Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

α-Heteroatom-substituted gem-Bisphosphonates: Advances in the Synthesis and Prospects for Biomedical Application

Author(s): Vadim D. Romanenko*

Volume 23, Issue 5, 2019

Page: [530 - 615] Pages: 86

DOI: 10.2174/1385272823666190401141844

Price: $65

Abstract

Functionalized gem-bisphosphonic acid derivatives being pyrophosphate isosteres are of great synthetic and biological interest since they are currently the most important class of drugs developed for the treatment of diseases associated with the disorder of calcium metabolism, including osteoporosis, Paget’s disease, and hypercalcemia. In this article, we will try to give an in-depth overview of the methods for obtaining α- heteroatom-substituted methylenebisphosphonates and acquaint the reader with the synthetic strategies that are used to develop biologically important compounds of this type.

Keywords: Arbuzov reaction, bioactive compounds, bisphosphonates, bisphosphonic acids, bisphosphonate complexes, cycloaddition reactions, diazobisphosphonates, enzyme inhibitors, insertion reactions, medicinal chemistry, modified polyphosphates, Michael addition, Michaelis-Becker reaction, multicomponent reactions, phosphate mimics, phosphonates, phosphonate carbanions, phosphonic acid group, phosphonylating reactions, pyrophosphate analogues, synthetic methods, trisphosphonates.

Graphical Abstract
[1]
Fleisch, H. Bisphosphonates in Bone Disease, 4th ed; Academic Press: San Diego, 2000.
[2]
Bartl, R.; Fritsch, B.; Tresckow, E.Von; Bartl, C. Bisphosphonates in Medical Practice; Springer: Berlin, 2007.
[3]
Bijvoet, O.L.M.; Fleish, H.A.; Canfield, R.E.; Russell, R.G.G. Bisphosphonates on Bones; Elsevier Science: Amsterdam, 1995.
[4]
Zhang, S.; Gangal, G.; Uludağ, H. “Magic bullets” for bone diseases: Progress in rational design of bone-seeking medicinal agents. Chem. Soc. Rev., 2007, 36(3), 507-531.
[5]
Rodan, G.A.; Martin, T.J. Therapeutic approaches to bone diseases. Science, 2000, 289, 1508-1514.
[6]
T.A., Matkovskaya; Popov, K.I.; Yurieva, E.A. Bisphosphonates Properties, Structure and Application in Medicine; Khimiya: Moscow, 2001.
[7]
Yoneda, T.; Hashimoto, N.; Hiraga, T. Bisphosphonate actions on cancer. Calcif. Tissue Int., 2003, 73(4), 315-318.
[8]
Fleish, H. The role of bisphosphonates in breast cancer. Breast Cancer Res., 2002, 4, 30-34.
[9]
Green, J.R. Oncologist bisphosphonates: Preclinical review. Oncologist, 2004, 9(Suppl. 4), 3-13.
[10]
Green, J.R. Antitumor effects of bisphosphonates. Cancer, 2003, 97(Suppl. 3), 840-847.
[11]
Green, J.R. Zoledronic acid: Pharmacologic profile of a potent bisphosphonate. J. Organomet. Chem., 2005, 690(10), 2439-2448.
[12]
Neville-Webbe, H.; Holen, I.; Coleman, R. The anti-tumour activity of bisphosphonates. Cancer Treat. Rev., 2002, 28(6), 305-319.
[13]
Sanders, J.M.; Ghosh, S.; Chan, J.M.W.; Meints, G.; Wang, H.; Raker, A.M.; Song, Y.; Colantino, A.; Burzynska, A.; Kafarski, P.; Morita, C.T.; Oldfield, E. Quantitative structure-activity relationships for γδ T cell activation by bisphosphonates. J. Med. Chem., 2004, 47(2), 375-384.
[14]
Simoni, D.; Gebbia, N.; Invidiata, F.P.; Eleopra, M.; Marchetti, P.; Rondanin, R.; Baruchello, R.; Provera, S.; Marchioro, C.; Tolomeo, M.; Marinelli, L.; Limongelli, V.; Novellino, E.; Kwaasi, A.; Dunford, J.; Buccheri, S.; Caccamo, N.; Dieli, F. Design, synthesis and biological evaluation of novel aminobisphosphonates possessing an in vivo antitumor activity through a γδ-T lymphocytes-mediated activation mechanism. J. Med. Chem., 2008, 51(21), 6800-6807.
[15]
Rosso, V.S.; Szajnman, S.H.; Malayil, L.; Galizzi, M.; Moreno, S.N.J.; Docampo, R.; Rodriguez, J.B. Synthesis and biological evaluation of new 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg. Med. Chem., 2011, 19(7), 2211-2217.
[16]
Szajnman, S.H.; García Liñares, G.E.; Li, Z-H.; Jiang, C.; Galizzi, M.; Bontempi, E.J.; Ferella, M.; Moreno, S.N.J.; Docampo, R.; Rodriguez, J.B. Synthesis and biological evaluation of 2-alkylaminoethyl-1,1-bisphosphonic acids against Trypanosoma cruzi and Toxoplasma gondii targeting farnesyl diphosphate synthase. Bioorg. Med. Chem., 2008, 16(6), 3283-3290.
[17]
Szajnman, S.H.; Ravaschino, E.L.; Docampo, R.; Rodriguez, J.B. Synthesis and biological evaluation of 1-amino-1,1-bisphosphonates derived from fatty acids against Trypanosoma cruzi targeting farnesyl pyrophosphate synthase. Bioorg. Med. Chem. Lett., 2005, 15(21), 4685-4690.
[18]
Martin, M.B.; Grimley, J.S.; Lewis, J.C.; Heath, H.T.; Bailey, B.N.; Kendrick, H.; Yardley, V.; Caldera, A.; Lira, R.; Urbina, J.A.; Moreno, A.N.J.; Docampo, R.; Croft, S.L.; Oldfield, E. Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A Potential route to chemotherapy. J. Med. Chem., 2001, 44(6), 909-916.
[19]
Martin, M.B.; Sanders, J.M.; Kendrick, H.; de Luca-Fradley, K.; Lewis, J.C.; Grimley, J.S.; Van Brussel, E.M.; Olsen, J.R.; Meints, G.A.; Burzynska, A.; Kafarski, P.; Croft, S.L.; Oldfield, E. Activity of bisphosphonates against Trypanosoma brucei rhodesiense. J. Med. Chem., 2002, 45(14), 2904-2914.
[20]
Kotsikorou, E.; Song, Y.; Chan, J.M.W.; Faelens, S.; Tovian, Z.; Broderick, E.; Bakalara, N.; Docampo, R.; Oldfield, E. Bisphosphonate inhibition of the exopolyphosphatase activity of the Trypanosoma brucei soluble vacuolar pyrophosphatase. J. Med. Chem., 2005, 48(19), 6128-6139.
[21]
Ling, Y.; Sahota, G.; Odeh, S.; Chan, J.M.W.; Araujo, F.G.; Moreno, S.N.J.; Oldfield, E. Bisphosphonate inhibitors of Toxoplasma gondi growth: in vitro, QSAR, and in vivo investigations. J. Med. Chem., 2005, 48(9), 3130-3140.
[22]
Ghosh, S.; Chan, J.M.W.; Lea, C.R.; Meints, G.A.; Lewis, J.C.; Tovian, Z.S.; Flessner, R.M.; Loftus, T.C.; Bruchhaus, I.; Kendrick, H.; Croft, S.L.; Kemp, R.G.; Kobayashi, S.; Nozaki, T.; Oldfield, E. Effects of bisphosphonates on the growth of Entamoeba histolytica and Plasmodium species in vitro and in vivo. J. Med. Chem., 2004, 47(1), 175-187.
[23]
Mukkamala, D.; No, J.H.; Cass, L.M.; Chang, T.K.; Oldfield, E. Bisphosphonate inhibition of a Plasmodium farnesyl diphosphate synthase and a general method for predicting cell-based activity from enzyme data. J. Med. Chem., 2008, 51(24), 7827-7833.
[24]
McFarlane, S.I.; Muniyappa, R.; Shin, J.J.; Bahtiyar, G.; Sowers, J.R. Osteoporosis and cardiovascular disease: Brittle bones and boned arteries, is there a Link? Endocrine, 2004, 23(1), 1-10.
[25]
Gholivand, K.; Ghaziani, F.; Yaghoubi, R.; Hosseini, Z.; Shariatinia, Z. Design, synthesis and anticholinesterase activity of some new α-aminobisphosphonates. J. Enzyme Inhib. Med. Chem., 2010, 25(6), 827-835.
[26]
Kiran, Y.B.; Devendranath Reddy, C.; Gunasekar, D.; Suresh Reddy, C.; Leon, A.; Barbosa, L.C.A. Synthesis and anticancer activity of new class of bisphosphonates/phosphanamidates. Eur. J. Med. Chem., 2008, 43(4), 885-892.
[27]
Clezardin, P.; Fournier, P.G.J.; Ebetino, F.H. Bisphosphonates and cancer-induced bone disease: Beyond their antiresorptive activity. Cancer Res., 2005, 65(12), 4971-4974.
[28]
Van Offel, J.F.; Schuerwegh, A.J.; Bridts, C.H.; Bracke, P.G.; Stevens, W.J.; De Clerck, L.S. Influence of cyclic intravenous pamidronate on proinflammatory monocytic cytokine profiles and bone density in rheumatoid arthritis treated with low dose prednisolone and methotrexate. Clin. Exp. Rheumatol., 2001, 19(1), 13-20.
[29]
Ylitalo, R. Bisphosphonates and atherosclerosis. Gen. Pharmacol., 2002, 35, 287-296.
[30]
Kunda, U.M.R.; Balam, S.K.; Nemallapudi, B.R.; Chereddy, S.S.; Nayak, S.K.; Cirandur, S.R. Facile Synthesis, antioxidant and antimicrobial activity of amino methylene bisphosphonates. Chem. Pharm. Bull. (Tokyo) , 2012, 60(1), 104-109.
[31]
Leon, A.; Liu, L.; Yang, Y.; Hudock, M.P.; Hall, P.; Yin, F.; Studer, D.; Puan, K.J.; Morita, C.T.; Oldfield, E. Isoprenoid biosynthesis as a drug target: bisphosphonate inhibition of Escherichia Coli K12 growth and synergistic effects of fosmidomycin. J. Med. Chem., 2006, 49(25), 7331-7341.
[32]
Maksymowych, W.P. Bisphosphonates-anti-inflammatory properties. Curr. Med. Chem. Anti Inflamm. Anti Allergy Agents, 2002, 1(1), 15-28.
[33]
Cromartie, T.H.; Fisher, K.J.; Grossman, J.N. The Discovery of a novel site of action for herbicidal bisphosphonates. Pestic. Biochem. Physiol., 1999, 63, 114-126.
[34]
Kafarski, P.; Lejczak, B.; Forlani, G. Herbicidally active aminomethylenebi-sphosphonic acids. Heteroatom Chem., 2000, 11(7), 449-453.
[35]
Lejczak, B.; Boduszek, B.; Kafarski, P.; Forlani, G.; Wojtasek, H.; Wieczorek, P. Mode of action of herbicidal derivatives of aminomethylenebisphosphonic acid. J. Plant Growth Regul., 1996, 15(4), 109-113.
[36]
Kafarski, P.; Lejczak, B.; Tyka, R.; Koba, L.; Pliszczak, E.; Wieczorek, P. Herbicidal activity of phosphonic, phosphinic, and phosphonous acid analogues of phenylglycine and phenylalanine. J. Plant Growth Regul., 1995, 14(4), 199-203.
[37]
Berlicki, L.; Kafarski, P. Computer-aided analysis and design of phosphonic and phosphinic enzyme inhibitors as potential drugs and agrochemicals. Curr. Org. Chem., 2005, 9(18), 1829-1850.
[38]
Uludag, H. Bisphosphonates as a foundation of drug delivery to bone. Curr. Pharm. Des., 2002, 8(21), 1929-1944.
[39]
Paolino, D.; Licciardi, M.; Celia, C.; Giammona, G.; Fresta, M.; Cavallaro, G. Bisphosphonate–polyaspartamide conjugates as bone targeted drug delivery systems. J. Mater. Chem. B ., 2015, 3(2), 250-259.
[40]
Gittens, S.A.; Bansal, G.; Zernicke, R.F.; Uludağ, H. Designing proteins for bone targeting. Adv. Drug Deliv. Rev., 2005, 57(7), 1011-1036.
[41]
Tanaka, K.S.E.; Houghton, T.J.; Kang, T.; Dietrich, E.; Delorme, D.; Ferreira, S.S.; Caron, L.; Viens, F.; Arhin, F.F.; Sarmiento, I.; Lehoux, D.; Fadhil, I.; Laquerre, K.; Liu, J.; Ostigue, V.; Poirier, H.; Moeck, G.; Parr, T.R.; Rafai Far, A. Bisphosphonated fluoroquinolone esters as osteotropic prodrugs for the prevention of osteomyelitis. Bioorg. Med. Chem., 2008, 16(20), 9217-9229.
[42]
David, T.; Kotek, J.; Kubíček, V.; Tošner, Z.; Hermann, P.; Lukeš, I. Bis(phosphonate)-building blocks modified with fluorescent dyes. Heteroatom Chem., 2013, 24(5), 413-425.
[43]
Kootala, S.; Ossipov, D.; Van den Beucken, J.J.; Leeuwenburgh, S.; Hilborn, J. Bisphosphonate-functionalized hyaluronic acid showing selective affinity for osteoclasts as a potential treatment for osteoporosis. Biomater. Sci., 2015, 3(8), 1197-1207.
[44]
Pradere, U.; Garnier-Amblard, E.C.; Coats, S.J.; Amblard, F.; Schinazi, R.F. Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem. Rev., 2014, 114(18), 9154-9218.
[45]
McKenna, C.E.; Kashemirov, B.A.; Peterson, L.W.; Goodman, M.F. Modifications to the DNTP triphosphate moiety: From mechanistic probes for DNA polymerases to antiviral and anti-cancer drug design. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(5), 1223-1230.
[46]
Vitha, T.; Kubíček, V.; Hermann, P.; Elst, L.Vander; Muller, R.N.; Kolar, Z.I.; Wolterbeek, H.T.; Breeman, W.A.P.; Lukeš, I.; Peters, J.A. Lanthanide(III) complexes of bis(phosphonate) monoamide analogues of DOTA: bone-seeking Agents for Imaging and Therapy. J. Med. Chem., 2008, 51(3), 677-683.
[47]
Liu, W.; Hajibeigi, A.; Lin, M.; Rostollan, C.L.; Kovacs, Z.; Oz, O.K.; Sun, X. An osteoclast-targeting agent for imaging and therapy of bone metastasis. Bioorg. Med. Chem. Lett., 2008, 18(17), 4789-4793.
[48]
Kubícek, V.; Rudovský, J.; Kotek, J.; Hermann, P.; Vander Elst, L.; Muller, R.N.; Kolar, Z.I.; Wolterbeek, H.T.; Peters, J.A.; Lukes, I. A bisphosphonate monoamide analogue of DOTA: A potential agent for bone targeting. J. Am. Chem. Soc., 2005, 127(47), 16477-16485.
[49]
Palma, E.; Correia, J.D.G.; Campello, M.P.C.; Santos, I. Bisphosphonates as radionuclide carriers for imaging or systemic therapy. Mol. Biosyst., 2011, 7(11), 2950-2966.
[50]
Ebetino, F.H.; Hogan, A.M.L.; Sun, S.; Tsoumpra, M.K.; Duan, X.; Triffitt, J.T.; Kwaasi, A. a; Dunford, J.E.; Barnett, B.L.; Oppermann, U.; Lundy, M.W.; Boyde, A.; Kashemirov, B.A.; McKenna, C.E.; Russell, R.G.G.The relationship between the chemistry and biological activity of the bisphosphonates. Bone, 2011, 49(1), 20-33.
[51]
Kubıček, V.; Lukeč, I. Bone-seeking probes for optical and magnetic resonance imaging. Future Med. Chem., 2010, 2(3), 521.
[52]
Kowada, T.; Kikuta, J.; Kubo, A.; Ishii, M.; Maeda, H.; Mizukami, S.; Kikuchi, K. In vivo fluorescence imaging of bone-resorbing osteoclasts. J. Am. Chem. Soc., 2011, 133, 17772-17776.
[53]
Clearfield, A.; Demadis, K. Metal Phosphonate Chemistry; From Synthesis to Applications Royal Society of Chemistry: Cambridge, 2012.
[54]
Matszak-Jon, E.; Videnova-Adrabinska, V. Supramolecular chemistry and complexation abilities of diphosphonic acids. Coord. Chem. Rev., 2005, 249(21-22), 2458-2488.
[55]
Curry, J.D.; Nicholson, D.A.; Quimby, O.T. Oligophosphonates. Top. Phosph. Chem, 1972, 7, 37-102.
[56]
Francis, M.D.; Martodam, R.R.; Hilderbrand, R.L. The Role of Phosphonates in Living Systems; CRC press: Boca Raton, Florida, 1983.
[57]
Savignac, P.; Iorga, B. Modern Phosphonate Chemistry; CRC Press: N.Y., 2003.
[58]
Troev, K.D. Chemistry and Application of H-Phosphonates; Elsevier: Amsterdam, 2006.
[59]
Kukhar, V.P.; Hudson, H.R. Aminophosphonic and Aminophosphinic Acids; John Wiley & Sons: Chichester, 2000.
[60]
Kukhar, V.P.; Romanenko, V.D. Chemistry of Aminophosphonic Acids and Phosphonopeptides. In: Amino Acids, Peptides and Proteins; Hughes, A.B., Ed.; Wiley-VCH: Weinheim, 2009; Vol. 2, pp. 191-263.
[61]
Zolotukhina, M.M.; Krutikov, V.I.; Lavrent’ev, A.N. Derivatives of diphosphonic acids: Synthesis and biological activity. Russ. Chem. Rev., 1993, 62(7), 647-659.
[62]
Abdou, W.M.; Shaddy, A.A. The Development of bisphosphonates for therapeutic uses, and bisphosphonate structure-activity consideration. ARKIVOC, 2009, ix, 143-182.
[63]
Banerjee, A.; Bassil, B.S.; Röschenthaler, G-V.; Kortz, U. Diphosphates and diphosphonates in polyoxometalate chemistry. Chem. Soc. Rev., 2012, 41(22), 7590-7604.
[64]
Fernandes, C.; Leite, R.S.; Lanças, F.M. Bisfosfonatos: Síntese, análises químicas e aplicações farmacológicas. Quim. Nova, 2005, 28(2), 274-280.
[65]
Janecki, T.; Kędzia, J.; Wąsek, T. Michael additions to activated vinylphosphonates. Synthesis, 2009, 8, 1227-1254.
[66]
Kafarski, P.; Lejczak, B. Aminophosphonic acids of potential medical importance. Curr. Med. Chem. Agents, 2001, 1(3), 301-312.
[67]
Kovács, R.; Grün, A.; Garadnay, S.; Greiner, I.; Keglevich, G. “Greener” synthesis of bisphosphonic/dronic acid derivatives. Green Process. Synth, 2014, 3(2), 111-116.
[68]
Lecouvey, M.; Leroux, Y. Synthesis of 1-hydroxy-1,1-bisphosphonates. Heteroatom Chem., 2000, 11(7), 556-561.
[69]
Vepsäläinen, J.J. Bisphosphonate prodrugs. Curr. Med. Chem., 2002, 9(12), 1201-1208.
[70]
Kukhar, V.P.; Romanenko, V.D. Phosphorus and fluorine –the union for bioregulators. Kem. Ind, 2007, 56(6), 329-344.
[71]
Romanenko, V.D.; Kukhar, V.P. Fluorinated phosphonates: Synthesis and biomedical application. Chem. Rev., 2006, 106(9), 3868-3935.
[72]
Romanenko, V.D.; Kukhar, V.P. 1-Amino-1,1-bisphosphonates. Fundamental syntheses and new developments. ARKIVOC, 2012, 2012(4), 127.
[73]
Romanenko, V.D.; Shevchuk, M.V.; Kukhar, V.P. Application of silicon-based methodologies for the synthesis of functionalized mono- and bisphosphonic Acids. Curr. Org. Chem., 2011, 15, 2774-2801.
[74]
Romanenko, V.; Kukhar, V. Progress in the development of pyrophosphate bioisosteres: Synthesis and biomedical potential of 1-fluoro- and 1,1-difluoromethylene-1,1-bisphosphonates. Curr. Org. Chem., 2014, 18(11), 1491-1512.
[75]
Romanenko, V.D.; Kukhar, V.P. Methylidynetrisphosphonates: Promising C1 building block for the design of phosphate mimetics. Beilstein J. Org. Chem., 2013, 9, 991-1001.
[76]
Virieux, D.; Volle, J.N.; Bakalara, N.; Pirat, J.L. Synthesis and biological applications of phosphinates and derivatives. Top. Curr. Chem., 2014, 360, 566.
[77]
Von Baeyer, H.; Hofmann, K.A. Acetodiphosphorige säure. Ber. Dtsch. Chem. Ges., 1897, 30, 1973-1978.
[78]
Menschutkin, N. Über die einwirkung des chloroazetyls auf phosphorige säure. Ann. Chem. Pharm, 1865, 133, 317-320.
[79]
Ebrahimpour, A.; Ebetino, F.H. Mineral Scale Formation and Inhibition; Amjad, Z.Ed; Springer, U.S., Ed.; Boston, MA, 1995.
[80]
Graham, R.; Russell, G. The Bisphosphonate Odyssey. A journey from chemistry to the clinic. Phosphorus Sulfur Silicon Relat. Elem., 1999, 144(1), 793-820.
[81]
Breuer, E. The Development of Bisphosphonates as Drugs. In: Analogue-based Drug Discovery; Wiley-VCH Verlag: Weinheim, 2006.
[82]
Francis, M.D.; Valent, D.J. Historical perspectives on the clinical development of bisphosphonates in the treatment of bone diseases. J. Musculoskelet. Neuronal Interact., 2007, 7(1), 2-8.
[83]
Fleisch, H.; Russell, R.G.; Bisaz, S.; Casey, P.A.; Muhlbauer, R.C. The influence of pyrophosphate analogues (diphosphonates) on the precipitation and dissolution of calcium phosphate in vitro and in vivo. Calcif. Tissue Res., 1968, 2, 10-10A.
[84]
Fleisch, H.; Russell, R.G.G.; Francis, M.D.D.; Graham, R.; Russell, G.; Francis, M.D.D. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science, 1969, 165(3899), 1262-1264.
[85]
Francis, M.D.; Russell, R.G.G.; Fleisch, H. Diphosphonates Inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science, 1969, 165, 1264-1266.
[86]
Russell, R.G.; Rogers, M.J. Bisphosphonates: From the laboratory to the clinic and back again. Bone, 1999, 25(1), 97-106.
[87]
Kabachnik, M.I.; Medved, T.Y.; Dyaglova, N.M.; Polikarpov, Y.M.; Shcherbakov, B.K.; Belskii, F.I. Synthesis and acid-base and complexing properties of amino-substituted α-hydroxyalkylidenediphosphonic acids. Russ. Chem. Bull. (Engl. Transl.), 1978, 27(2), 374-377.
[88]
Rosini, S.; Staibano, G. Pharmaceutical compositions containing bisphosphonic acids. GB Patent 2118042, January 15, 1982.
[89]
Widler, L.; Jaeggi, K.A.; Glatt, M.; Müller, K.; Bachmann, R.; Bisping, M.; Born, A.R.; Cortesi, R.; Guiglia, G.; Jeker, H.; Klein, R.; Ramseier, U.; Schmid, J.; Schreiber, G.; Seltenmeyer, Y.; Green, J.R. Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J. Med. Chem., 2002, 45(17), 3721-3738.
[90]
Widler, L.; Jaeggi, K.A.; Green, J.R. Amino-substituted gembisphosphonates. Phosphorous, Sulfur Silicon Relat. Elem., 1999. 1, 144– 146, 37-41
[91]
Takeuchi, M.; Sakamoto, S.; Kawamuki, K.; Kurihara, H.; Nakahara, H.; Isomura, Y. Synthesis and pharmacological activities of fused aza-heteroarylbisphosphonate derivatives. Chem. Pharm. Bull. , 1998, 46(11), 1703-1709.
[92]
Russell, R.G.G. Bisphosphonates: The first 40 years. Bone, 2011, 49(1), 2-19.
[93]
Russell, R.G.G. Bisphosphonates: From bench to bedside. Ann. N. Y. Acad. Sci., 2006, 1068, 367-401.
[94]
Fleisch, H. Development of bisphosphonates. Breast Cancer Res., 2002, 4(1), 30-34.
[95]
Zhang, Y.; Cao, R.; Yin, F.; Lin, F.Y.; Wang, H.; Krysiak, K.; No, J.H.; Mukkamala, D.; Houlihan, K.; Li, J.; Morita, C.T.; Oldfield, E. Lipophilic pyridinium bisphosphonates: Potent γ δ T cell stimulators. Angew. Chem. Int. Ed. Engl., 2010, 49(6), 1136-1138.
[96]
No, J.H.; de Macelo Dossin, F.; Zhang, Y.; Liu, Y.L.; Zhu, W.; Feng, X.; Anny You, J.; Lee, F.; Wang, K.; Hui, R.; Freitas-Junior, L.H.; Oldfield, E. Lipophilic analogs of zoledronate and risedronate inhibit Plasmodium geranylgeranyl diphosphate synthase (GGPPS) and exhibit potent antimalarial activity. Proc. Natl. Acad. Sci. USA, 2012, 109, 4058-4063.
[97]
Sietsema, W.K.; Ebetino, F.H. Bisphosphonates in development for metabolic bone disease. Expert Opin. Investig. Drugs, 1994, 3(12), 12550-1276.
[98]
Rondeau, J-M.; Bitsch, F.; Bourgier, E.; Geiser, M.; Hemmig, R.; Kroemer, M.; Lehmann, S.; Ramage, P.; Rieffel, S.; Strauss, A.; Green, J.R.; Jahnke, W. Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. ChemMedChem, 2006, 1(2), 267-273.
[99]
Ebetino, F.H.; Kaas, S.M.; Crawford, R.J. Bisphosphonates: Molecular modelling, structure-activity relationships and the rational design of new analogs. Phosphorus Sulfur Silicon Relat. Elem., 1993, 76(1), 151-154.
[100]
Russell, R.G.G.; Muhlbauer, R.C.; Bisaz, S.; Williams, D.A.; Fleisch, H. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatitein vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif. Tissue Res., 1970, 6, 183-196.
[101]
Rogers, M.J.; Watts, D.J.; Russel, R.G. Overview of bisphosphonates. Cancer, 1997, 80, 1652-1660.
[102]
Licata, A.A. Discovery, clinical development, and therapeutic uses of bisphosphonates. Ann. Pharmacother., 2005, 39(4), 668-677.
[103]
Karamustafa, F.; Gelebi, N. Bisphosphonates and alendronate. FABAD J. Pharm. Sci, 2006, 31, 31-42.
[104]
Hudson, H.R.; Wardle, N.J.; Bligh, S.W.A.; Greiner, I.; Grun, A.; Keglevich, G.; Grün, A.; Keglevich, G. N-Heterocyclic dronic acids: Applications and synthesis. Mini Rev. Med. Chem., 2012, 12(4), 313-325.
[105]
Fleisch, H. Bisphosphonates: Mechanisms of action. Endocr. Rev., 1998, 19(1), 80-100.
[106]
Drake, M.T.; Clarke, B.L.; Khosla, S. Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin. Proc., 2008, 83(9), 1032-1045.
[107]
Roelofs, A.J.; Thompson, K.; Gordon, S.; Rogers, M.J. Molecular mechanisms of action of bisphosphonates: Current status. Clin. Cancer Res., 2006, 12(20), 6222s-6230s.
[108]
Reszka, A.A.; Rodan, G.A. Bisphosphonate mechanism of action. Curr. Rheumatol. Rep., 2003, 5(1), 65-74.
[109]
Ghinoi, V.; Brandi, M.L. Clodronate: Mechanisms of action on bone remodelling and clinical use in osteometabolic disorders. Expert Opin. Pharmacother., 2002, 3(11), 1643-1656.
[110]
Russell, R.G.G.; Xia, Z.; Dunford, J.E.; Oppermann, U.; Kwaasi, A.; Hulley, P.A.; Kavanagh, K.L.; Triffitt, J.T.; Lundy, M.W.; Phipps, R.J.; Barnett, B.L.; Coxon, F.P.; Rogers, M.J.; Watts, N.B.; Ebetino, F.H. Bisphosphonates: An update on mechanisms of action and how these relate to clinical efficacy. Ann. N. Y. Acad. Sci., 2007, 1117(1), 209-257.
[111]
Frith, J.C.; Mönkkönen, J.; Auriola, S.; Mönkkönen, H.; Rogers, M.J. The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate: Evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum., 2001, 44(9), 2201-2210.
[112]
Ebetino, F.H.; Rozé, C.N.; McKenna, C.E.; Barnett, B.L.; Dunford, J.E.; Russell, R.G.G.; Mieling, G.E.; Rogers, M.J. Molecular interactions of nitrogen-containing bisphosphonates within farnesyl diphosphate synthase. J. Organomet. Chem., 2005, 690(10), 2679-2687.
[113]
Kavanagh, K.L.; Guo, K.; Dunford, J.E.; Wu, X.; Knapp, S.; Ebetino, F.H.; Rogers, M.J.; Russell, R.G.G.; Oppermann, U. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc. Natl. Acad. Sci. , 2006, 103(20), 7829-7834.
[114]
Reszka, A.A.; Rodan, G.A. Nitrogen-containing bisphosphonate mechanism of action. Mini Rev. Med. Chem., 2004, 4(7), 711-719.
[115]
Ezra, A.; Colomb, G.; Golomb, G. Administration routes and delivery systems of bisphosphonates for the treatment of bone resorption. Adv. Drug Deliv. Rev., 2000, 42(3), 175-195.
[116]
Van Der Pluijm, G.; Binderap, L.; Bramm, E.; Van Der Wee-Pals, L.; De Groat, H.; Binderap, E.; Lowik, C.; Papapoulos, S. Disodium 1-hydroxy-3-(1-pyrrolidinyl)-propylidene-1,1-bisphosphonate (EB-1053) is a potent inhibitor of bone resorption in vitro and in vivo. J. Bone Miner. Res., 1992, 7, 981-986.
[117]
Berstrom, J.D.; Bostedor, R.G.; Masarachia, P.J.; Reszka, A.A.; Rodan, G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch. Biochem. Biophys., 2000, 373, 231-241.
[118]
Sasaki, A.; Kitamura, K.; Alcalde, R.E.; Tanaka, T.; Suzuki, A.; Etoh, Y.; Matsumura, T. Effect of a newly developed bisphosphonate, YM529, on osteolytic bone metastases in nude mice. Int. J. Cancer, 1998, 77, 279-285.
[119]
Demmer, C.S.; Krogsgaard-Larsen, N.; Bunch, L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem. Rev., 2011, 111(12), 7981-8006.
[120]
Shevchuk, M.V.; Sorochynsky, A.E.; Khilya, V.P.; Romanenko, V.D.; Kukhar, V.P. Utilization of aminophosphonates in the Petasis boronic acid Mannich reaction. Synlett, 2010, (1), 73-76.
[121]
Shevchuk, M.V.; Metelitsa, L.A.; Charochkina, L.L.; Mogilevich, S.E.; Rusanov, E.B.; Sorochinskii, A.E.; Khilya, V.P.; Romanenko, V.D. Synthesis of N (phosphonomethyl)glycine derivatives and study of their immunotropic activity. Russ. Chem. Bull., 2011, 60, 712-718.
[122]
Li, G.; Wu, M.; Liu, F.; Jiang, J. One-pot, highly regioselective 1,3-dipole cycloaddition promoted by montmorillonite for the synthesis of spiro[indole-pyrrolizine], spiro[indole-indolizine], and spiro[indole-pyrrolidine]gem-bisphosphonates. Synthesis, 2015, 47(23), 3783-3796.
[123]
Ferrer-Casal, M.; Barboza, A.; Szajnman, S.; Rodriguez, J. 1,3-Dipolar cycloadditions of the versatile intermediate tetraethyl vinylidenebisphosphonate. Synthesis, 2013, 45(17), 2397-2404.
[124]
Xiang, H.; Qi, J.; He, Q.; Jiang, M.; Yang, C.; Deng, L. Synthesis of 2-C-substituted benzothiazoles via a copper-promoted domino condensation/S-arylation/heterocyclization process. Org. Biomol. Chem., 2014, 12(26), 4633-4636.
[125]
Gagosz, F.; Zard, S.Z. A Practical radical based access to functionalised geminal bisphosphonates. Synlett, 2003, (3), 387-389.
[126]
Byers, J.H.; Thissell, J.G.; Thomas, M.A. The Synthesis of geminal diphosphonates via phenyl selenide transfer radical addition. Tetrahedron Lett., 1995, 36(36), 6403-6406.
[127]
Lecerclé, D.; Gabillet, S.; Gomis, J.M.; Taran, F. A Facile synthesis of aminomethylene bisphosphonates through rhodium carbenoid mediated N–H Insertion Reaction. Application to the preparation of powerful uranyl ligands. Tetrahedron Lett., 2008, 49(13), 2083-2087.
[128]
Lecerclé, D.; Taran, F. A Facile Anchoring of the bisphosphonate moiety into alcohols and phenols through copper carbenoid mediated O-H insertion reaction. Synlett, 2007, (12), 1863-1868.
[129]
Shevchuk, M.; Sotiropoulos, J.M.; Miqueu, K.; Romanenko, V.; Kukhar, V. Tetrakis(trimethylsilyl) ethenylidene-1,1-bisphosphonate: A mild and convenient Michael acceptor for the synthesis of 2-aminoethylidene-1,1-bisphosphonic acids and their potassiums. Synlett, 2011, (10), 1370-1374.
[130]
Romanenko, V.D.; Kukhar, V.P. Fluorinated organophosphates for biomedical targets. Tetrahedron, 2007, 64(27), 6153-6190.
[131]
Turcheniuk, K.V.; Kukhar, V.P.; Röschenthaler, G.V.; Aceña, J.L.; Soloshonok, V.A.; Sorochinsky, A.E. Recent advances in the synthesis of fluorinated aminophosphonates and aminophosphonic acids. RSC Advances, 2013, 3(19), 6693-6716.
[132]
Hwang, C.S.; Kung, A.; Kashemirov, B.A.; Zhang, C.; McKenna, C.E. 5′-β,γ-CHF-ATP Diastereomers: Synthesis and fluorine-mediated selective binding by c-Src protein kinase. Org. Lett., 2015, 17(7), 1624-1627.
[133]
Wu, Y.; Zakharova, V.M.; Kashemirov, B.A.; Goodman, M.F.; Batra, V.K.; Wilson, S.H.; McKenna, C.E. β,γ-CHF- and β,γ-CHCl-DGTP Diastereomers: Synthesis, discrete 31P NMR signatures, and absolute configurations of new stereochemical probes for DNA polymerases. J. Am. Chem. Soc., 2012, 134(21), 8734-8737.
[134]
Chamberlain, B.T.; Batra, V.K.; Beard, W.A.; Kadina, A.P.; Shock, D.D.; Kashemirov, B.A.; McKenna, C.E.; Goodman, M.F.; Wilson, S.H. Stereospecific formation of a ternary complex of (S)-α,β-fluoromethylene-DATP with DNA Pol β. ChemBioChem, 2012, 13(4), 528-530.
[135]
McKenna, C.E.; Kashemirov, B.A.; Upton, T.G.; Batra, V.K.; Goodman, M.F.; Pedersen, L.C.; Beard, W.A.; Wilson, S.H. (R)-β,γ-Fluoromethylene-DGTP-DNA ternary complex with DNA polymerase β. J. Am. Chem. Soc., 2007, 129(50), 15412-15413.
[136]
Keglevich, G.; Grün, A.; Kovács, R.; Garadnay, S.; Greiner, I. Green chemical synthesis of bisphosphonic/dronic acid derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190(5–6), 664-667.
[137]
Keglevich, G.; Grün, A.; Bálint, E.; Kiss, N.Z.; Kovács, R.; Molnár, I.G.; Blastik, Z.; Tóth, R.V.; Fehérvári, A.; Csontos, I. Green chemical tools in organophosphorus chemistry. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186, 613-620.
[138]
Greiner, I.; Grün, A.; Ludányi, K.; Keglevich, G. Solid-liquid two-phase alkylation of tetraethyl methylenebisphosphonate under microwave irradiation. Heteroatom Chem., 2011, 22(1), 11-14.
[139]
Keglevich, G.; Grün, A.; Blastik, Z.; Greiner, I. Solid-liquid phase alkylation of P=O-functionalized CH acidic aompounds utilizing phase transfer catalysis and microwave irradiation. Heteroatom Chem., 2011, 22(2), 174-179.
[140]
Saady, M.; Lebeau, L.; Mioskowski, C. Synthesis of adenosine-5′-phosphates and 5′-alkylphosphonates via the mitsunobu reaction. Tetrahedron Lett., 1995, 36(13), 2239-2242.
[141]
Taylor, S.D.; Mirzaei, F.; Bearne, S.L. An unsymmetrical approach to the synthesis of bismethylene triphosphate analogues. Org. Lett., 2006, 8(19), 4243-4246.
[142]
Klein, E.; Nghiêm, H.O.; Valleix, A.; Mioskowski, C.; Lebeau, L. Synthesis of stable analogues of thiamine di- and triphosphate as tools for probing a new phosphorylation pathway. Chemistry Eur. J.,, 2002, 8(20), 4649-4655.
[143]
Brossette, T.; Faou, A.Le; Goujon, L.; Valleix, A.; Créminon, C.; Grassi, J.; Mioskowski, C.; Lebeau, L. Synthesis of polyphosphorylated AZT derivatives for the development of specific enzyme immunoassays. J. Org. Chem., 1999, 64(14), 5083-5090.
[144]
Kalek, M.; Jemielity, J.; Stepinski, J.; Stolarski, R.; Darzynkiewicz, E. A direct method for the synthesis of nucleoside 5′-methylenebis(phosphonate)s from nucleosides. Tetrahedron Lett., 2005, 46(14), 2417-2421.
[145]
Notni, J.; Šimeček, J.; Wester, H-J. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: Unique characteristics and applications. ChemMedChem, 2014, 9(6), 1107-1115.
[146]
Trush, V.V.; Cherenok, S.O.; Tanchuk, V.Y.; Kukhar, V.P.; Kalchenko, V.I.; Vovk, A.I. Calix[4]arene methylenebisphosphonic acids as inhibitors of protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett., 2013, 23(20), 5619-5623.
[147]
Lugovskoy, E.V.; Gritsenko, P.G.; Koshel, T.A.; Koliesnik, I.O.; Cherenok, S.O.; Kalchenko, O.I.; Kalchenko, V.I.; Komisarenko, S.V. Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J., 2011, 278(8), 1244-1251.
[148]
Vovk, A.I.; Kalchenko, V.I.; Cherenok, S.A.; Kukhar, V.P.; Muzychka, O.V.; Lozynsky, M.O. Calix[4]arene methylenebisphosphonic acids as calf intestine alkaline phosphatase inhibitors. Org. Biomol. Chem., 2004, 2(21), 3162-3166.
[149]
Vovk, A.I.; Tanchuk, V.Y.; Kononets, L.A.; Cherenok, S.O.; Drapailo, A.B.; Kalchenko, V.I.; Kukhar, V.P. A novel approach to the design of phosphonate inhibitors of protein tyrosine phosphatase. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(4), 958-960.
[150]
Migianu-Griffoni, E.; Mbemba, C.; Burgada, R.; Lecerclé, D.; Taran, F.; Lecouvey, M. Design and synthesis of new polyphosphorylated upper-rim modified calix[4]arenes as potential and selective chelating agents of uranyl ion. Tetrahedron, 2009, 65(7), 1517-1523.
[151]
Vovk, A.I.; Kononets, L.A.; Tanchuk, V.Y.; Cherenok, S.O.; Drapailo, A.B.; Kalchenko, V.I.; Kukhar, V.P. Inhibition of Yersinia protein tyrosine phosphatase by phosphonate derivatives of calixarenes. Bioorg. Med. Chem. Lett., 2010, 20(2), 483-487.
[152]
Bansal, G.; Wright, J.E.I.; Kucharski, C.; Uludağ, H. A dendritic tetra(bisphosphonic acid) for improved targeting of proteins to bone. Angew. Chem. Int. Ed. Engl., 2005, 44(24), 3710-3714.
[153]
Sturtzl, G.; App, G.; Breistol, K.; Schwartsmann, G.; Hendriksj, H.R. A study of the delivery-targeting concept applied to antineoplasic drugs active on human osteosarcoma. I. Synthesis and biological activity in nude mice carrying human osteosarcoma xenografts of gem-Bisphosphonic methotrexate analogues. Eur. J. Med. Chem., 1992, 27, 825-833.
[154]
Song, H.; Zhang, J.; Liu, X.; Deng, T.; Yao, P.; Zhou, S.; Yan, W. Development of a bone targeted thermosensitive liposomal doxorubicin formulation based on a bisphosphonate modified non-ionic surfactant. Pharm. Dev. Technol., 2016, 6, 1-8.
[155]
Bhushan, K.R.; Tanaka, E.; Frangioni, J.V. Synthesis of conjugatable bisphosphonates for molecular imaging of large animals. Angew. Chem. Int. Ed. Engl., 2007, 46(42), 7969-7971.
[156]
Houghton, T.J.; Tanaka, K.S.E.; Kang, T.; Dietrich, E.; Lafontaine, Y.; Delorme, D.; Ferreira, S.S.; Viens, F.; Arhin, F.F.; Sarmiento, I.; Lehoux, D.; Fadhil, I.; Laquerre, K.; Liu, J.; Ostiguy, V.; Poirier, H.; Moeck, G.; Parr, T.R.; Far, A.R. Linking bisphosphonates to the free amino groups in fluoroquinolones: Preparation of osteotropic prodrugs for the prevention of osteomyelitis. J. Med. Chem., 2008, 51(21), 6955-6969.
[157]
Pieper, T.; Keppler, B.K. Quinolone antibacterial agents linked to osteotropic bisphosphonate moieties. Phosphorus Sulfur Silicon Relat. Elem., 2001, 170(1), 5-14.
[158]
Kashemirov, B.A.; Bala, J.L.F.; Chen, X.; Ebetino, F.H.; Xia, Z.; Russell, R.G.G.; Coxon, F.P.; Roelofs, A.J.; Rogers, M.J.; McKenna, C.E. Fluorescently labeled risedronate and related analogues: “Magic Linker” synthesis. Bioconjug. Chem., 2008, 19(12), 2308-2310.
[159]
Sun, S.; Błażewska, K.M.; Kashemirov, B.A.; Roelofs, A.J.; Coxon, F.P.; Rogers, M.J.; Ebetino, F.H.; McKenna, M.J.; McKenna, C.E. Synthesis and characterization of novel fluorescent nitrogen-containing bisphosphonate imaging probes for bone active drugs. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(4), 970-971.
[160]
Skarpos, H.; Osipov, S.N.; Vorob’eva, D.V.; Odinets, I.L.; Lork, E.; Röschenthaler, G.V. Synthesis of functionalized bisphosphonates via click chemistry. Org. Biomol. Chem., 2007, 5(15), 2361-2367.
[161]
Keglevich, G.; Grün, A.; Garadnay, S.; Greiner, I. Rational synthesis of dronic acid derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190(12), 2116-2124.
[162]
Keglevich, G.; Grün, A.; Aradi, K.; Garadnay, S.; Greiner, I. Optimized synthesis of N-heterocyclic dronic acids; closing a black-box era. Tetrahedron Lett., 2011, 52(21), 2744-2746.
[163]
Hecker, S.J.; Erion, M.D. Prodrugs of phosphates and phosphonates. J. Med. Chem., 2008, 51(8), 2328-2345.
[164]
Ahlmark, M.; Vepsalainen, J.; Taipale, H.; Niemi, R.; Jarvinen, T. Clodronic acid dianhydrides as bioreversible prodrugs of clodronate. J. Med. Chem., 1999, 42, 1473-1476.
[165]
Hochdörffer, K.; Abu Ajaj, K.; Schäfer-Obodozie, C.; Kratz, F. Development of novel bisphosphonate prodrugs of doxorubicin for targeting bone metastases that are cleaved PH dependently or by Cathepsin B: Synthesis, cleavage properties, and binding properties to hydroxyapatite as well as bone matrix. J. Med. Chem., 2012, 55(17), 7502-7515.
[166]
Mckenna, C.E.; Kashemirov, B.A.; Li, Z.M. Synthetic approaches to biologically active bisphosphonates and phosphonocarboxylates. Phosphorus Sulfur Silicon Relat. Elem., 1999, 144(1), 313-316.
[167]
Mckenna, C.E.; Kashemirov, B.A. Recent progress in carbonylphosphonate chemistry. Top. Curr. Chem., 2002, 220, 201-238.
[168]
Khare, A.B.; McKenna, C.E. An Improved synthesis of tetraalkyl diazomethylenediphosphonates and alkyl diazo(dialkoxyphosphoryl)acetates. Synthesis, 1991, 5, 405-406.
[169]
Chamberlain, B.T.; Upton, T.G.; Kashemirov, B.A.; McKenna, C.E. α-Azido bisphosphonates: Synthesis and nucleotide analogues. J. Org. Chem., 2011, 76(12), 5132-5136.
[170]
McKenna, C.E.; Kashemirov, B.A.; Rozé, C.N. Carbonylbisphosphonate and (diazomethylene)bisphosphonate analogues of AZT 5′-diphosphate. Bioorg. Chem., 2002, 30(6), 383-395.
[171]
Cantat, T.; Ricard, L.; Le Floch, P.; Mézailles, N. Phosphorus-stabilized geminal dianions. Organometallics, 2006, 25(21), 4965-4976.
[172]
Heuclin, H.; Grünstein, D.; Le Goff, X-F.; Le Floch, P.; Mézailles, N. Phosphorus stabilized carbene complexes: Bisphosphonate dianion synthesis, reactivity and DFT studies. J. Chem. Soc., Dalton Trans., 2010, 39(2), 492-499.
[173]
Kunnas-Hiltunen, S.; Haukka, M.; Vepsäläinen, J.; Ahlgrén, M. Alkaline and alkaline earth metal complexes of dianhydride derivatives of clodronate and their hydrolysis products. J. Chem. Soc., Dalton Trans., 2010, 39(22), 5310-5318.
[174]
Kunnas-Hiltunen, S.; Matilainen, M.; Vepsäläinen, J.J.; Ahlgrén, M. X-Ray Diffraction study of bisphosphonate metal complexes: Mg, Sr and Ba complexes of (dichloromethylene)bisphosphonic acid P,P′-dibenzoyl anhydride. Polyhedron, 2009, 28(1), 200-204.
[175]
Arabadzhiev, V.; Petrov, G.; Haupt, E. Complexes of lanthanide nitrates with alkyl esters of bromomethylenediphosphonic acid. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(10), 2594-2604.
[176]
Kontturi, M.; Kunnas-Hiltunen, S.; Vepsäläinen, J.J.; Ahlgrén, M. X-Ray diffraction study of polymeric Mg complexes of clodronic acid. Solid State Sci., 2006, 8(9), 1098-1102.
[177]
Kontturi, M.; Peräniemi, S.; Vepsäläinen, J.J.; Ahlgrén, M. X-Ray diffraction study of bisphosphonate metal complexes: Mg and Ca complexes of (dichloromethylene)bisphosphonic acid P,P′-diisopropyl ester. Polyhedron, 2005, 24(2), 3050-3309.
[178]
Kontturi, M.; Laurila, E.; Mattsson, R.; Peräniemi, S.; Vepsäläinen, J.J.; Ahlgrén, M. Structures of bisphosphonate metal complexes: Zinc and cadmium complexes of clodronate and its partial ester derivatives. Inorg. Chem., 2005, 44(7), 2400-2406.
[179]
Hagan, D.O.; Rzepa, H.S. Some influences of fluorine in bioorganic chemistry. Chem. Commun. , 1997, 7, 645-652.
[180]
Blackburn, G.M.; England, D.A.; Kolkmann, F. Monofluoro- and difluoromethylenebisphosphonic acids: Isopolar analogues of pyrophos-phoric acid. Chem. Commun., 1981, 17, 930-932.
[181]
McKenna, C.E.; Shen, P. Fluorination of methanediphosphonate esters by perchloryl fluoride. Synthesis of fluoromethanediphosphonic acid and difluoromethanediphosphonic acid. J. Org. Chem., 1981, 46, 4573-4576.
[182]
Burton, D.J.; Pietrzyk, D.J.; Ishihara, T.; Fonong, T.; Flynn, R.M. Preparation, stability and acidity of difluoromethylene bisphosphonic acid. J. Fluor. Chem., 1982, 20, 617-626.
[183]
Gresser, M.J.; Tracey, A.S.; Parkinson, K.M. Vanadium(V) oxyanions: The Interaction of vanadate with pyrophosphate, phosphate, and arsenate. J. Am. Chem. Soc., 1986, 108(20), 6229-6234.
[184]
Crans, D.C.; Holder, A.A.; Saha, T.K.; Prakash, G.K.S.; Yousufuddin, M.; Kultyshev, R.; Ismail, R.; Goodman, M.F.; Borden, J.; Florian, J. Chelation of vanadium(V) by difluoromethylene bisphosphonate, a structural analogue of pyrophosphate. Inorg. Chem., 2007, 46(16), 6723-6732.
[185]
Spelta, V.; Mekhalfia, A.; Rejman, D.; Thompson, M.; Blackburn, G.M.; North, R.A. ATP analogues with modified phosphate chains and their selectivity for rat P2X2 and P2X2/3 receptors. Br. J. Pharmacol., 2003, 140(6), 1027-1034.
[186]
Zamecnik, P.C.; Kim, B.; Gao, M.J.; Taylor, G.; Blackburn, G.M. Analogues of diadenosine 5′,5”'-P1,P4-tetraphosphate (Ap4A) as potential anti-platelet-aggregation agents. Proc. Natl. Acad. Sci. USA, 1992, 89(6), 2370-2373.
[187]
Arabshahi, L.; Khan, N.N.; Butler, M.; Noonan, T.; Brown, N.C.; Wright, G.E. (Difluoromethylene)phosphates of guanine nucleosides as probes of DNA polymerases and G proteins. Biochemistry, 1990, 29(29), 6820-6826.
[188]
McLennan, A.G.; Taylor, G.E.; Prescott, M.; Blackburn, G.M. Recognition of β,β′-substituted and αβ,α’β'-disubstituted phosphonate analogs of bis(5′-adenosyl) tetraphosphate by the bis(5′-nucleosidyl)-tetraphosphate pyrophosphohydrolases from Artemia embryos and Escherichia coli. Biochemistry, 1989, 28(9), 3868-3875.
[189]
Biriukov, A.I.; Tarusova, N.B.; Amontov, S.G.; Osipova, T.I.; Goriachenkova, E.V. Organophosphonate analogs of biologically active compounds. 14. Halophosphonate analogs of ATP as acetyl CoA carboxylase inhibitors. Bioorg. Khim., 1985, 11(5), 598-605.
[190]
Quimby, O.T.; Curry, J.D.; Nicholson, D.A.; Prentice, J.B.; Roy, C.H. J. Organomet. Chem., 1968, 13, 199-207.
[191]
McKenna, C.E.; Pham, P.T.T.; Rassier, M.E.; Dousa, T.P. α-Halo[(phenylphosphinyl)methyl]phosphonates as specific inhibitors of Na+ -phosphate cotransport across renal brush border membrane. J. Med. Chem., 1992, 35, 4885-4892.
[192]
Hebel, D.; Kirk, K.L.; Kinjo, J.; Kovács, T.; Lesiak, K.; Balzarini, J.; De Clercq, E.; Torrence, P.F. Synthesis of a difluoromethylenephosphonate analogue of AZT 5′-triphosphate and its inhibition of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett., 1991, 1(7), 357-360.
[193]
Hamilton, C.J.; Roberts, S.M.; Shipitsin, A. Synthesis of a potent inhibitor of HIV reverse transcriptase. Chem. Commun. , 1998, 10, 1087-1088.
[194]
Laux, W.H.G.; Périgaud, C.; Imbach, J.L.; Gosselin, G. Synthesis of new PMEA diphosphate mimics. Nucleosides Nucleotides, 1999, 18, 1003-1004.
[195]
Marma, M.S.; Khawli, L.A.; Harutunian, V.; Kashemirov, B.A.; McKenna, C.E. Synthesis of α-fluorinated phosphonoacetate derivatives using electrophilic fluorine reagents: Perchloryl fluoride versus 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (Selectfluor®). J. Fluor. Chem., 2005, 126(11–12), 1467-1475.
[196]
Xu, Y.; Qian, L.; Prestwich, G.D. Synthesis of α-fluorinated phosphonates from α-fluorovinylphosphonates: A new route to analogues of lysophosphatidic acid. Org. Lett., 2003, 5(13), 2267-2270.
[197]
Boyle, N.A. Difluoromethylenediphosphonate: A convenient, scalable, and high-yielding synthesis. Org. Lett., 2006, 8(2), 187-189.
[198]
Bala, J.L.F.; Kashemirov, B.; McKenna, C.E. Synthesis of a novel bisphosphonic acid alkene monomer. Synth. Commun., 2010, 40(23), 3577-3584.
[199]
Inoue, S.; Okauchi, T.; Minami, T. New synthesis of gem-bis(phosphono)ethylenes and their applications. Synthesis, 2003, 13, 1971-1976.
[200]
Marma, M.S.; Xia, Z.; Stewart, C.; Coxon, F.; Dunford, J.E.; Baron, R.; Kashemirov, B.A.; Ebetino, F.H.; Triffitt, J.T.; Russell, R.G.G.; McKenna, C.E. Synthesis and biological evaluation of α-halogenated bisphosphonate and phosphonocarboxylate analogues of risedronate. J. Med. Chem., 2007, 50(24), 5967-5975.
[201]
McKenna, C.E.; Khawli, L.A.; Ahmad, W.; Pham, P.; Bongartz, J. Synthesis of α-halogenated methanediphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 1988, 37(1-2), 1-12.
[202]
Vepsäläinen, J.; Nupponen, H.; Pohjala, E. Bisphosphonic compounds. I. Preparation of 13C- and 14C-labelled clodronate. J. Labelled Comp. Radiopharm., 1991, 29(11), 1191-1196.
[203]
Vepsäläinen, J.; Nupponen, H.; Pohjala, E.; Ahlgren, M.; Vainiotalo, P. Bisphosphonic compounds. Part 3. Preparation and identification of tetraalkyl methylene- and (α-halomethylene)bisphosphonates by mass spectrometry. J. Chem. Soc. Perkin Trans, 1992, 2, 835-842.
[204]
Quimby, O.T.; Prentice, J.B. Hypohalogenation of gem-diphosphonate and phosphonoacetate esters. U. S. Patent 3,772,412, June 26 1971.
[205]
Roy, C.H. Substituted methylenediphosphonic acid compounds and detergent compositions containing them., Patent Appl. GB 1026366, March 18, . 1966.
[206]
Hutchinson, D.W.; Semple, G. Synthesis of alkylated methylene bisphosphonates via organothallium intermediates. J. Organomet. Chem., 1985, 291(2), 145-151.
[207]
Nicholson, D.A. Halogenated methylenediphosphonates, malonates, and phosphonoacetates., Patent Appl. DE 1948475, June 27,. 1970.
[208]
Niemi, R.; Vepsäläinen, J.; Taipale, H.; Järvinen, T. Bisphosphonate prodrugs: Synthesis and in vitro evaluation of novel acyloxyalkyl esters of clodronic acid. J. Med. Chem., 1999, 42(24), 5053-5058.
[209]
Vepsäläinen, J. Bisphosphonate prodrugs: A new synthetic strategy to tetraacyloxymethyl esters of methylenebisphosphonates. Tetrahedron Lett., 1999, 40, 8491-8493.
[210]
Webster, M.R.; Zhao, M.; Rudek, M.A.; Hann, C.L.; Freel Meyers, C.L. Bisphosphonamidate clodronate prodrug exhibits potent anticancer activity in non-small-cell lung cancer cells. J. Med. Chem., 2011, 54(19), 6647-6656.
[211]
Liu, X.; Adams, H.; Blackburn, G.M. Synthesis of novel ‘supercharged’ analogues of pyrophosphoric acid syntheses of two novel halomethanetriyltrisphosphonic acids are based on an improved preparation of methanetriyl-trisphosphonic acid. Chem. Commun. , 1998, 23, 2619-2620.
[212]
Iorga, B.; Savignac, P. Controlled monohalogenation of phosphonates. Part IV. Selective synthesis of monohalogenomethylenediphosphonates. J. Organomet. Chem., 2001, 624(1-2), 203-207.
[213]
Nicholson, D.A. Process for the preparation of monohalogenated methylenediphosphonate esters, and phosphonoacetate esters.U.S. Patent 3,627,842, December 24,. 1968.
[214]
Nicholson, D.A.; Vaughn, H. New approaches to the preparation of halogenated methylenebisphosphonates. J. Org. Chem., 1971, 36(13), 1835-1836.
[215]
Seyferth, D.; Marmor, R.S. Halomethyl-metal compounds. J. Organomet. Chem., 1973, 59, 237-245.
[216]
Hutchinson, D.W.; Semple, G. The dehalogenation of dihalogeno-methylenebisphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 1984, 21(1), 1-4.
[217]
Burton, D.J.; Flynn, R.M. Preparation of F-methylene bisphosphonates. J. Fluor. Chem., 1980, 15, 263-266.
[218]
Flynn, R.M.; Burton, D.J. Synthetic and mechanistic aspects of halo-F-methylphosphonates. J. Fluor. Chem., 2011, 132(10), 815-828.
[219]
Bystrom, C.E.; Pettigrew, D.W.; Remington, S.J.; Branchaud, B.P. ATP analogs with non-transferable groups in the γ position as inhibitors of glycerol kinase. Bioorg. Med. Chem. Lett., 1997, 7(20), 2613-2616.
[220]
Nair, H.K.; Guneratne, R.D.; Modak, A.S.; Burton, D.J. Synthesis of novel fluorinated bisphosphonates and bisphosphonic acids. J. Org. Chem., 1994, 59(9), 2393-2398.
[221]
Davisson, V.J.; Woodside, A.B.; Neal, T.R.; Stremler, K.E.; Muehlbacher, M.; Poulter, C.D. Phosphorylation of isoprenoid alcohols. J. Org. Chem., 1986, 51, 4768-4779.
[222]
Blackburn, G.M.; Taylor, G.E. Syntheses of some fluorine-containing halomethanephosphonate and methylenebisphosphonate esters. J. Organomet. Chem., 1988, 348, 55-61.
[223]
Hutchinson, D.W.; Thornton, D.M. A Simple synthesis of monofluoro-methylene bisphosphonic acid. J. Organomet. Chem., 1988, 340(1), 93-99.
[224]
Shipitsin, A.V.; Victorova, L.S.; Shirokova, E.A.; Dyatkina, N.B.; Goryunova, L.E.; Beabealashvilli, R.S.; Hamilton, C.J.; Roberts, S.M.; Krayevsky, A. New modified nucleoside 5′-triphosphates: Synthesis, properties towards DNA polymerases, stability in blood serum and antiviral activity. J. Chem. Soc., Perkin Trans. 1, 1999, 8, 1039-1050.
[225]
Obayashi, M.; Ito, E.; Matsui, K.; Kondo, K. (Diethylphosphinyl)di-fluoromethyllithium. Preparation and synthetic application. Tetrahedron Lett., 1982, 23(22), 2323-2326.
[226]
Surya Prakash, G.K.; Zibinsky, M.; Upton, T.G.; Kashemirov, B.A.; McKenna, C.E.; Oertell, K.; Goodman, M.F.; Batra, V.K.; Pedersen, L.C.; Beard, W.A.; Shock, D.D.; Wilson, A.H.; Olah, G.A. Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15693-15698.
[227]
Biller, S.A.; Forster, C. The Synthesis of isoprenoid (phosphinyl-methyl)phosphonates. Tetrahedron, 1990, 46(19), 6645-6658.
[228]
Biller, S.A.; Forster, C.; Gordon, E.M.; Harrity, T.; Scott, W.A.; Ciosek, C.P. Isoprenoid (phosphinylmethyl)phosphonates as inhibitors of squalene synthetase. J. Med. Chem., 1988, 31(10), 1869-1871.
[229]
Zhang, X.; Qiu, W.; Burton, D.J. The preparation of (EtO)2P(O)CFHZnBr and (EtO)2P(O)CFHCu and their utility in the preparation of functionalized α-fluorophosphonates. Tetrahedron Lett., 1999, 40(14), 2681-2684.
[230]
Blackburn, G.M.; Brown, D.; Martin, S.J.; Parratt, M.J. Studies on selected transformations of some fluoromethanephosphonate esters. J. Chem. Soc., Perkin Trans. 1, 1987, 181-186.
[231]
Aboujaoude, E.E.; Lietje, S.; Collignon, N.; Teulade, M.P.; Savignac, P. Conversion directe “in situ” des alkyl en vinylphosphonates. Tetrahedron Lett., 1985, 26(37), 4435-4438.
[232]
Teulade, M.P.; Savignac, P.; Aboujaoude, E.E.; Liétge, S.; Collignon, N. Alkylidènediphosphonates et vinylphosphonates: Une démarche synthétiques sélective par voie carbanionique. J. Organomet. Chem., 1986, 304(3), 283-300.
[233]
Savignac, P.; Teulade, M.; Aboujaoude, E.E.; Collignon, N. Preparation of diphenylvinylphosphine oxides by the PCP process. Choice of the leaving group. Synth. Commun., 1987, 17(13), 1559-1568.
[234]
Iorga, B.; Eymery, F.; Savignac, P. An efficient synthesis of tetraethyl fluoromethylenediphosphonate and derivatives from diethyl dibromofluoro-methylphosphonate. Tetrahedron Lett., 1998, 39, 4477-4480.
[235]
Martynov, B.I.; Sokolov, V.B.; Aksinenko, A.Y.; Goreva, T.V.; Epishina, T.A.; Pushin, A.N. Convenient method for the synthesis and some transformations of the lithium salt of bis(diethoxyphosphoryl) fluoromethane Russ. Chem. Bull. (Engl. Transl.),, 1998, 47(10), 1983-1984..
[236]
Perlikowska, W.; Modro, A.M.; Modro, T.A.; Mphahlele, M.J. Lithiation of diethyl trichloromethylphosphonate and the transformations of the α-lithiated derivative. J. Chem. Soc. Perkin, 1996, 1, 2611-2613.
[237]
Lowen, G.T.; Almond, M.R. A novel synthesis of phosphonates from diethyl (trichloromethy1)phosphonate. J. Org. Chem., 1994, 59(11), 4548-4550.
[238]
Bruce, J.I.; Dickins, R.S.; Govenlock, L.J.; Gunnlaugsson, T.; Lopinski, S.; Lowe, M.P.; Parker, D.; Peacock, R.D.; Perry, J.J.B.; Aime, S.; Botta, M. The selectivity of reversible oxy-anion binding in aqueous solution at a chiral europium and terbium center: Signaling of carbonate chelation by changes in the form and circular polarization of luminescence emission. J. Am. Chem. Soc., 2000, 122(40), 9674-9684.
[239]
Beier, P.; Opekar, S.; Zibinsky, M.; Bychinskaya, I.; Prakash, G.K.S. A new route to α-alkyl-α-fluoromethylenebisphosphonates. Org. Biomol. Chem., 2011, 9(11), 4035-4038.
[240]
Hutchinson, D.W.; Semple, G. Relative reactivities of tetraalkyl esters of methylene bisphosphonic acid. J. Organomet. Chem., 1986, 309, C7-C10.
[241]
Opekar, S.; Beier, P. 1,4-Addition of tetraethyl fluoromethylene-bisphosphonate to α,β-unsaturated compounds. J. Fluor. Chem., 2011, 132(5), 363-366.
[242]
Yuan, C.; Li, C.; Ding, Y. A New and facile route to 2-substituted 1,1-cyclopropanediylbis(phosphonic acids). Synthesis, 1991, 854-857.
[243]
Coleman, R.E.; McCloskey, E.V. Bisphosphonates in oncology. Bone, 2011, 49(1), 71-76.
[244]
Major, P.P.; Lipton, A.; Berenson, J.; Hortobagyi, G. Oral bisphosphonates: A review of clinical use in patients with bone metastases. Cancer, 2000, 88(1), 6-14.
[245]
Rogers, M.J.; Crockett, J.C.; Coxon, F.P.; Mönkkönen, J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone, 2011, 49(1), 34-41.
[246]
Frith, J.C.; Mönkkönen, J.; Blackburn, G.M.; Russell, R.G.; Rogers, M.J. Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(β,γ-dichloromethylene) triphosphate, by mammalian cells in vitro. J. Bone Miner. Res., 1997, 12(9), 1358-1367.
[247]
Rogers, M.J.; Brown, R.J.; Hodkin, V.; Blackburn, G.M.; Russell, R.G.; Watts, D.J. Bisphosphonates are incorporated into adenine nucleotides by human aminoacyl-TRNA synthase enzymes. Biochem. Biophys. Res. Commun., 1996, 224(3), 863-869.
[248]
Ko, H.; Carter, R.L.; Cosyn, L.; Petrelli, R.; de Castro, S.; Besada, P.; Zhou, Y.; Cappellacci, L.; Franchetti, P.; Grifantini, M.; Van Calenbergh, S.; Harden, T.K.; Jacobson, K.A. Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists. Bioorg. Med. Chem., 2008, 16(12), 6319-6332.
[249]
Shirokova, E.A.; Shipitsin, A.V.; Victorova, L.S.; Dyatkina, N.B.; Goryunova, L.E.; Beabealashvilli, R.S.; Hamilton, C.J.; Roberts, S.M.; Krayevsky, A.A. Modified nucleoside 5′-triphosphonates as a new type of antiviral agents. Nucleosides Nucleotides, 1999, 18(4-5), 1027-1028.
[250]
Blackburn, G.M.; Kent, D.E.; Kolkmann, F. Three new β,γ-methylene analogues of adenosine triphosphate. Chem. Commun., 1981, (22), 1188-1190.
[251]
Blackburn, G.M.; Kent, D.E.; Kolkmann, F. The synthesis and metal binding characteristics of novel, isopolar phosphonate analogues of nucleotides. J. Chem. Soc., Perkin Trans. 1, 1984, 1119-1125.
[252]
Davisson, V.J.; Davis, D.R.; Dixit, V.M.; Poulter, C.D. Synthesis of nucleotide 5′-diphosphates from 5′-O-tosyl nucleosides. J. Org. Chem., 1987, 52(9), 1794-1801.
[253]
Stremler, K.E.; Poulter, C.D. Methane- and difluoromethanediphosphonate analogs of geranyl diphosphate: Hydrolysis-inert alternate substrates. J. Am. Chem. Soc., 1987, 109(18), 5542-5544.
[254]
Dunn, C.J.; Galinet, L.A.; Wu, H.; Nugent, R.A.; Schlachter, S.T.; Staite, N.D.; Aspar, D.G.; Elliot, G.A.; Essani, N.A.; Rohloff, N.A.; Smith, R.J. Demonstration of novel anti-arthritic effects of diphosphonates. J. Pharm. Exp. Med, 1993, 266(3), 16911698.
[255]
Osterman, T.; Kippo, K.; Laurén, L.; Hannuniemi, R.; Sellman, R. Effect of clodronate on established collagen-induced arthritis in rats. Inflamm. Res., 1995, 44(6), 258-263.
[256]
Osterman, T.; Kippo, K.; Laurén, L.; Hannuniemi, R.; Sellman, R. Effect of clodronate on established adjuvant arthritis. Rheumatol. Int., 1994, 14(4), 139-147.
[257]
Danenberg, H.D. Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 2002, 106(5), 599-605.
[258]
Wang, G.; Boyle, N.; Chen, F.; Rajappan, V.; Fagan, P.; Brooks, J.L.; Hurd, T.; Leeds, J.M.; Rajwanshi, V.K.; Jin, Y.; Prhavc, M.; Bruice, T.W.; Cook, P.D. Synthesis of AZT 5′-triphosphate mimics and their inhibitory effects on HIV-1 reverse transcriptase. J. Med. Chem., 2004, 47(27), 6902-6913.
[259]
Coe, D.M.; Roberts, S.M.; Storer, R. The potential of carbocyclic nucleosides for the treatment of AIDS: Synthesis of some diphosphoryl-phosphonates possessing potent activity against HIV-coded reverse transcriptase. J. Chem. Soc., Perkin Trans. 1, 1992, 20, 2695-2704.
[260]
Catterall, J.B.; Cawston, T.E. Drugs in development : Bisphosphonates and metalloproteinase inhibitors. Arthritis Res. Ther., 2003, 5(1), 12-24.
[261]
Prentice, J.B.; Quimby, O.T.; Grabenstetter, R.J.; Nicholson, D.A. Interaction of acylating agents and phosphorus(III) sources. I. Intermediacy of condensed species in the formation of (1-hydrocyethylidene) diphosphonic acid. J. Am. Chem. Soc., 1972, 94(17), 6119-6124.
[262]
Rao, D.V.N.S.; Dandala, R.; Narayanan, G.; Lenin, R.; Sivakumaran, M.; Naidu, A. novel procedure for the synthesis of 1-hydroxy-1,1-bisphosphonic acids using phenols as medium. Synth. Commun., 2007, 37(24), 4359-4365.
[263]
Lenin, R.; Raju, R.M.; Rao, D.V.N.S.; Ray, U.K. Microwave-assisted efficient synthesis of bisphosphonatelLibraries: A useful procedure for the preparation of bisphosphonates containing nitrogen and sulfur. Med. Chem. Res., 2013, 22(4), 1624-1629.
[264]
Kieczykowski, G.R.; Jobson, R.B.; Melillo, D.G.; Reinhold, D.F.; Grenda, V.J.; Shinkai, I. Preparation of (4-amino-1-hydroxybutylidene)bisphosphonic acid sodium salt. J. Org. Chem., 1995, 60(8), 8310-8312.
[265]
Agapkina, J.; Yanvarev, D.; Anisenko, A.; Korolev, S.; Vepsäläinen, J.; Kochetkov, S.; Gottikh, M. Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives. Eur. J. Med. Chem., 2014, 73, 73-82.
[266]
Ali, S.A.; Al-Muallem, H.A.; Al-Hamouz, O.C.S.O.; Estaitie, M.K. Synthesis of a novel zwitterionic bisphosphonate cyclopolymer containing residues of alendronic acid. React. Funct. Polym., 2015, 86, 80-86.
[267]
Kovacs, R.; Nagy, D.; Grün, A.; Balogh, G.; Garadnay, S.; Greiner, I.; Keglevich, G. Optimized synthesis of etidronate. Lett. Drug Des. Discov., 2013, 10(8), 733-737.
[268]
Keglevich, G.; Grun, A.; Kovacs, R.; Garadnay, S.; Greiner, I. Rational synthesis of ibandronate and alendronate. Curr. Org. Synth., 2013, 10(4), 640-645.
[269]
Kovács, R.; Grün, A.; Németh, O.; Garadnay, S.; Greiner, I.; Keglevich, G. The synthesis of pamidronic derivatives in different solvents: An optimization and a mechanistic study. Heteroatom Chem., 2014, 25(3), 186-193.
[270]
Grun, A.; Kovács, R.; Nagy, D.I.; Garadnay, S.; Greiner, I.; Keglevich, G. The rational synthesis of fenidronate. Lett. Org. Chem., 2014, 11(5), 368-373.
[271]
Blaser, B.; Worms, K.H.; Germscheid, H.G.; Wollmann, K. Uber 1-hydroxyalkan-1,1- diphosphonsauren. Z. Anorg. Allg. Chem., 1971, 381(3), 247-259.
[272]
Szajnman, S.H.; Bailey, B.N.; Docampo, R.; Rodriguez, J.B. Bisphosphonates derived from fatty acids are potent growth inhibitors of Trypanosoma cruzi. Bioorg. Med. Chem. Lett., 2001, 11(6), 789-792.
[273]
Deprèle, S.; Kashemirov, B.A.; Hogan, J.M.; Ebetino, F.H.; Barnett, B.L.; Evdokimov, A.; McKenna, C.E. Farnesyl pyrophosphate synthase enantiospecificity with a chiral risedronate analog,[6,7-dihydro-5H-cyclopenta[c]pyridin-7-yl(hydroxy)methylene]bis(phosphonic acid) (NE-10501): Synthetic, structural, and modeling studies. Bioorg. Med. Chem. Lett., 2008, 18(9), 2878-2882.
[274]
Sanders, J.M.; Song, Y.; Chan, J.M.W.; Zhang, Y.; Jennings, S.; Kosztowski, T.; Odeh, S.; Flessner, R.; Schwerdtfeger, C.; Kotsikorou, E.; Meints, G.A.; Gómez, A.O.; González-Pacanowska, D.; Raker, A.M.; Wang, H.; van Beek, E.R.; Papapoulos, S.E.; Morita, C.T.; Oldfield, E. Pyridinium-1-yl bisphosphonates are potent inhibitors of farnesyl diphosphate synthase and bone resorption. J. Med. Chem., 2005, 48(8), 2957-2963.
[275]
McConnel, R.L.; Coover, H.W. Preparation of 1-hydroxyalkylidenediphosphonates. J. Am. Chem. Soc., 1956, 78, 4450-4452.
[276]
Fitch, J.; Moedritzer, K.N.M.R. study of the P-C(OH)-P to P-C-O-P rearrangement : tetraethyl 1-hydroxyalkylidenediphosphonates. J. Am. Chem. Soc., 1962, 84(3), 1876-1879.
[277]
Turhanen, P.A.; Vepsäläinen, J.J. The First synthesis of novel (1-alkoxycarbonyloxyethylidene)-1,1-bisphosphonic acid derivatives taking advantage of the rearrangement characteristic of the tetramethyl ester of etidronate. Synthesis, 2005, 13, 2119-2121.
[278]
Turhanen, P.A.; Vepsäläinen, J.J. Strategies for the preparation of (1-acetyloxyethylidene)-1,1-bisphosphonic acid derivatives. Synthesis, 2004, 7, 992-994.
[279]
Niemi, R.; Turhanen, P.; Vepsäläinen, J.; Taipale, H.; Järvinen, T. Bisphosphonate prodrugs: Synthesis and in vitro evaluation of alkyl and acyloxymethyl esters of etidronic acid as bioreversible prodrugs of etidronate. Eur. J. Pharm. Sci., 2000, 11(2), 173-180.
[280]
Bénech, J.M.; El Manouni, D.; Leroux, Y. Nouvelle methode de preparation d’esters hydroxy bisphosphoniques symetriques. Phosphorus Sulfur Silicon Relat. Elem., 1996, 113(1–4), 295-298.
[281]
Ruel, R.; Bouvier, J.; Young, R.N. Single-step preparation of 1-hydroxybisphosphonates via addition of dialkyl phosphite potassium anions to acid chlorides. J. Org. Chem., 1995, 60(16), 5209-5213.
[282]
Turhanen, P.A.; Niemi, R.; Peräkylä, M.; Järvinen, T.; Vepsäläinen, J.J. First synthesis of etidronate partial amides starting from PCl3. Org. Biomol. Chem., 2003, 1(18), 3223-3226.
[283]
Kolodiazhnyi, O.I.; Kolodiazhna, O.O. New catalyst for phosphonylation of C=X electrophiles. Synth. Commun., 2012, 42(11), 1637-1649.
[284]
Kolodiazhnyi, O.I.; Gryshkun, E.V.; Kolodiazhna, A.O.; Kachkovskyi, G.O.; Kolodiazhna, O.O.; Sheiko, S.Y.; Zemlianoi, V.N. New methods for the synthesis of phosphonic analogues of natural compounds. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(4), 644-651.
[285]
Kolodyazhnaya, O.O.; Kolodyazhnyi, O.I. Pyridinium perchlorate: A new catalyst for the reaction of trialkyl phosphites with the C=X electrophiles. Russ. J. Gen. Chem., 2011, 81(2), 307-314.
[286]
Kolodyazhnaya, O.O.; Kolodyazhnyi, O.I. Chiral N-Moc-pyrrolidine bisphosphonate. Russ. J. Gen. Chem., 2011, 81(1), 145-146.
[287]
Kolodyazhnaya, A.O.; Kolodyazhnaya, O.O.; Kolodyazhnyi, O.I. An efficient method for the phosphonation of C=X compounds. Russ. J. Gen. Chem., 2010, 80(4), 709-722.
[288]
Kolodyazhnaya, O.O.; Kolodyazhnyi, O.I.; Cherkasov, R.A.; Garifzyanov, A.R.; Davletshina, N.V.; Koshkin, S.A. Synthesis of α-hydroxy(polyprenyl) bisphosphonates. Russ. J. Gen. Chem., 2014, 84(4), 647-653.
[289]
Kolodiazhna, O.O.; Kolodiazhna, A.O.; Kolodiazhnyi, O.I. Highly effective catalyst for the reaction of trialkylphosphites with C=X electrophiles. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(4), 796-798.
[290]
Mallard, I.; Benech, J.M.; Lecouvey, M.; Leroux, Y. P-Substituted benzyl hydroxybisphosphonates: Synthesis and hydrolysis. Phosphorus Sulfur Silicon Relat. Elem., 2000, 162(1), 15-23.
[291]
Lebedev, A.V.; Sheludyakov, V.D.; Ustinova, O.L.; Lebedeva, A.B. Silylation of hydroxyalkylidenebisphosphonic acids. Zh. Obs. Khim, 2012, 82(6), 1044-1045.
[292]
Lecouvey, M.; Mallard, I.; Bailly, T.; Burgarda, R.; Leroux, Y. A mild and efficient one-pot synthesis of 1-hydroxymethylene-1,1-bisphosphonic acids. Preparation of new tripod ligands. Tetrahedron Lett., 2001, 42(48), 8475-8478.
[293]
Margiotta, N.; Capitelli, F.; Ostuni, R.; Natile, G. A New dinuclear platinum complex with a nitrogen-containing geminal bisphosphonate as potential anticancer compound specifically targeted to bone tissues. J. Inorg. Biochem., 2008, 102(12), 2078-2086.
[294]
Kalchenko, V.I.; Cherenok, S.O.; Kosterin, S.O.; Lugovskoy, E.V.; Komisarenko, S.V.; Vovk, A.I.; Tanchuk, V.Y.; Kononets, L.A.; Kukhar, V.P. Calixarene phosphonous acids: Synthesis and biological activity. Phosphorus Sulfur Silicon Relat. Elem., 2013, 188(1-3), 232-237.
[295]
Kachbi Khelfallah, S.; Monteil, M.; Deschamp, J.; Gager, O.; Migianu-Griffoni, E.; Lecouvey, M. Synthesis of novel polymerizable molecules bearing bisphosphonate. Org. Biomol. Chem., 2015, 13(46), 11382-11392.
[296]
Gluz, E.; Mizrahi, D.M.; Margel, S. Synthesis and characterization of new poly(ethylene glycol)bisphosphonate vinylic monomer and non-fluorescent and NIR-fluorescent bisphosphonate micrometer-sized particles. Polymer , 2013, 54(2), 565-571.
[297]
Guenin, E.; Degache, E.; Liquier, J.; Lecouvey, M. Synthesis of 1-hydroxymethylene-1,1-bis(phosphonic acids) from acid anhydrides: Preparation of a new cyclic 1-acyloxymethylene-1,1-bis(phosphonic acid). Eur. J. Org. Chem., 2004, (14), 2983-2987.
[298]
Migianu, E.; Mallard, I.; Bouchemal, N.; Lecouvey, M. One-pot synthesis of 1-hydroxymethylene-1,1-bisphosphonate partial esters. Tetrahedron Lett., 2004, 45(23), 4511-4513.
[299]
Monteil, M.; Guenin, E.; Migianu, E.; Lutomski, D.; Lecouvey, M. Bisphosphonate prodrugs: Synthesis of new aromatic and aliphatic 1-hydroxy-1,1-bisphosphonate partial esters. Tetrahedron, 2005, 61(31), 7528-7537.
[300]
Hardouin, J.; Gu, E.; Caron, M.; Lecouvey, M. Fragmentation patterns of new esterified and unesterified aromatic 1-hydroxymethylene-1,1-bisphosphonic acids by ESI-MS. J. Mass Spectrosc, 2008, 43(2), 1037-1044.
[301]
Migianu, E.; Guénin, E.; Lecouvey, M. New efficient synthesis of 1-hydroxymethylene-1,1-bisphosphonate monomethyl esters. Synlett, 2005, (3), 425-428.
[302]
Guénin, E.; Monteil, M.; Bouchemal, N.; Prangé, T.; Lecouvey, M. Syntheses of phosphonic esters of alendronate, pamidronate and neridronate. Eur. J. Org. Chem., 2007, 20, 3380-3391.
[303]
Monteil, M.; Migianu-Griffoni, E.; Sainte-Catherine, O.; Di Benedetto, M.; Lecouvey, M. Bisphosphonate prodrugs: Synthesis and biological evaluation in HuH7 hepatocarcinoma cells. Eur. J. Med. Chem., 2014, 77, 56-64.
[304]
Migianu, E.; Monteil, M.; Even, P.; Lecouvey, M. Novel approach to nucleoside-5′-(1-hydroxymethylene-1,1-bisphosphonates): Synthesis of new AZT analogues. Nucleosides Nucleotides Nucleic Acids, 2005, 24(2), 121-133.
[305]
Egorov, M.; Aoun, S.; Padrines, M.; Redini, F.; Heymann, D.; Lebreton, J.; Mathé-Allainmat, M. A One-pot synthesis of 1-hydroxy-1,1-bis(phosphonic acid)s starting from the corresponding carboxylic acids. Eur. J. Org. Chem., 2011, 2011(35), 7148-7154.
[306]
Rao, D.V.N.S.; Dandala, R.; Lenin, R. A Facile one pot synthesis of bisphosphonic acids and their sodium salts from nitriles. ARKIVOC, 2007, 14, 34-38.
[307]
Haelters, J-P.; Couthon-Gourvès, H.; Le Goff, A.; Simon, G.; Corbel, B.; Jaffrès, P-A. Synthesis of functionalized alkoxyalkylidene gem-bisphosphonates. Tetrahedron, 2008, 64(27), 6537-6543.
[308]
Ollivier, R.; Sturtz, G.; Legendre, J-M.; Jacolot, G.; Turzo, A. Synthese de nouveaux acides methane diphosphoniques monosubstitues et etude in vivo chez l’animal de leurs complexes metalliques avec le technetium 99m. Eur. J. Med. Chem., 1986, 21(2), 103-110.
[309]
Szajnman, S.H.; García Liñares, G.; Moro, P.; Rodriguez, J.B. New insights into the chemistry of gem-bis(phosphonates): Unexpected rearrangement of Michael-type acceptors. Eur. J. Org. Chem., 2005, 17, 3687-3696.
[310]
Burgos-Lepley, C.E.; Mizsak, S.A.; Nugent, R.A.; Johnson, R.A. Tetraalkyl oxiranylidenebis(phosphonates). Synthesis and reactions with nucleophiles. J. Org. Chem., 1993, 58(15), 4159-4161.
[311]
Clezardin, P.; Fournier, P.; Boissier, S.; Peyruchaud, O. In vitro and in vivo antitumor effects of bisphosphonates. Curr. Med. Chem., 2003, 10, 173-180.
[312]
Fournier, P.; Boissier, S.; Filleur, S.; Guglielmi, J.; Cabon, F. Colombel.; Clézardin, P. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res., 2002, 62(22), 6538-6544.
[313]
Hamma-Kourbali, Y.; Di Benedetto, M.; Ledoux, D.; Oudar, O.; Leroux, Y.; Lecouvey, M.; Kraemer, M. A Novel non-containing-nitrogen bisphosphonate inhibits both in vitro and in vivo angiogenesis. Biochem. Biophys. Res. Commun., 2003, 310(3), 816-823.
[314]
Sanders, J.M.; Gómez, A.O.; Mao, J.; Meints, G.A.; Van Brussel, E.M.; Burzynska, A.; Kafarski, P.; González-Pacanowska, D.; Oldfield, E. 3-D QSAR investigations of the inhibition of Leishmania major farnesyl pyrophosphate synthase by bisphosphonates. J. Med. Chem., 2003, 46(24), 5171-5183.
[315]
Dyba, M. Jezowska-Bojczuk; Kiss, E.; Kiss, T.; Kozlowski, H.; Leroux, Y.; Manouni, D. El. 1-Hydroxyalkane-1,1-diyldiphosphonates as potent chelating agents for metal ions. Potentiometric and spectroscopic studies of copper (II) co-ordination. J. Chem. Soc., Dalton Trans., 1996, 1119-1123.
[316]
Ebetino, F.H. Soyke, Edward G.J.; Dansereau, S.M.B One active bisphosphonate mechanistic studies: Synthesis of a 2-pyrindinylmethylene bisphosphonic acid via a photolytic ring contraction. Heteroatom Chem., 2000, 11(7), 442-448.
[317]
Russell, R.G.G.; Croucher, P.I.; Rogers, M.J. Bisphosphonates: Pharmacology, mechanisms of action and clinical uses. Osteoporos. Int., 1999(Suppl. 2), 66-80.
[318]
Martin, M.B.; Arnold, W.; Heath, H.T.; Urbina, J.A.; Oldfield, E. Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis. Biochem. Biophys. Res. Commun., 1999, 263(3), 754-758.
[319]
Hosfield, D.J.; Zhang, Y.; Dougan, D.R.; Broun, A.; Tari, L.W.; Swanson, R.V.; Finn, J. Structural basis for bisphosphonate-mediated inhibition of isoprenoid biosynthesis. J. Biol. Chem., 2004, 279(10), 8526-8529.
[320]
Mao, J.; Mukherjee, S.; Zhang, Y.; Cao, R.; Sanders, J.M.; Song, Y.; Meints, G.A.; Gao, Y.G.; Mukkamala, D.; Hudock, M.P.; Oldfield, E. Solid-state NMR, crystallographic, and computational investigation of bisphosphonates and farnesyl diphosphate synthase-bisphosphonate complexes. J. Am. Chem. Soc., 2006, 128(45), 14485-14497.
[321]
Rogers, M.J. New insights into the molecular mechanism of action of bisphosphonates. Curr. Pharm. Des., 2003, 9, 2643-2658.
[322]
Cao, R.; Chen, C.K.M.; Guo, R.T.; Wang, A.H.J.; Oldfield, E. Structures of a potent phenylalkyl bisphosphonate inhibitor bound to farnesyl and geranylgeranyl diphosphate synthases. Proteins, 2008, 73(2), 431-439.
[323]
Xie, Y.; Ding, H.; Qian, L.; Yan, X.; Yang, C.; Xie, Y. Synthesis and biological evaluation of novel bisphosphonates with dual activities on bone in vitro. Bioorg. Med. Chem. Lett., 2005, 15(13), 3267-3270.
[324]
Yamagishi, S.; Abe, R.; Inagaki, Y.; Nakamura, K.; Sugawara, H.; Inokuma, D.; Nakamura, H.; Shimizu, T.; Takeuchi, M.; Yoshimura, A.; Bucala, R.; Shimizu, H.; Imaizumi, T. Minodronate, a newly developed nitrogen-containing bisphosphonate, suppresses melanoma growth and improves survival in nude mice by blocking vascular endothelial growth factor signaling. Am. J. Pathol., 2004, 165(6), 1865-1874.
[325]
Kubo, T.; Shimose, S.; Matsuo, T.; Tanaka, K.; Yasunaga, Y.; Sakai, A.; Ochi, M. Inhibitory effects of a new bisphosphonate, minodronate, on proliferation and invasion of a variety of malignant bone tumor cells. J. Orthop. Res., 2006, 24(6), 1138-1144.
[326]
Larsen, R.H.; Murud, K.M.; Akabani, G.; Hoff, P.; Bruland, Ø.S.; Zalutsky, M.R. 211At- and 131I-labeled bisphosphonates with high in vivo stability and bone accumulation. J. Nucl. Med., 1999, 40, 1197-1203.
[327]
Larsen, R.H.; Bruland, Ø.S. Preliminary evaluation of a new radiolabelled bisphosphonates. J. Lab. Comp. Radiopharm, 1998, 41, 823-830.
[328]
Arstad, E.; Hoff, P.; Skattebøl, L.; Skretting, A.; Breistøl, K. Studies on the synthesis and biological properties of non-carrier-added [(125)I and (131)I]-labeled arylalkylidenebisphosphonates: Potent bone-seekers for diagnosis and therapy of malignant osseous lesions. J. Med. Chem., 2003, 46(14), 3021-3032.
[329]
Eubank, W.B.; Reeves, R.E. Analogue inhibitors for the pyrophosphate-dependent phosphofructokinase of entamoeba histolytica and their effect on culture growth. J. Parasitol., 1982, 68, 599-602.
[330]
Rogers, M.J.; Xiong, X.J.; Brown, R.J.; Watts, D.J.; Russell, R.G.G.; Bayless, A.V.; Ebetino, F.H. Structure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae. Mol. Pharmacol., 1995, 47, 398-402.
[331]
Grove, J.E.; Brown, R.J.; Watts, D.J. The intracellular target for the antiresorptive aminobisphosphonate drugs in Dictyostelium discoideum is the enzyme farnesyl diphosphate synthase. J. Bone Miner. Res., 2000, 15(5), 971-981.
[332]
Mucha, A.; Kafarski, P.; Berlicki, Ł.; Berlicki, L. Remarkable Potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. J. Med. Chem., 2011, 54(17), 5955-5980.
[333]
Ploger, V.W.; Schindler, N.; Wollmann, K.; Worms, K.H. 1-Aminoalkan-1,1-diphosphonsauren. Z. Anorg. Allg. Chem., 1972, 389, 119-128.
[334]
Rusina, M.N.; Balashova, T.M.; Zhadanov, B.V.; Tsitrina, A.Y.; Polyakova, I.A. Synthesis and complexing properties of aminomethylenebisphosphonic acid. Zh. Obshch. Khim, 1977, 47(8), 1721-1726.
[335]
Alferiev, I.S.; Bobkov, S.Y.; Kotlyarevskii, I.L. Iminobis(methylenedi-phosphonic) acid. Izv. Akad. Nauk SSSR Ser. Khim.,, 1987, 4, 865-868.
[336]
Fukuda, M.; Okamoto, Y.; Sakurai, H. Synthesis of dialkylamino-methylenediphosphonic acids. Bull. Chem. Soc. Jpn., 1975, 48(3), 1030.
[337]
Wu, M.; Chen, R.; Huang, Y. Convenient synthesis of analogs of aminomethylene gem‐diphosphonic acid from amines without catalyst. Synth. Commun., 2004, 34(8), 1393-1398.
[338]
Prishchenko, A.A.; Livantsov, M.V.; Novikova, O.P.; Livantsova, L.I.; Ershov, I.S.; Petrosyan, V.S. Synthesis and reactivity of the new trimethylsilyl esters of aminomethylenebisorganophosphorus acids. Heteroatom Chem., 2013, 24(5), 355-360.
[339]
Roth, A.G.; Drescher, D.; Yang, Y.; Redmer, S.; Uhlig, S.; Arenz, C. Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew. Chem. Int. Ed. Engl., 2009, 48(41), 7560-7563.
[340]
Alferiev, I.S.; Bobkov, S.Y. Cyclic oligophosphonic anhydrides stable in aqueous media. Z. Naturforsh, 1992, 47b(9), 1213-1224.
[341]
Griffiths, V.; Hughes, J.M.; Brown, W.; Caesar, J.C.; Swetnam, S.P.; Cumming, S.A.; Kelly, J.D. The Synthesis of 1-amino-2-hydroxy- and 2-amino-l-hydroxy-substituted ethylene-l, l-bisphosphonic acids and their N-methylated derivatives. Tetrahedron, 1997, 53(52), 17815-17822.
[342]
Becker, C.S.; Chukanov, N.V.; Grigor’ev, I.A. New amino-bisphosphonate building blocks in the synthesis of bisphosphonic derivatives based on lead compounds. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190(7), 1201-1212.
[343]
Worms, K.H.; Blum, H. Amidingruppenhaltige geminale diphosphonsäuren. Liebigs Ann. Chem., 1982, 1982(2), 275-281.
[344]
Gross, H.; Costisella, B.; Gnauk, T.; Brennecke, L. Derivate der aminomethan-bis-phosphonsaure. J. Prakt. Chem., 1976, 318(1), 116-126.
[345]
Degenhardt, C. Use of tetraethyl dimethylaminomethylenediphosphonate in the synthesis of benzothiophene-2-acetic acid and other carboxylic acids. Synth. Commun., 1982, 12(6), 415-421.
[346]
Olive, G.; Jacques, A. Optimization, continuation and lack of the one-step diphosphorylation reaction. Assay of modification of the tetraethyl(pyrroli-dine-2,2-diyl)bisphosphonate. Phosphorus Sulfur Silicon Relat. Elem., 2003, 178(1), 33-46.
[347]
Olive, G.; Moigne, F.Le; Mercier, A.; Tordo, P. One-step gem-diphosphorylation of amides and lactams. Synth. Commun., 2000, 30(4), 619-627.
[348]
Qian, D.Q.; Shi, X.D.; Zeng, X.Z.; Cao, R.Z.; Liu, L.Z. Amidoalkylation of organophosphorus compounds with P-H bond by using Vilsmeier reagents. Tetrahedron Lett., 1997, 38(35), 6245-6246.
[349]
Qian, D.Q.; Shi, X.D.; Cao, R.Z.; Liu, L.Z. The synthesis and reactivity of alkylaminosubstituted methylenediphosphonates. Heteroatom Chem., 1999, 10(4), 271-276.
[350]
Olive, G.; Rockenbauer, A.; Rozanska, X.; Jacques, A.; Peeters, D.; German, A. Synthesis of new tetraethyl(N-alkyl-1-aminoethan-1,1-diyl)bisphos-phonates and ESR analysis of chemical exchange of derived nitroxides of acyclic aminobisphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(10), 2359-2369.
[351]
Yu, C.M.; Wang, B.; Chen, Z.W. A novel synthesis of alkylamino substituted methylenediphosphonates using bis(trichloromethyl) carbonate and RCONR1R2. Chin. J. Chem., 2008, 26(10), 1899-1901.
[352]
Wang, W.; Xu, G.; Cao, R.; Liu, L. Phosphites and hydridophosphorane. The reaction of PhCHC(O)NR2/P(O)Cl3 with phosphites and hydridophos-phoranes. Heteroatom Chem., 2000, 11(7), 512-517.
[353]
Qian, D.; Zeng, X.; Shi, X.; Cao, R. The reactions of hydridophosphorane with Vilsmeier reagents. Heteroatom Chem., 1997, 8(6), 517-520.
[354]
Olive, G.; Le Moigne, F.; Mercier, A.; Rockenbauer, A.; Tordo, P. Synthesis of tetraalkyl (pyrrolidine-2,2-diyl)bisphosphonates. J. Org. Chem., 1998, 63(17), 9095-9099.
[355]
Olive, G.; van Genderen, M.H.P.A. 1H, 13C, 31P and 15N NMR study of (pyrrolidine-2,2-diyl)bisphosphonic acid. Magn. Reson. Chem., 2000, 38(5), 379381.
[356]
Wang, A-E.; Chang, Z.; Sun, W-T.; Huang, P-Q. General and chemoselective bisphosphonylation of secondary and tertiary amides. Org. Lett., 2015, 17(3), 732-735.
[357]
Balashova, T.M.; Kolpakova, I.D. Synthesis of 1-aminobisphosphonic acids. Methods Prep. Chem. Drugs, 1973, 25, 11-14.
[358]
Serebrennikova, G.A.; Koltsova, G.N.; Chupin, V.V.; Chuvilin, A.N.; Rozenberg, G.Y.; Evstegneeva, R.P. Synthesis of 1-aminoethylidene bis(phosphonic acids). J. Gen. Chem. USSR, 1985, 55(2), 3900-393.
[359]
Dudko, A.V.; Bon, V.V.; Kozachkova, A.N.; Tsarik, N.V.; Pehnio, V.I. Synthesis and structure of 1-aminoethylidene-1,1-bisphosphonic acid. Ukr. Khim. Zh., 2008, 74, 104-108.
[360]
Kabak, L.V.; Kuzmina, N.E.; Khudenko, A.V.; Tomilov, A.P. Improved synthesis of 1-aminoethylidenediphosphonic acid. Russ. J. Gen. Chem., 2006, 76(10), 1673-1674.
[361]
Orlovskii, V.V.; Vovsi, B.A. Reaction of dialkyl phosphotes with nitriles. J. Gen. Chem. USSR, 1976, 46(2), 294-296.
[362]
Bandurina, T.A.; Konyukhov, V.N.; Ponomareva, O.A.; Barybin, A.S.; Pushkareva, Z.V. Synthesis and antitumor activity of aminophosphonic acids. Pharm. Chem. J., 1978, 12(11), 1428-1431.
[363]
Grigorovich, M.M.; Zhadanov, B.V.; Polyakova, I.A.; Yudina, E.A.; Kalinichenko, I.I.; Rykov, S.V. Synthesis of aminobisphosphonic acids. J. Gen. Chem. USSR, 1984, 54(5), 898-903.
[364]
Blum, H. Synthesis, properies and structure of new 1,1-diphosphonic acids. Z. Naturforsh, 1988, 43b(1), 75-81.
[365]
Suzuki, F.; Fujikawa, Y.; Yamamoto, S.; Mizutani, H.; Funabashi, C.; Ohya, T.; Ikai, T.; Oguchi, T. N-Pyridylaminomethylendiphosphonsäureverbindungen. Patent DE 2831578, July 20 1977.
[366]
Maier, L. Herstellung und eigenschaften von aminomethylendiphosphinaten und -diphosphonaten, RR1NCH[P(O)R2(OR3)]2 und derivaten. Phosphorus Sulfur Silicon Relat. Elem., 1981, 11(3), 311-322.
[367]
Ebetino, F.; Jamieson, L. The design and synthesis of bone-active phosphinic acid analogues: The pyridylaminomethane phosphonoalkylphosphinates. Phosphorus Sulfur Silicon Relat. Elem., 1990, 51(1), 23-26.
[368]
Mimura, M.; Hayashida, M.; Nomiyama, K.; Ikegami, S.; Iida, Y.; Tamura, M.; Hiyama, Y.; Ohishi, Y. Synthesis and evaluation of (piperidino-methylene)bis(phosphonic acid) derivatives as anti-osteoporosis agents. Chem. Pharm. Bull. , 1993, 41(11), 1971-1986.
[369]
Matczak-Jon, E.; Videnova-Adrabińska, V.; Burzyńska, A.; Kafarski, P.; Lis, T. Solid-state molecular organization and solution behavior of methane-1,1-diphosphonic acid derivatives of heterocyclic amines. The role of the topochemical ring modification and the intramolecular hydrogen bonds in monosubstituted piperid-1-ylmethane-1,1-diphosphonic acids. Chemistry Eur. J.,, 2005, 11(8), 2357-2372.
[370]
Kafarski, P.; Lejczak, B.; Forlani, G.; Gancarz, R.; Torreilles, C.; Grembecka, J.; Ryczek, A.; Wieczorek, P. Herbicidal derivatives of amino-methylenebisphosphonic acid. Part III. Structure-activity relationship. J. Plant Growth Regul., 1997, 16(3), 153-158.
[371]
Minaeva, L.I.; Patrikeeva, L.S.; Kabachnik, M.M.; Beletskaya, I.P.; Orlinson, B.S.; Novakov, I.A. Synthesis of novel aminomethylenebi-sphosphonates and bisphosphonic acids, containing adamantyl fragment. Heteroatom Chem., 2011, 22(1), 55-58.
[372]
Siva Prasad, S.; Jayaprakash, S.H.; Syamasundar, C.; Sreelakshmi, P.; Bhuvaneswar, C.; Vijaya Bhaskar, B.; Rajendra, W.; Nayak, S.K.; Suresh Reddy, C. Tween 20-/H2O promoted green synthesis, computational and antibacterial activity of amino acid substituted methylene bisphosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2015, 190(11), 2040-2050.
[373]
Kaboudin, B.; Alipour, S. A Microwave-assisted solvent- and catalyst-free synthesis of aminomethylene bisphosphonates. Tetrahedron Lett., 2009, 50(29), 4243-4245.
[374]
Reddy, G.C.S.; Reddy, M.V.N.; Reddy, N.B.; Reddy, C.S. Green synthesis of aminobisphosphonates under microwave irradiation. Phosphorus Sulfur Silicon Relat. Elem., 2010, 186(1), 74-80.
[375]
Bochno, M.; Berlicki, Ł. A Three-component synthesis of aminomethylenebis-H-phosphinates. Tetrahedron Lett., 2014, 55(1), 219-223.
[376]
Dąbrowska, E.; Burzyńska, A.; Mucha, A.; Matczak-Jon, E.; Sawka-Dobrowolska, W.; Berlicki, Ł.; Kafarski, P. Insight into the mechanism of three component condensation leading to aminomethylenebisphosphonates. J. Organomet. Chem., 2009, 694(23), 3806-3813.
[377]
Soloducho, J.; Gancarz, R.; Wieczorek, P.; Korf, J.; Hafner, J.; Lejczak, B.; Kafarski, P. Sposób wytwarzania nowych pochodnych kwasu aminometylenobisfosfonowego., Patent PL 172268, August 29. 1997.
[378]
Krutikov, V.I.; Erkin, A.V.; Pautov, P.A.; Zolotukhina, M.M. Heteryl- and arylaminomethylenebisphosphonates. Russ. J. Gen. Chem., 2003, 73(2), 187-191.
[379]
Kurzak, B.; Goldeman, W.; Szpak, M.; Matczak-Jon, E.; Kamecka, A. Synthesis of N-Methyl alkylaminomethane-1,1-diphosphonic acids and evaluation of their complex-formation abilities towards copper(II). Polyhedron, 2015, 85, 675-684.
[380]
Brel, V.K. Synthesis of gem-bisphosphonates with (3-aryl-4,5-dihydroisoxazol-5-yl)methylamino moiety. Mendeleev Commun., 2015, 25(3), 234-235.
[381]
Lacbay, C.M.; Mancuso, J.; Lin, Y.; Bennett, N.; Götte, M.; Tsantrizos, Y.S. Modular assembly of purine-like bisphosphonates as inhibitors of HIV-1 reverse transcriptase. J. Med. Chem., 2014, 57(17), 7435-7449.
[382]
Zhang, Q.M.; Serpe, M.J. Synthesis, characterization, and antibacterial properties of a hydroxyapatite adhesive block copolymer. Macromolecules, 2014, 47(22), 8018-8025.
[383]
Tauro, M.; Laghezza, A.; Loiodice, F.; Agamennone, M.; Campestre, C.; Tortorella, P. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Bioorg. Med. Chem., 2013, 21(21), 6456-6465.
[384]
Leung, C-Y.; Langille, A.M.; Mancuso, J.; Tsantrizos, Y.S. Discovery of thienopyrimidine-based inhibitors of the human farnesyl pyrophosphate synthase. Parallel synthesis of analogs via a trimethylsilyl ylidene intermediate. Bioorg. Med. Chem., 2013, 21(8), 2229-2240.
[385]
Leung, C.Y.; Park, J.; De Schutter, J.W.; Sebag, M.; Berghuis, A.M.; Tsantrizos, Y.S. Thienopyrimidine bisphosphonate (ThPBP) inhibitors of the human farnesyl pyrophosphate synthase: Optimization and characterization of the mode of inhibition. J. Med. Chem., 2013, 56(20), 7939-7950.
[386]
De Schutter, J.W.; Shaw, J.; Lin, Y.S.; Tsantrizos, Y.S. Design of potent bisphosphonate inhibitors of the human farnesyl pyrophosphate synthase via targeted interactions with the active site ‘capping’ phenyls. Bioorg. Med. Chem., 2012, 20(18), 5583-5591.
[387]
De Schutter, J.W.; Zaretsky, S.; Welbourn, S.; Pause, A.; Tsantrizos, Y.S. Novel bisphosphonate inhibitors of the human farnesyl pyrophosphate synthase. Bioorg. Med. Chem. Lett., 2010, 20(19), 5781-5786.
[388]
Takeuchi, M. Studies on novel bone resorption inhibitors. I. Synthesis and pharmacological activities of aminomethylenebisphosphonate derivatives. Chem. Pharm. Bull. , 1993, 41(4), 688-693.
[389]
Mlynarz, P.; Jewginski, M.; Sliwinska, S.; Latajka, R.; Schroeder, G.; Kafarski, P. Twin phosphorus atoms of tetraethyl 2-methyl-piperyd-1-ylmethylenebisphosphonates. Heteroatom Chem., 2007, 18(7), 774-781.
[390]
Shaddy, A.A.; Kamel, A.A.; Abdou, W.M. Synthesis, quantitative structure–activity relationship, and anti-inflammatory profiles of substituted 5- and 6- N-heterocycle bisphosphonate esters. Synth. Commun., 2013, 43(2), 236-252.
[391]
Veera Narayana Reddy, M.; Kim, J.; Jeong, Y.T. A Facile synthesis of aminomethylene bisphosphonates catalyzed by ytterbium perfluorooctanoate under ionic liquid condition. J. Fluor. Chem., 2012, 135, 155-158.
[392]
Kantoci, D.; Denike, J.K.; Wechter, W. Synthesis of aminobisphosphonate. Synth. Commun., 1996, 26(10), 2037-2043.
[393]
Sturtz, G.; Couthon, H.; Fabulet, O.; Mian, M.; Rosini, S. Synthesis of gem-bisphosphonic methotrexate conjugates and their biological response towards Walker’s osteosarcoma. Eur. J. Med. Chem., 1993, 28(11), 899-903.
[394]
Morioka, M.; Kamizono, A.; Takikawa, H.; Mori, A.; Ueno, H.; Kadowaki, S.; Nakao, Y.; Kato, K.; Umezawa, K. Design, Synthesis, and biological evaluation of novel estradiol-bisphosphonate conjugates as bone-specific estrogens. Bioorg. Med. Chem., 2010, 18(3), 1143-1148.
[395]
Reddy, R.; Dietrich, E.; Lafontaine, Y.; Houghton, T.J.; Belanger, O.; Dubois, A.; Arhin, F.F.; Sarmiento, I.; Fadhil, I.; Laquerre, K.; Ostiguy, V.; Lehoux, D.; Moeck, G.; Parr, T.R.; Far, A.R. Bisphosphonated benzoxazinorifamycin prodrugs for the prevention and treatment of osteomyelitis. ChemMedChem, 2008, 3(12), 1863-1868.
[396]
Bailly, T.; Burgada, R.; Prangé, T.; Lecouvey, M. Synthesis of tetradentate mixed bisphosphonates - new hydroxypyridinonate ligands for metal chelation therapy. Tetrahedron Lett., 2003, 44(1), 189-192.
[397]
El-Mabhouh, A.; Angelov, C.; McEwan, A.; Jia, G.; Mercer, J. Preclinical investigations of drug and radionuclide conjugates of bisphosphonates for the treatment of metastatic bone cancer. Cancer Biother. Radiopharm., 2004, 19(5), 627-640.
[398]
Xu, G.; Yang, C.; Liu, B.; Wu, X.; Xie, Y. Synthesis of new potential chelating agents: Catechol-bisphosphonate conjugates for metal intoxication therapy. Heteroat. Chem. 2004, 15(3), 251-257.
[399]
Palacios, F.; Gil, M.J.; de Marigorta, E.M.; Rodriguez, M. Synthesis and reactivity of imines derived from bisphosphonates and 3-phosphorylated 2-aza-1,3-dienes. Tetrahedron, 2000, 56(34), 6319-6330.
[400]
Beck, J.; Gharbi, S.; Herteg-Fernea, A.; Vercheval, L.; Bebrone, C.; Lassaux, P.; Zervosen, A.; Marchand-Brynaert, J. Aminophosphonic acids and aminobis(phosphonic acids) as potential inhibitors of penicillin-binding proteins. Eur. J. Org. Chem., 2009, 1, 85-97.
[401]
Jiang, Q.; Yang, L.; Hai, L.; Wu, Y. Synthesis of melphalan-gem-bisphosphonate conjugation to bone tumors and study of affinity to hydroxyapatite in vitro. Lett. Org. Synth, 2008, 86(28), 229-233.
[402]
Balakrishna, A.; Narayana Reddy, M.V.; Rao, P.V.; Kumar, M.A.; Kumar, B.S.; Nayak, S.K.; Reddy, C.S. Synthesis and bio-activity evaluation of tetraphenyl(phenylamino) methylene bisphosphonates as antioxidant agents and as potent inhibitors of osteoclasts in vitro. Eur. J. Med. Chem., 2011, 46(5), 1798-1802.
[403]
Prishchenko, A.A.; Livantsov, M.V.; Novikova, O.P.; Livantsova, L.I. Syntheses of N-Phenylaminomethylenediphosphonic and -diphosphinic acids and their derivatives. Russ. J. Gen. Chem., 2009, 79(9), 1936-1938.
[404]
McNulty, J.; Das, P. Development of a one-pot method for the homologation of aldehydes to carboxylic acids. Tetrahedron, 2009, 65(37), 7794-7800.
[405]
Masschelein, K.G.R.; Stevens, C.V. Double nucleophilic 1,2-addition of silylated dialkyl phosphites to 4-phosphono-1-aza-1,3-dienes: Synthesis of γ-phosphono-α-aminobisphosphonates. J. Org. Chem., 2007, 72(24), 9248-9252.
[406]
Rassukana, Y.; Davydova, K.; Onys’ko, P.; Sinitsa, A. Synthesis and rearrangements of -trichloroacetylfluoroacetimidoyl chloride and its phosphorylation products. J. Fluor. Chem., 2002, 117(2), 107-113.
[407]
Rassukana, Y.V.; Onys’ko, P.P.; Grechukha, A.G.; Sinitsa, A.D.N. -(Arylsulfonyl)trihaloacetimidoyl chlorides and their reactions with phosphites. Eur. J. Org. Chem., 2003, 2003(21), 4181-4186.
[408]
Yokomatsu, T.; Yoshida, Y.; Nakabayashi, N.; Shibuya, S. Simple and efficient method for preparation of conformationally constrained amino-methylene gem-diphosphonate derivatives via Beckmann rearrangement. J. Org. Chem., 1994, 59(24), 7562-7564.
[409]
Wu, M.; Chen, R.; Huang, Y. Simple, Efficient and one-pot method for synthesis of aminomethylene gem-diphosphonic acid derivatives from ketones via Beckmann rearrangement. Synthesis, 2004, 15, 2441-2444.
[410]
Goldeman, W.; Kluczyński, A.; Soroka, M. The preparation of N-substituted aminomethylidenebisphosphonates and their tetraalkyl esters via reaction of isonitriles with trialkyl phosphites and hydrogen chloride. Tetrahedron Lett., 2012, 53(39), 5290-5292.
[411]
Goldeman, W.; Nasulewicz-goldeman, A. Synthesis and antiproliferative activity of aromatic and aliphatic bis[aminomethylidene(bisphos-phonic)]acids. Bioorg. Med. Chem. Lett., 2014, 24(15), 3475-3479.
[412]
Goldeman, W.; Nasulewicz-Goldeman, A. Synthesis and biological evaluation of aminomethylidenebisphosphonic derivatives of β-arylethyl-amines. Tetrahedron, 2015, 71(21), 3282-3289.
[413]
Hirai, T.; Han, L-B. Palladium-catalyzed insertion of isocyanides into P(O)-H bonds: Selective formation of phosphinoyl imines and bisphosphinoyl-aminomethanes. J. Am. Chem. Soc., 2006, 128(23), 7422-7423.
[414]
Tanaka, K.S.E.; Dietrich, E.; Ciblat, S.; Métayer, C.; Arhin, F.F.; Sarmiento, I.; Moeck, G.; Parr, T.R.; Far, A.R. Synthesis and in vitro evaluation of bisphosphonated glycopeptide prodrugs for the treatment of osteomyelitis. Bioorg. Med. Chem. Lett., 2010, 20(4), 1355-1359.
[415]
Rodriguez, N.; Bailey, B.N.; Martin, M.B.; Oldfield, E.; Urbina, J.A.; Docampo, R. Radical cure of experimental cutaneous leishmaniasis by the bisphosphonate pamidronate. J. Infect. Dis., 2002, 186, 138-140.
[416]
Wang, L.; Kamath, A.; Das, H.; Li, L.; Bukowski, J.F. Antibacterial effect of human Vγ2Vδ2 T cells in vivo. J. Clin. Invest., 2001, 108(9), 1349-1357.
[417]
Kafarski, P.; Lejczak, B.; Forlani, G.; Chuiko, A.; Lozinsky, M.; Jasicka-Misiak, I.; Czekala, K.; Lipok, J. Recent advances in the research on herbicidally active aminomethylenebisphosphonic acids. Phosphorus Sulfur Silicon Relat. Elem., 1999, 144(1), 621-624.
[418]
Szabo, C.M.; Martin, M.B.; Oldfield, E. An Investigation of bone resorption and Dictyostelium discoideum growth inhibition by bisphosphonate drugs. J. Med. Chem., 2002, 45(14), 2894-2903.
[419]
Sietsema, W.K.; Ebetino, F.H.; Salvagno, A.M.; Bevan, J.A. Antiresorptive dose-response relationships across three generations of bisphosphonates. Drugs Exp. Clin. Res., 1989, 15, 389-396.
[420]
Forlani, G.; Giberti, S.; Berlicki, L.; Petrollino, D.; Kafarski, P. Plant P5C reductase as a new target for aminomethylenebisphosphonates. J. Agric. Food Chem., 2007, 55(11), 4340-4347.
[421]
Yajima, S.; Hara, K.; Sanders, J.M.; Yin, F.; Ohsawa, K.; Wiesner, J.; Jomaa, H.; Oldfield, E. Crystallographic structures of two bisphosphonate:1-deoxyxylulose-5-phosphate reductoisomerase complexes. J. Am. Chem. Soc., 2004, 126(35), 10824-10825.
[422]
Hudock, M.P.; Sanz-Rodríguez, C.E.; Song, Y.; Chan, J.M.W.; Zhang, Y.; Odeh, S.; Kosztowski, T.; Leon-Rossell, A.; Concepción, J.L.; Yardley, V.; Croft, S.L.; Urbina, J.A.; Oldfield, E. Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. J. Med. Chem., 2006, 49(1), 215-223.
[423]
Bhattacharya, A.K.; Thyagarajan, G. Michaelis-Arbuzov rearrangement. Chem. Rev., 1981, 81(4), 415-430.
[424]
Kukhar, V.P.; Sagina, E.I. Reactions of triphenylphosphine and trialkyl phosphites with benzotrichlorides. Zh. Obs. Khim, 1976, 46, 2686-2689.
[425]
Burn, A.J.; Cadogan, J.I.G.; Bunyan, P.J. The reactivity of organophosphorus compounds. XV. Reactions of diaroyl peroxides with triethyl phosphite. J. Chem. Soc., 1963, 1527-1533.
[426]
Birum, G.H. Alkyl phosphite esters of perchloromethyl mercaptan and insecticidal compositions comprising the same. U.S. Patent 2,818,364, October 26, 1953.
[427]
Birum, G.H. Organic phosphorus compounds. U.S. Patent 2,857,415, February 15> 1956.
[428]
Kukhar, V.P.; Pasternak, V.I.; Kirsanov, A.V. Reaction of trichloro-methylamines with trialkyl phosphites. Zh. Obs. Khim, 1972, 42(5), 1169-1170.
[429]
Schindler, N.; Ploger, W.; Hausler, G. 1-Aminoalkan-1,1-diphosphonsauren. Ger. Offen. 2237879. Chem. Abstr., 1974, 80, 121096.
[430]
Gross, H.; Costisella, B. PC-Spaltungen bei geminalen trisphosphoryl-verbindungen. J. Prakt. Chem., 1986, 328, 231-236.
[431]
Shokol, V.A.; Kozhushko, B.N.; Kirsanov, A.V. Trisphosphonic acids. J. Gen. Chem. USSR, 1973, 43, 547-553.
[432]
Silina, E.B.; Kozhyshko, B.N.; Shokol, B.A. Bromoalkylisocyanates and their phosphorylated derivatives. J. Gen. Chem. USSR, 1989, 59(3), 571-586.
[433]
Gross, H.; Keitel, I.; Costisella, B.; McKenna, C.E. Synthesis of acid-labile geminal bis- and trisphosphonic acids. Phosphorus Sulfur Silicon Relat. Elem., 1991, 61(3), 177-181.
[434]
Gross, H.; Costisella, B.; Keitel, I.; Ozegowski, S. α-Substituierte phosphonate. Synthese der methantrisphosphonsäure. Phosphorus Sulfur Silicon Relat. Elem., 1993, 83(1-4), 203-207.
[435]
Smits, J.P.; Wiemer, D.F. Synthesis and reactivity of alkyl-1,1,1-trisphosphonate esters. J. Org. Chem., 2011, 76(21), 8807-8813.
[436]
Liu, X.; Zhang, X.; Blackburn, G.M. “Supercharged” nucleotide analogues based on halomethanetrisphosphonic acids. Phosphorus Sulfur Silicon Relat. Elem., 1999, 144(1), 541-544.
[437]
Gross, H.; Ozegowski, S.; Costisella, B. α-Substituierte phosphonate. Phosphorus Sulfur Silicon Relat. Elem., 1990, 47(1-2), 7-13.
[438]
Prishchenko, A.A.; Livantsov, M.V.; Novikova, O.P.; Livantsova, L.I.; Milaeva, E.R. Synthesis of organophosphorus derivatives of 2,6-di-tert-butyl-4-methylphenol. Heteroatom Chem., 2008, 19(5), 490-494.
[439]
Prishchenko, A.A.; Livantsov, M.V.; Novikova, O.P.; Livantsova, L.I.; Shpakovskii, D.B.; Milaeva, E.R. Synthesis of phosphorus derivatives of 2,6-di-tert-butyl-4-methylphenol. Russ. J. Gen. Chem., 2006, 76(11), 1753-1756.
[440]
Ismagilov, R.K.; Moskva, V.V.; Kopilova, L.Y. Tetraethyl ester of 4-hydroxy-3,5-di-tert-butylbenzylidenebisphosphonic acid. Zh. Obs. Khim, 1989, 59(7), 1686-1687.
[441]
Gross, H.; Keitel, I.; Costisella, B. α-Substituierte phosphonate. Phosphorus Sulfur Silicon Relat. Elem., 1991, 62(1-4), 35-45.
[442]
Gross, H.; Keitel, I.; Costisella, B. Reaction of phosphorylated quinone methides with trivalent phosphoryl compounds. Phosphorus Sulfur Silicon Relat. Elem., 1993, 75(1-4), 83-86.
[443]
Gross, H.; Keitel, I.; Costisella, B. α-Substituierte phosphonate. Phosphorus Sulfur Silicon Relat. Elem., 1992, 70(1), 331-337.
[444]
Liu, X.; Brenner, C.; Guranowski, A.; Starzynska, E.; Blackburn, G.M. New tripodal, supercharged analogues of adenosine nucleotides: Inhibitors for the Fhit Ap3A hydrolase. Angew. Chem. Int. Ed. Engl., 1999, 38(9), 1244-1247.
[445]
Liu, X.; Zhang, X-R.; Michael Blackburn, G. Synthesis of three novel supercharged β,γ-methylene analogues of adenosine triphosphate. Chem. Commun. , 1997, 1, 87-88.
[446]
Matczak-Jon, E.; Kurzak, B.; Kafarski, P.; Woźna, A. Coordination abilities of piperyd-1-yl-methane-1,1-diphosphonic acids towards zinc(II), magnesium(II) and calcium(II): Potentiometric and NMR studies. J. Inorg. Biochem., 2006, 100(7), 1155-1166.
[447]
Matveev, S.V.; Bel’skii, F.I.; Matveeva, A.G.; Gukasova, A.Y.; Polikarpov, Y.M.; Kabachnik, M.I. N-Substituted 2-aminoethylidenediphosphonic acids as complexones. Russ. Chem. Bull., 1998, 47(9), 1736-1740.
[448]
Budnick, E.G. Chelation. U.S. Patent 4,116,990, September 26, 1978.
[449]
Sinyavskaya, E.I.; Konstantinovskaya, M.A.; Yatsimirskii, K.B.; Kukhar, V.P.; Sagina, E.I. Complexes of polyphosphonic acids. Russ. J. Inorg. Chem., 1981, 26(7), 971-975.
[450]
Reginster, J.Y.; Jeugmans-Huynen, A.M.; Albert, A.; Denis, D.; Deroisy, R.; Lecart, M.P.; Fontaine, M.A.; Collette, J.; Franchimont, P. Biological and clinical assessment of a new bisphosphonate, (chloro-4 phenyl) thiomethylene bisphosphonate, in the treatment of Paget’s disease of bone. Bone, 1988, 9(6), 349-354.
[451]
Blackburn, G.M.; Maciej, T.W. Trihalogenomethylsulphenylation of tetraisopropyl methylenebisphosphonates. J. Chem. Soc. Perkin Trans, 1985, 1, 1935-1939.
[452]
Mikołajczyk, M.; Bałczewski, P.; Grzejszczak, S. Sulphenylation of phosphonates. A facile synthesis of α-phosphoryl sulphides and S,S-acetals of oxomethanephosphonates. Synthesis, 1980, 2, 127-129.
[453]
Abdou, W.M.; Khidre, M.D.; Sediek, A.A. A practical synthesis of thio-bisphosphonic acids for the treatment of arthritis, based on the chemistry of tetraethyl methylene-1,1- bisphosphonate. Lett. Org. Chem., 2006, 3(8), 634-639.
[454]
Grisley, D. The Reactions of sodium dialkyl phosphonates with carbonyl sulfide and with carbon disulfide. J. Org. Chem., 1961, 26(7), 2544-2546.
[455]
Mikolajczyk, M.; Balczewski, P. Phosphonate chemistry and reagents in the synthesis of biologically active natural products. Top. Curr. Chem., 2003, 223, 161-214.
[456]
Masson, S. The reactions of phosphonodithioformates with nucleophilic reagents. Phosphorus Sulfur Silicon Relat. Elem., 1994, 95(1-4), 127-144.
[457]
Bulpin, A.; Masson, S.; Sene, A. Reaction of phosphonodithioformates with nucleophilic reagents; Potential synthetic uses. Phosphorus Sulfur Silicon Relat. Elem., 1990, 49-50, 135-138.
[458]
Bulpin, A.; Masson, S.; Sene, A. Reaction of trialkyl phosphites with phosphonodithioformates. Tetrahedron Lett., 1990, 3(8), 1151-1154.
[459]
Sene, A.; Masson, S.; Vazeux, M. Synthesis of α-phosphonylated phosphonium and sulfonium ylides: Study of their thermal behavior. Heteroatom Chem., 2009, 20(3), 164-171.
[460]
Costisella, B.; Ozegowski, S.; Gross, H. α-Substituierte phosphonates. Phosphorus Sulfur Silicon Relat. Elem., 1994, 86(1), 169-175.
[461]
Birum, G-H.; Mo, K. Hydroxy phenylthiophosphoranylidene organophosphorus compounds. U.S. Patent 4,071,584, January 3 1977.
[462]
Masson, S. First synthesis of α-(mercaptomethylene) diphosphonate via a phosphorothiolate mercaptophosphonate rearrangement. Tetrahedron, 1998, 54(8), 1523-1528.
[463]
Lemee, L.; Gulea, M.; Saquet, M.; Masson, S.; Collignon, N. E efficient synthesis of substituted 1-methylthiobut-3-enylidene-bisphosphonates. Heteroatom Chem., 1999, 10(4), 281-289.
[464]
Gross, H.; Seibt, H. α-Substituierte phosphonates. J. Prakt. Chem., 1970, 312, 475-482.
[465]
Masson, S.; Sene, A.; Hutchinson, D.W.; Thornton, D.M. The reaction between thiophosgene and trialkyl phosphites. Phosphorus Sulfur Silicon Relat. Elem., 1988, 40(1-2), 1-8.
[466]
Mönkkönen, H.; Auriola, S.; Lehenkari, P.; Kellinsalmi, M.; Hassinen, I.E.; Vepsäläinen, J.; Mönkkönen, J. A new endogenous ATP analog (ApppI) inhibits the mitochondrial Adenine Nucleotide Translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphos-phonates. Br. J. Pharmacol., 2006, 147(4), 437-445.
[467]
Breliere, J.C.; Emonds-Alt, X.; Garcia, G. Anti-inflammatory products derived from methylenediphosphonic acid, and process for their preparation. U. S. Patent 4,746,654, July 29, 1982.
[468]
Mönkkönen, J.; Makkonen, N.; Rogers, M.; Frith, J.; Auriola, S. Effects of bisphosphonates on the inflammatory processes of activated macrophages. Phosphorus Sulfur Silicon Relat. Elem., 1999, 144(1), 321-324.
[469]
Tanahashi, M.; Funaba, Y.; Tateishi, A.; Kawabe, N.; Nakadate-Matsushita, T. TRK-530 inhibits accumulation of superoxide anions derived from human polymorphonuclear leukocytes and bone resorption induced by activated osteoclasts. Pharmacology, 1998, 56(3), 125-130.
[470]
Tanahashi, M.; Koike, J.; Kawabe, N.; Nakadate-Matsushita, T. Inhibitory effect of TRK-530 on inflammatory cytokines in bone marrow of rats with adjuvant arthritis. Pharmacology, 1998, 56(5), 237-241.
[471]
Tanahashi, M.; Funaba, Y.; Itoh, M.; Kawabe, N.; Nakadate-Matsushita, T. Inhibitory effects of TRK-530 on rat adjuvant arthritis. Pharmacology, 1998, 56(5), 242-251.
[472]
Quimby, O.T.; Prentice, J.B.; Nicholson, D.A. Tetrasodium carbonyl-diphosphonate. J. Org. Chem., 1967, 32, 4111-4114.
[473]
Talanian, R.V.; Brown, N.C.; McKenna, C.E.; Ye, T.G.; Levy, J.N.; Wright, G.E. Carbonyldiphosphonate, a selective inhibitor of mammalian DNA polymerase delta. Biochemistry, 1989, 28(21), 8270-8274.
[474]
Peng, Z-Y.; Mansour, J.M.; Araujo, F.; Ju, J-Y.; McKenna, C.E.; Mansour, T.E. Some phosphonic acid analogs as inhibitors of pyrophosphate-dependent phosphorfructokinase. Biochem. Pharmacol., 1995, 49(1), 105-113.
[475]
McKenna, C.E.; Khawli, L.A.; Levi, J.N.; Harutunian, V.; Ye, T.G.; Bapat, A.; Starnes, M.C.; Cheng, Y.C. Nucleotide analogues as antiviral agents. ACS Symp. Ser., 1989, 401, 1-16.
[476]
Wright, G.E.; Hübscher, U.; Khan, N.N.; Focher, F.; Verri, A. Inhibitor analysis of calf thymus DNA polymerases α, δ and ε. FEBS Lett., 1994, 341(1), 128-130.
[477]
Khan, N.N.; Reha-Krantz, L.J.; Wright, G.E. Analysis of inhibitors of bacteriophage T4 DNA polymerase. Nucleic Acids Res., 1994, 22(2), 232-237.
[478]
Kabachnik, M.I.; Rossiiskaya, P.A. Reactions of chloroacetylchloride, trichloroacetyl chloride, and phosgene with trialkyl phosphites. Izv. Akad. Nauk SSSR Ser. Khim.,, 1957, 48-53.
[479]
Kabachnik, M.I.; Rossiiskaya, P.A. Izv. Akad. Nauk. Otd. Khim. Nauk, 1959, 1398. Chem. Abstr., 1959, 53, 6988e.
[480]
McKenna, C.; Khare, A.; Ju, J-Y.; Ll, Z-M.; Duncan, G.; Cheng, Y-C.; Kilkuskie, R. Synthesis and HIV-1 reverse transcriptase inhibition activity of functionalized pyrophosphate analogues. Phosphorus Sulfur Silicon Relat. Elem., 1993, 76(1), 139-142.
[481]
McKenna, C.E.; Kashemirov, B. Preparation and use of α-keto bisphosphonates. U. S. Patent WO 00/02889 A1, January 20 2000.
[482]
Sanchez, G.V. Synthetic studies of phosphonate derivatives., 2006.
[483]
Bonaz-krause, P.I.; Kashemirov, B.A.; Mckenna, C.E. Oxidative pathways of α-diazo phosphonates. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(10), 2271.
[484]
McKenna, C.E.; Keshemirov, B.A.; Sanchez, G.V. Alpha-hydroxy alphasubstituted methylenebisphosphonates and phosphonoacetates. U.S. Patent 0200679 A1, August 21, 2008.
[485]
McKenna, C.E.; Kashemirov, B.A.; Ju, J-Y. (E/Z) Stereoisomer assignment by 13C NMR in trifunctional phosphonate α-oximes and α-arylhdrazones. Chem. Commun., 1994, 1(10), 1211-1212.
[486]
Breuer, E. The Chemistry of Organophosphorus Compounds.The chemistry of organophosphorus compounds; Hartley, F.R., Ed.; John Wiley and Sons: New York, 1996, pp. 653-730.
[487]
Kim, D.Y.; Wiemer, D.F. Addition of allylindium reagents to acyl phosphonates: Synthesis of tertiary α-hydroxy alkylphosphonates. Tetrahedron Lett., 2003, 44(14), 2803-2805.
[488]
Yanachkov, I.B.; Stattel, J.M.; Wright, G.E. Nucleoside carbonyl(di- and triphosphates). J. Chem. Soc. Perkin Trans, 2001, 22, 3080-3084.
[489]
Kashemirov, B.A.; Rozé, C.N.; Mckenna, C.E. Carbonylbisphosphonate analogues of nucleoside 5′-diphosphates. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177, 2275.
[490]
Regitz, M. New methods of preparative organic chemistry. Transfer of diazo groups. Angew. Chem. Int. Ed. Engl., 1967, 6(9), 733-749.
[491]
Regitz, M.; Anschutz, W.; Bartz, W.; Liedhegener, A. Diazo-phosphinoxide und -phosphonester-synthese und einige eigenshaften. Tetrahedron Lett., 1968, 27, 3171-3174.
[492]
Regitz, M.; Anschutz, W.; Liedhegener, A. Synthese von diazo-phosphonsaureestern. Chem. Ber., 1968, 101(23), 3734-3743.
[493]
Regitz, M.; Maas, G. Diazo Compounds - Properties and Synthesis; Academic Press: Orlando, 1986.
[494]
Doyle, M.P.; McKervey, M.A. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides; John Wiley & Sons, 1998.
[495]
Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Asymmetric cyclopropanation reactions. Synthesis, 2014, 46(08), 979-1029.
[496]
Gillingham, D.; Fei, N. Catalytic X-H insertion reactions based on carbenoids. Chem. Soc. Rev., 2013, 42(12), 4918-4931.
[497]
Slattery, C.N.; Ford, A.; Maguire, A.R. Catalytic asymmetric C-H insertion reactions of α-diazocarbonyl compounds. Tetrahedron, 2010, 66, 6681-6705.
[498]
Colacot, T.J. An Overview on the applications of ‘Doyle catalysts’ in asymmetric cyclopropanation, cyclopropenation and C-H insertion reactions. Proc. Indian Acad. Sci, 2000, 112, 197-207.
[499]
Davies, H.M.L.; Beckwith, R.E.J. Catalytic enantioselective C-H activation by means of metal-carbenoid-induced C-H insertion. Chem. Rev., 2003, 103(8), 2861-2904.
[500]
Doyle, M.P.; Hu, W. Enantioselectivity for catalytic cyclopropanation with diazomalonates. ARKIVOC, 2003, 2003(7), 15-22.
[501]
Zhang, Y.; Wang, J. Recent development of reactions with α-diazocarbonyl compounds as nucleophiles. Chem. Commun. , 2009, 36, 5350-5361.
[502]
Zhang, Z.; Wang, J. Recent studies on the reactions of α-diazocarbonyl compounds. Tetrahedron, 2008, 64(28), 6577-6605.
[503]
Wang, J.; Chen, B.; Bao, J. Electronic effects of Rh(II)-mediated carbenoid intramolecular C - H Insertion: A linear free energy correlation study. J. Org. Chem., 1998, 63, 1853-1862.
[504]
Davies, H.M.; Antoulinakis, E.G. Recent progress in asymmetric intermolecular C-H activation by rhodium carbenoid intermediates. J. Organomet. Chem., 2001, 617-618.
[505]
Davies, H.M.L.; Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451(7177), 417-424.
[506]
Maas, G. New syntheses of diazo compounds. Angew. Chem. Int. Ed. Engl., 2009, 48(44), 8186-8195.
[507]
Wood, H.B.; Buser, H.P.; Ganem, B. Phosphonate analogs of chorismic acid: Synthesis and evaluation as mechanism-based inactivators of chorismate mutase. J. Org. Chem., 1992, 57(1), 178-184.
[508]
Bartlett, P.A.; Carruthers, N.I.; Winter, B.M.; Long, K.P. α-Diazophosphonic acids as potential photoaffinity labeling reagents: Synthesis, stability, and photochemistry. J. Org. Chem., 1982, 47(7), 1284-1291.
[509]
Maas, G.; Regitz, M. Substituentenabhängigkeit Des norcaradien/cyclo-heptatrien ‐gleichgewichtes‐untersucht an 7‐phoshphoryl‐und 7‐carbonyl-substituierten systemen. Chem. Ber., 1976, 109, 2039-2063.
[510]
Evans, D.A.; Britton, T.C.; Ellman, J.A.; Dorow, R.L. The Asymmetric synthesis of α-amino acids. Electrophilic azidation of chiral imide enolates, a practical approach to the synthesis of (R)- and (S)-α-azido carboxylic Acids. J. Am. Chem. Soc., 1990, 112(10), 4011-4030.
[511]
Wurz, R.P.; Lin, W.; Charette, A.B. Trifluoromethanesulfonyl azide: An efficient reagent for the preparation of α-cyano-α-diazo carbonyls and an α-sulfonyl-α-diazo carbonyl. Tetrahedron Lett., 2003, 44(49), 8845-8848.
[512]
Nemirowski, A.; Reisenauer, H.P.; Romanski, J.; Mloston, G.; Schreiner, P.R. Prototypical triplet alkyl phosphonatocarbenes. J. Phys. Chem. A, 2008, 112(50), 13244-13248.
[513]
Davies, H.M.L.; Pelphrey, P.M. Intermolecular C-H insertions of carbenoids.Organic Reactions; John Wiley & Sons: Hoboken, 2011, Vol. 75, pp. 75-212.
[514]
Cox, G.G.; Kulagowski, J.J.; Moody, C.J.; Sie, E.R.H.B. Rhodium(II) trifluoroacetamide; an excellent catalyst for carbenoid O-H insertion reactions. Synlett, 1992, 12, 975-976.
[515]
Cox, G.G.; Miller, D.J.; Moody, C.J.; Sie, E.R.H.B.; Kulagowski, J.J. Rhodium-carbenoid mediated O-H insertion reactions. O-H insertion vs. H-abstraction and effect of catalyst. Tetrahedron, 1994, 50(10), 3195-3212.
[516]
Clearfield, A. Metal Phosphonate Chemistry. Prog. Inorg. Chem., 1998, 47, 371.
[517]
Cabeza, A.; Olivera-Pastor, P.; Colodrero, R.M.P. Hybrid Materials Based on Multifunctional Phosphonic Acids. In: Tailored Organic-Inorganic Materials; Brunet, E.; Colon, J.L.; Clearfield, A., Eds.; John Wiley & Sons: Hoboken, 2015; pp. 137-192.
[518]
Mineral Scale Formation and Inhibition; Amjad, Z., Ed.; Springer: Boston, , 1995.
[519]
Shimizu, G.K.H.; Vaidhyanathan, R.; Taylor, J.M. Phosphonate and sulfonate metal organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1430.
[520]
Gagnon, K.J.; Perry, H.P.; Clearfield, A. Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev., 2012, 112(2), 1034-1054.
[521]
Galezowska, J.; Gumienna-Kontecka, E. Phosphonates, their complexes and bio-applications: A spectrum of surprising diversity. Coord. Chem. Rev., 2012, 256(1-2), 105-124.
[522]
Clearfield, A. Recent advances in metal phosphonate chemistry. Curr. Opin. Solid State Mater. Sci., 2002, 6, 495-506.
[523]
Vioux, A.; Bideau, J.; Mutin, P.H.; Leclercq, D. Hybrid organic-inorganic materials based on organophosphorus derivatives. Top. Curr. Chem., 2004, 232, 145-174.
[524]
Mutin, P.H.; Guerrero, G.; Vioux, A. Organic-inorganic hybrid materials based on organophosphorus coupling molecules: From metal phosphonates to surface modification of oxides. C. R. Chim., 2003, 6(8-10), 1153-1164.
[525]
Mutin, P.H.; Guerrero, G.; Vioux, A. Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem., 2005, 15(35-36), 3761-3768.
[526]
Bujoli, B.; Lane, S.M.; Nonglaton, G.; Pipelier, M.; Léger, J.; Talham, D.R.; Tellier, C. Metal phosphonates applied to biotechnologies: A novel approach to oligonucleotide microarrays. Chemistry .Eur. J.,, 2005, 11(7), 1980-1988.
[527]
Cheetham, A.K.; Férey, G.; Loiseau, T. Open-framework inorganic materials. Angew. Chem. Int. Ed. Engl., 1999, 38(22), 3268-3292.
[528]
Cheetham, A.K.; Rao, C.N.R.; Feller, R.K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem. Commun. , 2006, 46, 4780-4795.
[529]
Czaja, A.U.; Trukhan, N.; Müller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev., 2009, 38(5), 1284-1293.
[530]
Natarajan, S.; Mandal, S. Open-framework structures of transition-metal compounds. Angew. Chem. Int. Ed. Engl., 2008, 47(26), 4798-4828.
[531]
Jokiniemi, J.; Peräniemi, S.; Vepsäläinen, J.J.; Ahlgrén, M. A Structural study of alkaline earth metal complexes of (dichloromethylene)bis-phosphonic acid P-morpholinium- and P-pyrrolidinium-P′-methyl esters. CrystEngComm, 2008, 10(8), 1011-1017.
[532]
Kontturi, M.; Peräniemi, S.; Vepsäläinen, J.J.; Ahlgrén, M. The Catena-poly. diaquazinc(II)-μ-(diethyl dichloromethylenebisphosphonato)-κ3O,O′: O′′-tetraaquazinc(II)-μ-(diethyl dichloromethylenebisphosphonato)-κ3O:O′, O′′]. Acta Crystallogr., . 2005, E61(4), m635-m637.
[533]
Kontturi, M.; Peraniemi, S.; Vepsalainen, J.J.; Ahlgre, M. Catena-poly[diaquacadmium(II)-l-(diethyl dichloromethylenebisphosphonato)-tetra-aquacadmium(II)-l-(diethyl dichloro- methylenebisphosphonato). Acta Crystallogr., 2005, E61, m638-m640.
[534]
Kontturi, M.; Peräniemi, S.; Vepsäläinen, J.J.; Ahlgrén, M. Poly[tetra-aqua(μ7-hydrogen dichloromethylenebisphosphonato)(μ5-hydrogen dichlo-romethylenebisphosphonato) tribarium(II)]monohydrate]. Acta Crystallogr., 2004, 60C(11), m592-m594.
[535]
Nardelli, M.; Pelizzi, G.; Staibano, G.; Zucchi, E. A Structural study on metal binding of gem-diphosphonates, bone growth regulators. Inorg. Chim. Acta, 1983, 80, 259-271.
[536]
Kontturi, M.; Peräniemi, S.; Vepsäläinen, J.J.; Ahlgrén, M. Penta-aqua(dichloromethylenebisphosphonato)strontium(II). Acta Crystallogr., 2004, 60E(8), m1060-m1062.
[537]
Kontturi, M.; Peräniemi, S.; Vepsäläinen, J.J.; Ahlgrén, M. A Structural study of bisphosphonate metal complexes - three new polymeric structures of the calcium complex of clodronic Acid. Eur. J. Inorg. Chem., 2004, 13, 2627-2631.
[538]
Kontturi, M.; Vuokila-laine, E.; Peräniemi, S.; Pakkanen, T.T.; Vepsäläinen, J.J.; Ahlgrén, M. A structural study of bisphosphonate metal complexes., Alkaline earth metal complexes of (dichloromethylene)bisphosphonic acid. J. Chem. Soc. Dalt. Trans.,. 2002, 1969-1973.
[539]
Rasanen, J.P.; Pohjala, E.; Nikander, H.; Pakkanen, T.A. Ab initio studies on organophosphorus compounds. 5. Interactions of dianionic bisphosphonate compounds with magnesium and calcium. J. Phys. Chem., 1996, 100(20), 8230-8239.
[540]
Gumienna-Kontecka, E.; Jezierska, J.; Lecouvey, M.; Leroux, Y.; Kozlowski, H. Bisphosphonate chelating agents. J. Inorg. Biochem., 2002, 89(1-2), 13-17.
[541]
Song, H-H.; Zheng, L-M.; Lin, C-H.; Wang, S-L.; Gao, S. Effects of organic templates on directing the structures of nickel(II)−1-hydroxyethylidenediphosphonate compounds: A structural and magnetic study. Chem. Mater., 1999, 11(9), 2382-2388.
[542]
Soghomonian, V.; Diaz, R.; Haushalter, R.C.; O’Connor, C.J.; Zubieta, J. Hydrothermal syntheses and crystal structures of two oxovanadiumorganodiphosphonate phases: [H2N(C2H4)2NH2][(VO)2(O3PCH2CH2CH2PO3H)2], a “stair-step” structure incorporating an organic cationic template, and [(VO)(H2O)O3PCH2NH(C2H4)2NHCH2PO3]. Inorg. Chem., 1995, 34(17), 4460-4466.
[543]
Zheng, L-M.; Song, H-H.; Duan, C-Y. Xin. Template-directed one- and two-dimensional copper(II) diphosphonates. Inorg. Chem., 1999, 38(22), 5061-5066.
[544]
Song, H.H.; Zheng, L.M.; Wang, Z.; Yan, C.H.; Xin, X.Q. Zinc diphosphonates templated by organic amines. Inorg. Chem., 2001, 40(14), 5024-5029.
[545]
Song, H-H.; Yin, P.; Zheng, L-M.; Korp, J.D.; Jacobson, A.J.; Gao, S.; Xin, X.Q. Syntheses, crystal structures and magnetic properties of manganese(II)-hedp ompounds involving alkylenediamine templates (hedp = 1-hydroxyethylidene-diphosphonate). J. Chem. Soc., Dalton Trans., 2002, 13, 2752-2759.
[546]
Zheng, L.; Song, H.; Lin, C.; Wang, S.; Hu, Z.; Yu, Z. Xin. A novel iron(II) diphosphonate with a supramolecular open network structure. Inorg. Chem., 1999, 38(21), 4618-4619.
[547]
Ubios, A.M.; Braun, E.M.; Cabrini, R.L. Lethality due to uranium poisoning Is prevented by Ethane-1-Hydroxy-1,1-Biphosphonate (EHBP). Health Phys., 1994, 66, 540-544.
[548]
Henge´-Napoli, M.H.; Ansoborlo, E.; Chazel, V.; Houpert, P.; Paquet, F.; Gourmelon, P. Efficacy of ethane-1-hydroxy-1,1-bisphosphonate for the decorporation of uranium after intramuscular contamination in rats. Int. J. Radiat. Biol., 1999, 75(11), 1473-1477.
[549]
Jacopin, C.; Sawicki, M.; Plancque, G.; Doizi, D.; Taran, F.; Ansoborlo, E.; Amekraz, B.; Moulin, C. Investigation of the interaction between 1-hydroxyethane-1,1′-diphosphonic acid (HEDP) and uranium(VI). Inorg. Chem., 2003, 42(16), 5015-5022.
[550]
Bollinger, J.E.; Roundhill, D.M. Complexation of the uranyl ion with the aminomethylenediphosphonates MAMDP and AMDP. Inorg. Chem., 1994, 33(26), 6421-6424.
[551]
Reed, W.A.; Rao, L.; Zanonato, P.; Garnov, A.Y.; Powell, B.A.; Nash, K.L. Complexation of U(VI) with 1-hydroxyethane-1,1-diphosphonic acid in acidic to basic solutions. Inorg. Chem., 2007, 46(7), 2870-2876.
[552]
Sawicki, M.; Lecerclé, D.; Grillon, G.; Le Gall, B.; Sérandour, A.L.; Poncy, J-L.; Bailly, T.; Burgada, R.; Lecouvey, M.; Challeix, V.; Leydier, A.; Pellet-Rostaing, S.; Ansoborlo, E.; Taran, F. Bisphosphonate sequestering agents. Synthesis and preliminary evaluation for in vitro and in vivo uranium(VI) chelation. Eur. J. Med. Chem., 2008, 43(12), 2768-2777.
[553]
Zuohua, P.; Xianglin, J.; Meicheng, S.; Ruifang, Z.; Yongzhuang, X. Bisphosphonate chelation. Chem. J. Chin. Univ., 1985, 6, 69.
[554]
Lysenko, K.A.; Akimov, V.M.; Abakunov, P.N.; Struchkov, Y.; Ershov, M.A.Zh. Neorg. Khim, 1997, 42, 1283. [in russian].
[555]
Alexandrov, G.G.; Sergienko, V.S. Kristallografiya., 1999, 44, 1061.
[556]
Aleksandrov, G.G.; Sergienko, V.S.; Afonin, E.G.Zh. Neorg. Khim, 1997, 42, 1287.
[557]
Neuman, A.; Safsaf, A.; Gillier, H.; Leroux, Y.; El Manouni, D. Etude structurale du complexe de l’acide ethane hydroxy-1 disphosphonique-1,1 avec le cuivre II. Phosphorus Sulfur Silicon Relat. Elem., 1992, 70, 273.
[558]
Messbahi, N.L. J.-P., S.; Dao, N. Q.; Lee, M.-R.; Leroux, Y.; Neuman, A.; Gillier-Panraud, H. Structure du dihydrogeno hydroxy-1 ethanebis(phosphonate)-1,1- de cadmium dihydrate. Phosphorus Sulfur Silicon Relat. Elem., 2000, 164(2), 45-59.
[559]
Rochdaoui, R.; Silvestre, J-P.; Dao, N.Q.; Lee, M-R.; Neuman, A. Structure du trihydrogéno hydroxy-1 ethanedi(phosphonate)-1,1 de strontium tétrahydrate. Acta Crystallogr., 1992, 48C, 2132.
[560]
Aleksandrov, G.G.; Sergienko, V.S.; Afonin, E.G. Zh. Neorg. Khim, 1998, 43, 1811.
[561]
Song, H-H.; Zheng, L-M.; Liu, Y-J.; Xin, X-Q.; Jacobson, A.J.; Decurtins, S. Syntheses, structures and magnetic properties of two copper(II) diphosphonates. J. Chem. Soc., Dalton Trans., 2001, 22, 3274-3278.
[562]
Song, H-H.; Zheng, L-M.; Zhu, G-S.; Shi, Z.; Feng, S-H.; Gao, S.; Xin, Q-X. Chin. J. Inorg. Chem, 2002, 18, 67.
[563]
Zheng, L-M.; Gao, S.; Song, H-H.; Decurtins, S.; Jacobson, A.J. Metamagnetic copper(II) diphosphonates with layered structures. Chem. Mater., 2002, 14(7), 3143-3147.
[564]
Silvestre, J.P.; El Messbahi, N.; Rochdaoui, R. Nguyen- Quy Dao; Lee, M.R.; Neuman, A. Structure du dihydrogéno hydroxy-1 ethanedi(phosphonate)-1,1 de plomb monohydrate. Acta Crystallogr., 1990, 46C(6), 986-988.
[565]
Uchtman, V.A. Structural investigations of calcium binding molecules. II. Crystal and molecular structures of calcium dihydrogen ethane-1-hydroxy-1,1-diphosphonate dihydrate, CaC(CH3)(OH)(PO3H)2.2H2O. Implications for polynuclear complex formation. J. Phys. Chem., 1972, 76(9), 1304-1310.
[566]
Bollinger, J.E.; Roundhill, D.M. Complexation of In, Ga, Fe, Ga, Nb ions with amino diphosphonic acids. Inorg. Chem., 1993, 32(13), 2821-2826.
[567]
Bao, S-S.; Zheng, L-M.; Liu, Y-J.; Xu, W.; Feng, S. Sodium cobalt Aminomethylidenediphosphonate with a novel open framework structure. Inorg. Chem., 2003, 42(17), 5037-5039.
[568]
Matczak-Jon, E.; Kowalik-Jankowska, T.; Slepokura, K.; Kafarski, P.; Rajewska, A. Specificity of the zinc(II), magnesium(II) and calcium(II) complexation by (pyridin-2-yl)aminomethane-1,1-diphosphonic acids and related 1,3-(thiazol-2-yl) and 1,3-(benzothiazol-2-yl) derivatives. J. Chem. Soc., Dalton Trans., 2010, 39(5), 1207-1221.
[569]
Matczak-Jon, E.; Kurzak, B.; Kamecka, A.; Kafarski, P. Interactions of zinc(II), magnesium(II) and calcium(II) with aminomethane-1,1-diphosphonic acids in aqueous solutions. Polyhedron, 2002, 21(3), 321-332.
[570]
Gałęzowska, J.; Czapor-Irzabek, H.; Chmielewska, E.; Kafarski, P.; Janek, T. Aminobisphosphonates based on cyclohexane backbone as coordinating agents for metal ions. Thermodynamic, spectroscopic and biological studies. New J. Chem., 2018, 42(10), 7723-7736.
[571]
Vega, D.; Fernández, D.; Ellena, J.A. Disodium pamidronate. Acta Crystallogr., 2002, 58C(2), m77-m80.
[572]
Fernández, D.; Vega, D.; Goeta, A. The Calcium-binding properties of pamidronate, a bone-resorption inhibitor. Acta Crystallogr., 2002, 58C(10), m494-m497.
[573]
Fernández, D.; Polla, G.; Vega, D.; Ellena, J.a. The Zn2+ salt of pamidronate: A role for water in the metal-cation binding properties of bisphosphonates. Acta Crystallogr., 2004, 60C(2), m73-m75.
[574]
Vega, D.; Baggio, R.; Piro, O. Monosodium 3-(dimethylammonio)-1-hydroxy-1,1-propanediyldiphosphonate monohydrate (monosodium olpadronate monohydrate). Acta Crystallogr., 1998, 54C(3), 324-327.
[575]
Asnani, M.; Vyas, K.; Bhattacharya, A.; Devarakonda, S.; Chakraborty, S.; Mukherjee, A.K. Ab initio structure determination of anhydrous sodium alendronate from laboratory powder X-Ray diffraction data. J. Pharm. Sci., 2009, 98(6), 2113-2121.
[576]
Vega, D.; Baggio, R.; Garland, M.T. Monosodium 4-amino-1-hydroxy-1,1-butanediyldiphosphonate trihydrate (alendronate). Acta Crystallogr., 1996, 52C(9), 2198-2201.
[577]
Fernández, D.; Vega, D.; Goeta, A. Alendronate zwitterions bind to calcium cations arranged in columns. Acta Crystallogr., 2003, 59C(12), m543-m545.
[578]
Deacon, G.B.; Forsyth, C.M.; Greenhill, N.B.; Junk, P.C.; Wang, J. Coordination polymers of increasing complexity derived from alkali metal cations and (4-amino-1-hydroxybutylidine)-1,1-bisphosphonic acid (alendronic acid): The Competitive influences of coordination and supramolecular interactions. Cryst. Growth Des., 2015, 15(9), 4646-4662.
[579]
Compain, J-D.; Mialane, P.; Marrot, J.; Sécheresse, F.; Zhu, W.; Oldfield, E.; Dolbecq, A. Tetra- to dodecanuclear oxomolybdate complexes with functionalized bisphosphonate ligands: Activity in killing tumor cells. Chemistry Eur. J.,, 2010, 16(46), 13741-13748.
[580]
Freire, E.; Quintero, M.; Vega, D.; Baggio, R. Crystal structure and magnetic properties of two new zoledronate complexes. Inorg. Chim. Acta, 2013, 394, 229-236.
[581]
Cao, D-K.; Liu, M-J.; Huang, J.; Bao, S-S.; Zheng, L-M. Cobalt and manganese diphosphonates with one-, two-, and three-dimensional structures and field-Induced magnetic transitions. Inorg. Chem., 2011, 50(6), 2278-2287.
[582]
Fu, R.; Hu, S.; Wu, X. Syntheses, crystal structures, thermal stabilities, magnetism and luminescence of two 3D metal phosphonates. CrystEngComm, 2011, 13(7), 2331-2335.
[583]
Freire, E.; Vega, D.R.; Baggio, R. Zoledronate Complexes. I. Poly[[μ2-aqua[μ3-1-hydroxy-2-(1H,3H-imidazol-3-ium-1-yl)ethylidenediphosphonato]potassium(I)]monohydrate]. Acta Crystallogr., 2010, 66C(1), m13-m16.
[584]
Freire, E.; Vega, D.R. Diaquabis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1′-ethylidenediphophonato-K2O,O′]zinc(II). Acta Crystallogr., 2009, 65E(11), m1428-m1429.
[585]
Freire, E.; Vega, D.R. Aquabis[1-Hydroxy-2-(Imidazol-3-Ium-1-yl)-1,1′-ethylidenediphophonato-K2O,O′]Zinc(II) Dihydrate. Acta Crystallogr., 2009, 65(11), m1430-m1431.
[586]
Cao, D-K.; Li, Y-Z.; Zheng, L-M. Layered cobalt(II) and nickel(II) diphosphonates showing canted antiferromagnetism and slow relaxation behavior. Inorg. Chem., 2007, 46(18), 7571-7578.
[587]
Cao, D-K.; Xie, X-J.; Li, Y-Z.; Zheng, L-M. Copper diphosphonates with zero-, one- and two-dimensional structures. J. Chem. Soc., Dalton Trans., 2008, 3(m), 5008-5015.
[588]
Freire, E.; Vega, D.R.; Baggio, R. Zoledronate complexes. III. Two zoledronate complexes with alkaline earth metals. Acta Crystallogr., 2010, 66C(6), m166-m170.
[589]
Ma, Y.; Yuan, R.; Zheng, L. Manganese diphosphonate with a ladder-like chain structure exhibiting field-induced magnetic transition. Inorg. Chem. Commun., 2009, 12(9), 860-863.
[590]
Ma, Y-S.; Yin, W-Y.; Cai, W-S.; Zhu, P-Z.; Tang, X-Y.; Yuan, R-X.; Roy, S. Eight novel metal diphosphonates based on 2-(4-pyridinyl)-1-hydroxyl-1,1-ethylidenediphosphonate: Syntheses, structures, and magnetic properties. RSC Advances, 2013, 3(40), 18430-18440.
[591]
Ding, D.; Wu, B.; Fan, Y.; Hou, H. Four novel metal diphosphonate compounds based on 2-(1-triazole)-1-hydroxyl-1,1′-ethylidenediphosphonic acid: Syntheses, topological structures, and magnetic properties. Cryst. Growth Des., 2009, 9(1), 508-516.
[592]
Palazzo, B.; Iafisco, M.; Laforgia, M.; Margiotta, N.; Natile, G.; Bianchi, C.L.; Walsh, D.; Roveri, N. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Adv. Funct. Mater., 2007, 17, 2180-2188.
[593]
Margiotta, N.; Ostuni, R.; Teoli, D.; Morpurgo, M.; Realdon, N.; Palazzo, B.; Natile, G. Bisphosphonate complexation and calcium doping in silica xerogels as a combined strategy for local and controlled release of active platinum antitumor compounds. J. Chem. Soc., Dalton Trans., 2007, 29, 3131-3139.
[594]
Iafisco, M.; Palazzo, B.; Marchetti, M.; Margiotta, N.; Ostuni, R.; Natile, G.; Morpurgo, M.; Gandin, V.; Marzano, C.; Roveri, N. Smart delivery of antitumoral platinum complexes from biomimetic hydroxyapatite nanocrystals. J. Mater. Chem., 2009, 19(44), 8385-8392.
[595]
Margiotta, N.; Ostuni, R.; Gandin, V.; Marzano, C.; Piccinonna, S.; Natile, G. Synthesis, characterization, and cytotoxicity of dinuclear platinum-bisphosphonate complexes to be used as prodrugs in the local treatment of bone tumours. J. Chem. Soc., Dalton Trans., 2009, 48, 10904-10913.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy