Generic placeholder image

Current Smart Materials (Discontinued)


ISSN (Print): 2405-4658
ISSN (Online): 2405-4666

Research Article

Influence of Al, Ta Doped ZnO Seed Layer on the Structure, Morphology and Optical Properties of ZnO Nanorods

Author(s): S. Mageswari* and Balan Palanivel

Volume 4, Issue 1, 2019

Page: [45 - 58] Pages: 14

DOI: 10.2174/2405465804666190326150628


Background: Zinc oxide (ZnO) is one of the most attractive II-VI semiconductor oxide material, because of its direct wide band gap (3.37 eV) and large binding energy (60 meV). Zinc oxide (ZnO) is a promising semiconductor due to its optimised optical properties. Among semiconductor nanostructures, the vertically aligned one-dimensional ZnO nanorods are very important for nano device application.

Methods: Vertically aligned ZnO nanorod arrays were grown on ZnO, aluminum doped ZnO (ZnO:Al), tantalum doped ZnO (ZnO:Ta) and aluminum and tantalum co-doped ZnO (ZnO:Al,Ta) seed layer by hydrothermal method.

Results: The X-Ray Diffraction (XRD) investigation indicated the presence of hexagonal phase for the both seed layers and nanorods. The Scanning Electron Microscope (SEM) images of ZnO and doped ZnO seed layer thin-films show spherical shaped nanograins organized into wave like morphology. The optical absorption spectra revealed shift in absorption edge towards the shorter wavelength (blue shifted) for ZnO nanorods grown on ZnO:Al, ZnO:Ta and ZnO:Al,Ta seed layer compared to ZnO nanorods grown on ZnO seed layer.

Conclusion: The increase in band gap value for the ZnO nanorods grown on doped ZnO seed layers due to the decrease in crystallite size and lattice constant as evidenced from XRD analysis. The unique property of Al, Ta doped ZnO can be used to fabricate nano-optoelectronic devices and photovoltaic devices, due to their improved optical properties.

Keywords: Band gap, hydrothermal, photoluminescence, seed layers, ZnO nanorods, X-ray diffraction.

Graphical Abstract
Son, N.T.; Noh, J.S.; Park, S. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition. Appl. Surf. Sci., 2016, 379, 440-445.
Greene, L.E.; Yuhas, B.D.; Law, M.; Zitoun, D.; Yang, P. Solution-grown zinc oxide nanowires. Inorg. Chem., 2006, 45(19), 7535-7543.
Kim, K.H.; Utashiro, K.; Abe, Y.; Kawamura, M. Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials. Int. J. Electrochem. Sci., 2014, 9, 2080-2089.
Lucas, M.; Wang, Z.L.; Riedo, E. Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force microscopy and polarized Raman spectroscopy. Phys. Rev. B, 2010, 81, 045415.
Zhang, N.; Yi, R.; Shi, R.; Gao, G.; Chen, G.; Liu, X. Novel rose-like ZnO nanoflowers synthesized by chemical vapor deposition. Mater. Lett., 2009, 63(3), 496-499.
Yong-Zhe, Z.; Li-Hui, W.; Yan-Ping, L.; Er-Qing, X.; De, Y.; Jiang-Tao, C. Preparation of ZnO nanospheres and their applications in dye-sensitized solar cells. Chin. Phys. Lett., 2009, 26(3), 038201.
Hughes, W.L.; Wang, Z.L. Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett., 2005, 86(4), 043106.
Gui, Z.; Liu, J.; Wang, Z.; Song, L.; Hu, Y.; Fan, W.; Chen, D. From muticomponent precursor to nanoparticle nanoribbons of ZnO. J. Phys. Chem. B-Condens. Phase, 2005, 109(3), 1113-1117.
Sun, Y.; Seo, J.H.; Takacs, C.J.; Seifter, J.; Heeger, A.J. Inverted polymer solar cells integrated with a low‐temperature‐annealed sol‐gel‐derived ZnO film as an electron transport layer. Adv. Mater., 2011, 23(4), 1679-1683.
Park, K.; Lee, D.; Kim, B.; Jeon, H.; Lee, N.; Whang, D.; Lee, H.; Kim, Y.J.; Ahn, J. Stretchable, transparent zinc oxide thin film transistors. Adv. Funct. Mater., 2010, 20, 3577-3582.
Tsay, C.; Fan, K.; Wang, Y.; Chang, C.; Tseng, Y.; Lin, C. Transparent semiconductor zinc oxide thin films deposited on glass substrates by sol-gel process. Ceram. Int., 2010, 36(6), 1791-1795.
Wang, X.; Wang, X.; Song, J.; Summers, C.J.; Ryou, J.H.; Li, P.; Dupuis, R.D.; Wang, Z.L. Density-controlled growth of aligned ZnO nanowires sharing a common contact: A simple, low-cost, and mask-free technique for large-scale applications. J. Phys. Chem. B, 2006, 110(15), 7720-7724.
Okada, T.; Agung, B.H.; Nakata, Y. ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition. Appl. Phys., A Mater. Sci. Process., 2004, 79(4), 1417-1419.
Li, C.; Furuta, T.; Matsuda, T.; Hiramatsu, H.; Furuta, H.; Hirao, T. Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering. Thin Solid Films, 2009, 517(11), 3265-3268.
Zheng, J.H.; Jiang, Q.; Lian, J.S. Synthesis and optical properties of ZnO nanorods on indium tin oxide substrate. Appl. Surf. Sci., 2011, 258(1), 93-97.
Schlur, L.; Carton, A.; Lévêque, P.; Guillon, D.; Pourroy, G. Optimization of a new ZnO nanorods hydrothermal synthesis method for solid state dye sensitized solar cells applications. J. Phys. Chem. C, 2013, 117, 2993-3001.
Wei, S.; Lian, J.; Wu, H. Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method. Mater. Charact., 2010, 61(11), 1239-1244.
Anandan, S.; Miyauchi, M. Ce-doped ZnO (CexZn1−xO) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting. Phys. Chem. Chem. Phys., 2011, 13, 14937-14945.
Ty, J.T.D.; Yanagi, H. Electrochemical deposition of zinc oxide nanorods for hybrid solar cells. Jpn. J. Appl. Phys., 2015, 54(4S), 04DK05.
Jia, G.Z.; Hao, B.X.; Lu, X.C.; Wang, X.L.; Li, Y.M.; Yao, J.H. Solution growth of well aligned ZnO nanorods on sapphire substrate. Acta Phys. Pol. A, 2013, 124, 74-77.
Dev, A.; Panda, S.K.; Kar, S.; Chakrabarti, S.; Chaudhuri, S. Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel derived ZnO thin films. J. Phys. Chem. B, 2006, 110(29), 14266-14272.
Ghodsi, F.E.; Absalan, H. Comparative study of ZnO thin films prepared by different sol-gel route. Acta Phys. Pol. A Gen. Phys., 2010, 118(4), 659.
Greene, L.E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J.C.; Zhang, Y.; Saykally, R.J.; Yang, P. Low‐temperature wafer‐scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed., 2003, 42(26), 3031-3034.
Li, G.; Sundararajan, A.; Mouti, A.; Chang, Y.J.; Lupini, A.R.; Pennycook, S.J.; Strachan, D.R.; Guiton, B.S. Synthesis and characterization of p-n homojunction-containing zinc oxide nanowires. Nanoscale, 2013, 5(6), 2259-2263.
Foo, K.L.; Kashif, M.; Hashim, U.; Liu, W.W. Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications. Ceram. Int., 2014, 40(1), 753-761.
Marie, M.; Mandal, S.; Manasreh, O. An electrochemical glucose sensor based on zinc oxide nanorods. Sensors (Basel), 2015, 15(8), 18714-18723.
Ridha, N.J.; Jumali, M.H.H.; Umar, A.A.; Alosfur, F. Defects controlled ZnO nanorods with high aspect ratio for ethanol detection. Int. J. Electrochem. Sci., 2013, 8, 4583-4594.
Ji, L.W.; Peng, S.M.; Wu, J.S.; Shih, W.S.; Wu, C.Z.; Tang, I.T. Effect of seed layer on the growth of well-aligned ZnO nanowires. J. Phys. Chem. Solids, 2009, 70(10), 1359-1362.
Li, C.; Fang, G.; Li, J.; Ai, L.; Dong, B.; Zhao, X. Effect of seed layer on structural properties of ZnO nanorod arrays grown by vapor-phase transport. J. Phys. Chem. C, 2008, 112(4), 990-995.
Oral, A.Y.; Bahşi, Z.B.; Aslan, M.H. Microstructure and optical properties of nanocrystalline ZnO and ZnO:(Li or Al) thin films. Appl. Surf. Sci., 2007, 253(10), 4593-4598.
Kohiki, S.; Nishitani, M.; Wada, T. Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. J. Appl. Phys., 1994, 75(4), 2069-2072.
Wu, T.; Ni, Y.; Ma, X.; Hong, J. La-doped ZnO nanoparticles: Simple solution-combusting preparation and applications in the wastewater treatment. Mater. Res. Bull., 2013, 48(11), 4754-4758.
American Society for Testing and Material. Powder diffraction files; Joint Committee on Powder Diffraction Standards; Swarthmore, P.A, 1999, 3-88.
Cullity, B.D. Elements of X-ray Diffraction. Addison- Wesley, Reading, 1978.
Thangavel, R.; Moirangthem, R.S.; Lee, W.S.; Chang, Y.C.; Wei, P.K.; Kumar, J. Cesium doped and undoped ZnO nanocrystalline thin films: A comparative study of structural and micro‐Raman investigation of optical phonons. J. Raman Spectrosc., 2010, 41(12), 1594-1600.
Hu, J.; Gordon, R.G. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium. J. Appl. Phys., 1992, 72(11), 5381-5392.
Yilmaz, M.; Caldiran, Z.; Deniz, A.R.; Aydogan, S.; Gunturkun, R.; Turut, A. Preparation and characterization of sol-gel-derived n- ZnO thin film for Schottky diode application. Appl. Phys. A., 2015, 119(2), 547-552.
Kim, K.H.; Utashiro, K.; Abe, Y.; Kawamura, M. Growth of zinc oxide nanorods using various seed layer annealing temperatures and substrate materials. Int. J. Electrochem. Sci., 2014, 9, 2080-2089.
Liu, W.L.; Zhang, Y.F. Blueshift of absorption edge and photoluminescence in Al doped ZnO thin films. Integr. Ferroelectr., 2018, 188, 112-120.
Liu, Y.; Lian, J. Optical and electrical properties of aluminum-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci., 2007, 253, 3727-3730.
Mahmood, K.; Song, D.; Park, S.B. Effects of thermal treatment on the characteristics of boron and tantalum-doped ZnO thin films deposited by the electrospraying method at atmospheric pressure. Surf. Coat. Technol., 2012, 206, 4730-4740.
Kalyanaraman, S.; Thangavel, R.; Vettumperumal, R. High mobility formation of p-type ZnO:Al,N films annealed under NH3 ambient. J. Phys. Chem. Solids, 2013, 74, 504-508.
Song, J.; Lim, S. Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C, 2007, 111(2), 596-600.
Cha, S.N.; Song, B.G.; Jang, J.E.; Jung, J.E.; Han, I.T.; Ha, J.H.; Hong, J.P.; Kang, D.J.; Kim, J.M. Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer. Nanotechnology, 2008, 19(23), 235601.
Chavhan, S.D.; Senthilarasu, S.; Lee, S.H. Annealing effect on the structural and optical properties of a Cd1−x Znx S thin film for photovoltaic applications. Appl. Surf. Sci., 2008, 254(15), 4539-4545.
Pimentel, A.; Ferreira, S.; Nunes, D.; Calmeiro, T.; Martins, R.; Fortunato, E. Microwave synthesized ZnO nanorod arrays for UV sensors: A seed layer annealing temperature study. Materials, 2016, 9(4), 299.
Tauc, J. Amorphous and Liquid Semiconductors; Plenum Press: New York, 1974, p. 171.
Burstein, E. Anomalous optical absorption limit in InSb. Phys. Rev., 1954, 93(3), 632.
Singh, A.; Vishwakarma, H.L. Studies on structural, morphological and optical properties of cobalt doped ZnO. Inter. J. Mater. Chem. Phys., 2015, 1, 163-173.
Suchea, M.; Christoulakis, S.; Katharakis, M.; Vidakis, N.; Koudoumas, E. Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films, 2009, 517, 4303-4306.
Cheng, Y.; Cao, L.; He, G.; Yao, G.; Song, X.; Sun, Z. Preparation, microstructure and photoelectrical properties of Tantalum-doped zinc oxide transparent conducting films. J. Alloys Compd., 2014, 608, 85-89.
Hou, S.; Li, C. Aluminum-doped zinc oxide thin film as seeds layer effects on the alignment of zinc oxide nanorods synthesized in the chemical bath deposition. Thin Solid Films, 2016, 605, 37-43.
Ebrahimifard, R.; Golobostanfard, M.R.; Abdizadeh, H. Sol-gel derived Al and Ga co-doped ZnO thin films: An optoelectronic study. Appl. Surf. Sci., 2014, 290, 252-259.
Saurdi, I.; Mamat, M.H.; Malek, M.F.; Rusop, M. Preparation of aligned ZnO nanorod arrays on Sn-doped ZnO thin films by sonicated sol-gel immersion fabricated for dye-sensitized solar cell. Adv. Mater. Sci. Eng., 2014, Article ID 636725
Marselie, J.; Fauzia, V.; Sugihartono, I. The effect of Cu dopant on morphological, structural and optical properties of ZnO nanorods grown on indium tin oxide substrate. In: Journal of Physics: Conference Series,, 2017, 817(1), 012014.
Zeng, H.; Cai, W.; Hu, J.; Duan, G.; Liu, P.; Li, Y. Violet photoluminescence from shell layer of Zn/ZnO core-shell nanoparticles induced by laser ablation. Appl. Phys. Lett., 2006, 88(17), 171910.
Das, R.; Kumar, A.; Kumar, Y.; Sen, S.; Shirage, P.M. Effect of growth temperature on the optical properties of ZnO nanostructures grown by simple hydrothermal method. RSC Advances, 2015, 5(74), 60365-60372.
Das, D.; Mondal, P. Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Advances, 2014, 4(67), 35735-35743.
Mahmood, K.; Park, S.B.; Sung, H.J. Enhanced photoluminescence, Raman spectra and field-emission behavior of indium-doped ZnO nanostructures. J. Mater. Chem. C., 2013, 1(18), 3138-3149.
Swapna, K.; Mahamuda, S.; Rao, A.S.; Jayasimhadri, M.; Sasikala, T.; Moorthy, L.R. Optical absorption and luminescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for lasing materials and white LEDs. J. Lumin., 2013, 139, 119-124.
Schubert, E.F. Light Emitting Diodes; Cambridge University Press: New York, 2006.

© 2023 Bentham Science Publishers | Privacy Policy