a hemodialysis patient with advanced ovarian cancer: A case report with pharmacokinetic analysis and review of the literature. Int. J. Gynecol. Cancer, 2008, 18(3), 564-570.
Watanabe, M.; Aoki, Y.; Tomita, M.; Sato, T.; Takaki, Y.; Kato, N.; Kikuchi, M.; Kase, H.; Tanaka, K. Paclitaxel and carboplatin combination chemotherapy in a hemodialysis patient with advanced ovarian cancer. Gynecol. Oncol., 2002, 84(2), 335-338.
Kawate, S.; Takeyoshi, I.; Morishita, Y. Pharmacokinetics of paclitaxel in a hemodialysis patient with advanced gastric cancer: A case report. World J. Gastroenterol., 2006, 12(32), 5237-5239.
Kanematsu, K.; Tsujimoto, H.; Nomura, S.; Horiguchi, H.; Ito, N.; Yamazaki, K.; Hiraki, S.; Aosasa, S.; Yamamoto, J.; Hase, K. Weekly paclitaxel therapy for gastric cancer in patients with renal dysfunction: A case report. Ann. Med. Surg. (Lond.), 2016, 11, 26-28.
Rollino, C.; Milongo, R.; Schaerer, R.; Cordonnier, D. Vinorelbine therapy in a hemodialyzed patient. Nephron, 1992, 61(2), 232-233.
Wiebe, S.; Schnell, D.; Kulzer, R.; Gansser, D.; Weber, A.; Wallenstein, G.; Halabi, A.; Conrad, A.; Wind, S. Influence of renal impairment on the pharmacokinetics of afatinib: An open-label, single-dose study. Eur. J. Drug Metab. Pharmacokinet., 2017, 42(3), 461-469.
Bersanelli, M.; Tiseo, M.; Artioli, F.; Lucchi, L.; Ardizzoni, A. Gefitinib and afatinib treatment in an advanced Non-small Cell Lung Cancer (NSCLC) patient undergoing hemodialysis. Anticancer Res., 2014, 34(6), 3185-3188.
Miller, A.A.; Murry, D.J.; Owzar, K.; Hollis, D.R.; Lewis, L.D.; Kindler, H.L.; Marshall, J.L.; Villalona-Calero, M.A.; Edelman, M.J.; Hohl, R.J.; Lichtman, S.M.; Ratain, M.J. Phase I and pharmacokinetic study of erlotinib for solid tumors in patients with hepatic or renal dysfunction: CALGB 60101. J. Clin. Oncol., 2007, 25(21), 3055-3060.
Togashi, Y.; Masago, K.; Fukudo, M.; Terada, T.; Ikemi, Y.; Kim, Y.H.; Fujita, S.; Irisa, K.; Sakamori, Y.; Mio, T.; Inui, K.; Mishima, M. Pharmacokinetics of erlotinib and its active metabolite OSI-420 in patients with non-small cell lung cancer and chronic renal failure who are undergoing hemodialysis. J. Thorac. Oncol., 2010, 5(5), 601-605.
Gridelli, C.; Maione, P.; Galetta, D.; Rossi, A. Safety profile of erlotinib in patients with advanced non-small cell lung cancer with chronic renal failure. J. Thorac. Oncol., 2007, 2(1), 96-98.
Rossi, A.; Maione, P.; Del Gaizo, F.; Guerriero, C.; Castaldo, V.; Gridelli, C. Safety profile of gefitinib in advanced non-small cell lung cancer elderly patients with chronic renal failure: Two clinical cases. Lung Cancer, 2005, 47(3), 421-423.
Shinagawa, N.; Yamazaki, K.; Asahina, H.; Agata, J.; Itoh, T.; Nishimura, M. Gefitinib administration in a patient with lung cancer undergoing hemodialysis. Lung Cancer, 2007, 58(3), 422-424.
Tamura, T.; Takagi, Y.; Okubo, H.; Yamaguchi, S.; Kikkawa, Y.; Hashimoto, I.; Kaburagi, T.; Miura, M.; Satoh, H.; Hizawa, N. Plasma concentration of osimertinib in a non-small cell lung cancer patient with chronic renal failure undergoing hemodialysis. Lung Cancer, 2017, 112, 225-226.
Yamada, H.; Satoh, H.; Hida, N.; Nakaizumi, T.; Terashima, H.; Hizawa, N. Osimertinib for an older de novo T790M patient with chronic kidney disease. Geriatr. Gerontol. Int., 2018, 18(3), 503-504.
US Food and Drug Administration. Drug Information: Axitinib. (Accessed November 30, 2018)
Thiery-Vuillemin, A.; Orillard, E.; Mouillet, G.; Calcagno, F.; Devillard, N.; Bouchet, S.; Royer, B. Hemodialysis does not impact axitinib exposure: clinical case of a patient with metastatic renal cell carcinoma. Cancer Chemother. Pharmacol., 2017, 79(6), 1273-1276.
Nguyen, L.; Holland, J.; Ramies, D.; Mamelok, R.; Benrimoh, N.; Ciric, S.; Marbury, T.; Preston, R.A.; Heuman, D.M.; Gavis, E.; Lacy, S. Effect of renal and hepatic impairment on the pharmacokinetics of cabozantinib. J. Clin. Pharmacol., 2016, 56(9), 1130-1140.
US Food and Drug Administration. Drug Information: Cabozantinib. 208692s002lbl.pdf (Accessed November 30, 2018)
Masini, C.; Vitale, M.G.; Maruzzo, M.; Procopio, G.; De Giorgi, U.; Buti, S.; Rossetti, S.; Iacovelli, R.; Atzori, F.; Cosmai, L.; Vignani, F.; Prati, G.; Scagliarini, S.; Guida, A.; Berselli, A.; Pinto, C. Safety and efficacy of pazopanib in first-line metastatic renal-cell carcinoma with or without renal failure: CORE-URO-01 study. Clin. Genitourin. Cancer, 2019, 17(1), e150-e155.
Shetty, A.V.; Matrana, M.R.; Atkinson, B.J.; Flaherty, A.L.; Jonasch, E.; Tannir, N.M. Outcomes of patients with metastatic renal cell carcinoma and end-stage renal disease receiving dialysis and targeted therapies: a single institution experience. Clin. Genitourin. Cancer, 2014, 12(5), 348-353.
Czarnecka, A.M.; Kawecki, M.; Lian, F.; Korniluk, J.; Szczylik, C. Feasibility, efficacy and safety of tyrosine kinase inhibitor treatment in hemodialyzed patients with renal cell cancer: 10 years of experience. Future Oncol., 2015, 11(16), 2267-2282.
Bersanelli, M.; Facchinetti, F.; Tiseo, M.; Maiorana, M.; Buti, S. Pazopanib in renal cell carcinoma dialysis patients: A mini-review and a case report. Curr. Drug Targets, 2016, 17(15), 1755-1760.
US Food and Drug Administration. Drug Information: Sorafenib. (Accessed November 30, 2018)
Miller, A.A.; Murry, D.J.; Owzar, K.; Hollis, D.R.; Kennedy, E.B.; Abou-Alfa, G.; Desai, A.; Hwang, J.; Villalona-Calero, M.A.; Dees, E.C.; Lewis, L.D.; Fakih, M.G.; Edelman, M.J.; Millard, F.; Frank, R.C.; Hohl, R.J.; Ratain, M.J. Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J. Clin. Oncol., 2009, 27(11), 1800-1805.
Kennoki, T.; Kondo, T.; Kimata, N.; Murakami, J.; Ishimori, I.; Nakazawa, H.; Hashimoto, Y.; Kobayashi, H.; Iizuka, J.; Takagi, T.; Yoshida, K.; Tanabe, K. Clinical results and pharmacokinetics of sorafenib in chronic hemodialysis patients with metastatic renal cell carcinoma in a single center. Jpn. J. Clin. Oncol., 2011, 41(5), 647-655.
Ishii, T.; Hatano, E.; Taura, K.; Mizuno, T.; Kawai, T.; Fukudo, M.; Katsura, T.; Uemoto, S. Sorafenib in a hepatocellular carcinoma patient with end-stage renal failure: A pharmacokinetic study. Hepatol. Res., 2014, 44(6), 685-688.
Shinsako, K.; Mizuno, T.; Terada, T.; Watanabe, J.; Kamba, T.; Nakamura, E.; Ogawa, O.; Inui, K. Tolerable sorafenib therapy for a renal cell carcinoma patient with hemodialysis: A case study. Int. J. Clin. Oncol., 2010, 15(5), 512-514.
Castagneto, B.; Stevani, I.; Giorcelli, L.; Montefiore, F.; Bigatti, G.L.; Pisacco, P.; Cosimi, M.F. Sustained response following sorafenib therapy in an older adult patient with advanced renal cancer on hemodialysis: A case report. Med. Oncol., 2011, 28(4), 1384-1388.
Omae, K.; Kondo, T.; Kennoki, T.; Takagi, T.; Iizuka, J.; Kobayashi, H.; Hashimoto, Y.; Tanabe, K. Efficacy and safety of sorafenib for treatment of Japanese metastatic renal cell carcinoma patients undergoing hemodialysis. Int. J. Clin. Oncol., 2016, 21(1), 126-132.
Ferraris, E.; Di Cesare, P.; Lasagna, A.; Paglino, C.; Imarisio, I.; Porta, C. Use of sorafenib in two metastatic renal cell cancer patients with end-stage renal impairment undergoing replacement hemodialysis. Tumori, 2009, 95(4), 542-544.
Ruppin, S.; Protzel, C.; Klebingat, K.J.; Hakenberg, O.W. Successful sorafenib treatment for metastatic renal cell carcinoma in a case with chronic renal failure. Eur. Urol., 2009, 55(4), 986-988.
Parsa, V.; Heilbrun, L.; Smith, D.; Sethi, A.; Vaishampayan, U. Safety and efficacy of sorafenib therapy in patients with metastatic kidney cancer with impaired renal function. Clin. Genitourin. Cancer, 2009, 7(2), E10-E15.
Tatsugami, K.; Oya, M.; Kabu, K.; Akaza, H. Efficacy and safety of sorafenib for advanced renal cell carcinoma: Real-world data of patients with renal impairment. Oncotarget, 2018, 9(27), 19406-19414.
US Food and Drug Administration. Drug Information: Sunitinib. (Accessed November 30, 2018)
Khosravan, R.; Toh, M.; Garrett, M.; La Fargue, J.; Ni, G.; Marbury, T.C.; Swan, S.K.; Lunde, N.M.; Bello, C.L. Pharmacokinetics and safety of sunitinib malate in subjects with impaired renal function. J. Clin. Pharmacol., 2010, 50(4), 472-481.
Izzedine, H.; Etienne-Grimaldi, M.C.; Renee, N.; Vignot, S.; Milano, G. Pharmacokinetics of sunitinib in hemodialysis. Ann. Oncol., 2009, 20(1), 190-192.
Poprach, A.; Bortlicek, Z.; Melichar, B.; Lakomy, R.; Svoboda, M.; Kiss, I.; Zemanova, M.; Fiala, O.; Kubackova, K.; Coufal, O.; Pavlik, T.; Dusek, L.; Vyzula, R.; Buchler, T. Efficacy of sunitinib in patients with metastatic or unresectable renal cell carcinoma and renal insufficiency. Eur. J. Cancer, 2015, 51(4), 507-513.
Josephs, D.; Hutson, T.E.; Cowey, C.L.; Pickering, L.M.; Larkin, J.M.; Gore, M.E.; Van Hemelrijck, M.; McDermott, D.F.; Powles, T.; Chowdhury, P.; Karapetis, C.; Harper, P.G.; Choueiri, T.K.; Chowdhury, S. Efficacy and toxicity of sunitinib in patients with metastatic renal cell carcinoma with severe renal impairment or on haemodialysis. BJU Int., 2011, 108(8), 1279-1283.
Zastrow, S.; Froehner, M.; Platzek, I.; Novotny, V.; Wirth, M.P. Treatment of metastatic renal cell cancer with sunitinib during chronic hemodialysis. Urology, 2009, 73(4), 868-870.
US Food and Drug Administration. Drug Information: Regorafenib. 203085s008lbl.pdf (Accessed November 30, 2018)
Weil, A.; Martin, P.; Smith, R.; Oliver, S.; Langmuir, P.; Read, J.; Molz, K.H. Pharmacokinetics of vandetanib in subjects with renal or hepatic impairment. Clin. Pharmacokinet., 2010, 49(9), 607-618.
US Food and Drug Administration. Drug Information: Vandetanib. (Accessed November 30, 2018)
US Food and Drug Administration. Drug Information: Ceritinib. (Accessed November 30, 2018)
US Food and Drug Administration. Drug Information: Crizotinib. November 30, 2018)
Malik, S.M.; Maher, V.E.; Bijwaard, K.E.; Becker, R.L.; Zhang, L.; Tang, S.W.; Song, P.; Liu, Q.; Marathe, A.; Gehrke, B.; Helms, W.; Hanner, D.; Justice, R.; Pazdur, R.U.S. Food and Drug Administration approval: Crizotinib for treatment of advanced or metastatic non-small cell lung cancer that is anaplastic lymphoma kinase positive. Clin. Cancer Res., 2014, 20(8), 2029-2034.
De Jong, F.A.; Kitzen, J.J.; De Bruijn, P.; Verweij, J.; Loos, W.J. Hepatic transport, metabolism and biliary excretion of irinotecan in a cancer patient with an external bile drain. Cancer Biol. Ther., 2006, 5(9), 1105-1110.
Slatter, J.G.; Schaaf, L.J.; Sams, J.P.; Feenstra, K.L.; Johnson, M.G.; Bombardt, P.A.; Cathcart, K.S.; Verburg, M.T.; Pearson, L.K.; Compton, L.D.; Miller, L.L.; Baker, D.S.; Pesheck, C.V.; Lord, R.S., III Pharmacokinetics, metabolism, and excretion of irinotecan (CPT-11) following I.V. infusion of [(14)C]CPT-11 in cancer patients. Drug Metab. Dispos., 2000, 28(4), 423-433.
Sparreboom, A.; De Jonge, M.J.; De Bruijn, P.; Brouwer, E.; Nooter, K.; Loos, W.J.; Van Alphen, R.J.; Mathijssen, R.H.; Stoter, G.; Verweij, J. Irinotecan (CPT-11) metabolism and disposition in cancer patients. Clin. Cancer Res., 1998, 4(11), 2747-2754.
Niemi, M.; Backman, J.T.; Kajosaari, L.I.; Leathart, J.B.; Neuvonen, M.; Daly, A.K.; Eichelbaum, M.; Kivisto, K.T.; Neuvonen, P.J. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther., 2005, 77(6), 468-478.
Kalliokoski, A.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range. Br. J. Clin. Pharmacol., 2008, 66(6), 818-825.
Marbury, T.C.; Ruckle, J.L.; Hatorp, V.; Andersen, M.P.; Nielsen, K.K.; Huang, W.C.; Strange, P. Pharmacokinetics of repaglinide in subjects with renal impairment. Clin. Pharmacol. Ther., 2000, 67(1), 7-15.
Zhao, P.; Vieira Mde, L.; Grillo, J.A.; Song, P.; Wu, T.C.; Zheng, J.H.; Arya, V. Berglund, E.G.; Atkinson, A.J., Jr.; Sugiyama, Y.; Pang, K.S.; Reynolds, K.S.; Abernethy, D.R.; Zhang, L.; Lesko, L.J.; Huang, S.M. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J. Clin. Pharmacol., 2012, 52(1)(Suppl.), 91S-108S.
Plum, A.; Muller, L.K.; Jansen, J.A. The effects of selected drugs on the in vitro protein binding of repaglinide in human plasma. Methods Find. Exp. Clin. Pharmacol., 2000, 22(3), 139-143.
Tan, M.L.; Zhao, P.; Zhang, L.; Ho, Y.F.; Varma, M.V.S.; Neuhoff, S.; Nolin, T.D.; Galetin, A.; Huang, S.M. Use of physiologically based pharmacokinetic modeling to evaluate the effect of chronic kidney disease on the disposition of hepatic CYP2C8 and OATP1B drug substrates. Clin. Pharmacol. Ther., 2018, 105(3), 719-729.
Tan, M.L.; Yoshida, K.; Zhao, P.; Zhang, L.; Nolin, T.D.; Piquette-Miller, M.; Galetin, A.; Huang, S.M. Effect of chronic kidney disease on nonrenal elimination pathways: A systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin. Pharmacol. Ther., 2018, 103(5), 854-867.
Schwenk, M.H.; Pai, A.B. Drug transporter function-Implications in CKD. Adv. Chronic Kidney Dis., 2016, 23(2), 76-81.
Yoshida, K.; Sun, B.; Zhang, L.; Zhao, P.; Abernethy, D.R.; Nolin, T.D.; Rostami-Hodjegan, A.; Zineh, I.; Huang, S.M. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5. Clin. Pharmacol. Ther., 2016, 100(1), 75-87.
Kim, A.H.; Yoon, S.; Lee, Y.; Lee, J.; Bae, E.; Lee, H.; Kim, D.K.; Lee, S.; Yu, K.S.; Jang, I.J.; Cho, J.Y. Assessment of hepatic cytochrome P450 3A activity using metabolic markers in patients with renal impairment. J. Korean Med. Sci., 2018, 33(53), e298.
Turpeinen, M.; Koivuviita, N.; Tolonen, A.; Reponen, P.; Lundgren, S.; Miettunen, J.; Metsarinne, K.; Rane, A.; Pelkonen, O.; Laine, K. Effect of renal impairment on the pharmacokinetics of bupropion and its metabolites. Br. J. Clin. Pharmacol., 2007, 64(2), 165-173.
Hu, J.; Jing, H.; Lin, H. Sirtuin inhibitors as anticancer agents. Future Med. Chem., 2014, 6(8), 945-966.
Kozako, T.; Suzuki, T.; Yoshimitsu, M.; Arima, N.; Honda, S.; Soeda, S. Anticancer agents targeted to sirtuins. Molecules, 2014, 19(12), 20295-20313.
Martins, I.J. Induction of NAFLD with increased risk of obesity and chronic diseases in developed countries. Open J. Endocr. Metab. Dis., 2014, 4, 90-110.
Martins, I.J. Heat shock protein aggregation and chronic kidney disease. Res. Chronic Dis., 2018, 2(1), 42-44.
Martins, I.J. Increased risk for obesity and diabetes with neurodegeneration in developing countries. J. Mol. Genet. Med., 2018, S1, 2-8.

© 2022 Bentham Science Publishers | Privacy Policy