Generic placeholder image

Anti-Infective Agents


ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Immunostimulating Activity of Gold-modified Nanodiamond Particles

Author(s): Evgenii Plotnikov*, Skoryk Nina, Savelyev Daniil and Vladimir Plotnikov

Volume 18, Issue 1, 2020

Page: [54 - 58] Pages: 5

DOI: 10.2174/2211352517666190328122008


Background: The fight against infectious diseases includes two main components – immediate direct anti-infective action and stimulation of one's own immunity.

Objective: In this study, we investigated the properties of diamond nanoparticles modified with gold. The use of such gold nanoparticles as indirect anti-infectious agents and immunostimulators has certain prospects.

Materials and Methods: Gold hydrosols were synthesized by the reduction in an aqueous solution of gold (III) with sodium citrate (Na3Cit) under heating. Modification procedure of nanodiamond by gold requires incubation, a small sample of nanodiamond in a defined volume of a gold sol for about 24 hours in a dark place. We use human blood cells as test objects. The reaction of blastic transformation of lymphocytes was applied here as a test of biological actions of modified nanodiamond.

Results: Modified nanodiamond do not have a toxic influence on blood cells. Modified nanodiamond possesses stimulation effects on spontaneous proliferation of lymphocytes and does not significantly affect phytohemagglutinin-induced proliferation. Nanodiamond slightly increases phagocytosis parameters of neutrophil leucocytes.

Conclusion: Thus, results showed that the nanodiamond modified by gold possesses immunostimulating activity, increases the phagocytic activity of neutrophilic leukocytes and stimulates lymphocytes in the spontaneous proliferation test. Gold-modified nanodiamond could be considered as a non-direct anti-infective agent through immune stimulation.

Keywords: Nanodiamond, gold nanoparticle, lymphocytes, phagocytosis, immunostimulation, neutrophilic leukocytes.

Graphical Abstract
Rebelein, J.G.; Ward, T.R. In vivo catalyzed new-to-nature reactions. Curr. Opin. Biotechnol., 2018, 53, 106-114.
[] [PMID: 29306675]
Plotnikov, E.; Zhuravkov, S.; Gapeyev, A.; Plotnikov, V.; Martemiyanov, D. Investigation of genotoxicity of gold nanoparticles prepared by the electric spark dispersion meth-od. Adv. Mat. Res., 2014, 1040, 65-70.
Zolnik, B.S.; González-Fernández, A.; Sadrieh, N.; Dobrovolskaia, M.A. Nanoparticles and the immune system. Endocrinology, 2010, 151(2), 458-465.
[] [PMID: 20016026]
Zhang, H.; Zhang, L.; Li, Z.; Wu, Q.; Gao, J. In vitro immune activation of raw264.7 cells by nanodiamonds with different surface chemistry. J. Nanosci. Nanotechnol., 2018, 18(2), 815-822.
[] [PMID: 29448498]
Iyer, J.K.; Dickey, A.; Rouhani, P.; Kaul, A.; Govindaraju, N.; Singh, R.N.; Kaul, R. Nanodiamond facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS One, 2018, 13(1)e019102
[] [PMID: 29324795]
Pham, N.B.; Ho, T.T.; Nguyen, G.T.; Le, T.T.; Le, N.T.; Chang, H-C.; Pham, M.D.; Conrad, U.; Chu, H.H. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein. J. Nanobiotechnology, 2017, 15(1), 69.
Dolmatov, V.Y. Ultradispersed diamonds of detonation synthesis. Russ. Chem. Rev., 2001, 70(7), 687-708.
Dolmatov, V.J. Biologically active ultradispersed diamond of detonation synthesis. RU 2203068, April 27, 2003.
Vasilishin, M.S.; Bratilov, B.I.; Petrov, E.A.; Svetlov, S.A. A way of nanodiamond removal from an aqueous suspension, RU 2083490, July 10, 1997.
Plotnikov, V.M.; Skorik, N.A.; Spitsyn, B.V.; Voronin, V.N.; Saveliev, D.V. Immunostimulant. RU 2480223, April 27, 2013.
Yashchenok, A.M.; Inozemtseva, O.A.; Gorin, D.A.; Khlebtsov, B.N. Effect of the size of colloidal gold nanoparti-cles on the physical parameters of nanocomposite microcapsule shells. Colloid J., 2009, 71(3), 422-429.
Ignatchenko, A.V.; Ovcharenko, A.G.; Sataev, R.R.; Brylyakov, P.M. Modifying the surface of ultradispersed diamonds with hexamethylenediamino groups. J. Appl. Chem., 1991, 64(4), 838-841.
Novikov, D.K.; Novikova, V.A. Evaluation of the immune status; Moscow, 1992.
Pentecost, A.E.; Witherel, C.E.; Gogotsi, Y.; Spiller, K.L. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages. Biomater. Sci., 2017, 5(10), 2131-2143.
[] [PMID: 28875995]
Volsky, N.N.; Kashlakov, N.V.; Kozlov, V.A. Influence of superoxide radical on mitogen-stimulated lymphocyte proliferation. Tsitologiia, 1988, 30(7), 898-901.
Villiers, C.; Freitas, H.; Couderc, R.; Villiers, M.B.; Marche, P. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J. Nanopart. Res., 2010, 12(1), 55-60.
[] [PMID: 21841911]
Zakrzewska, K.E.; Samluk, A.; Wierzbicki, M.; Jaworski, S.; Kutwin, M.; Sawosz, E.; Chwalibog, A.; Pijanowska, D.G.; Pluta, K.D. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines. PLoS One, 2015, 10(3)e0122579
Salaam, A.D.; Hwang, P.T.J.; Poonawalla, A.; Green, H.N.; Jun, H-W.; Dean, D. Nanodiamond enhance therapeutic efficacy of doxorubicin in treating metastatic hormone-refractory prostate cancer. Nanotech, 2014, 25(42)e425103
[] [PMID: 25277401]
Plotnikov, E.; Zhuravkov, S.; Gapeyev, A.; Plotnikov, V.; Martemianova, I.; Martemianov, D. Comparative study of genotoxicity of silver and gold nanoparticles prepared by the electric spark dispersion method. J. Appl. Pharm. Sci., 2017, 7, 35-39.

© 2022 Bentham Science Publishers | Privacy Policy