Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

How Cancer Cells Resist Chemotherapy: Design and Development of Drugs Targeting Protein-Protein Interactions

Author(s): Vadim V. Tarasov, Vladimir N. Chubarev, Ghulam Md Ashraf, Samira A. Dostdar, Alexander V. Sokolov, Tatiana I. Melnikova, Susanna S. Sologova, Ekaterina M. Grigorevskich, Alfiya Makhmutovа, Alexander S. Kinzirsky, Sergey G. Klochkov and Gjumrakch Aliev*

Volume 19, Issue 6, 2019

Page: [394 - 412] Pages: 19

DOI: 10.2174/1568026619666190305130141

Price: $65

conference banner
Abstract

Background: Resistance toward chemotherapeutics is one of the main obstacles on the way to effective cancer treatment. Personalization of chemotherapy could improve clinical outcome. However, despite preclinical significance, most of the potential markers have failed to reach clinical practice partially due to the inability of numerous studies to estimate the marker’s impact on resistance properly.

Objective: The analysis of drug resistance mechanisms to chemotherapy in cancer cells, and the proposal of study design to identify bona fide markers.

Methods: A review of relevant papers in the field. A PubMed search with relevant keywords was used to gather the data. An example of a search request: drug resistance AND cancer AND paclitaxel.

Results: We have described a number of drug resistance mechanisms to various chemotherapeutics, as well as markers to underlie the phenomenon. We also proposed a model of a rational-designed study, which could be useful in determining the most promising potential biomarkers.

Conclusion: Taking into account the most reasonable biomarkers should dramatically improve clinical outcome by choosing the suitable treatment regimens. However, determining the leading biomarkers, as well as validating of the model, is a work for further investigations.

Keywords: Cancer, Drug resistance, Chemotherapy, Biomarkers, Protein-protein interaction, Oncological diseases.

Graphical Abstract
[1]
Galmarini, D.; Galmarini, C.M.; Galmarini, F.C. Cancer chemotherapy: A critical analysis of its 60 years of history. Crit. Rev. Oncol. Hematol., 2012, 84(2), 181-199.
[http://dx.doi.org/10.1016/j.critrevonc.2012.03.002] [PMID: 22542531]
[2]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/ 10.1016/j.cell.2011.02.013]
[3]
Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature, 2012, 481(7381), 306-313.
[http://dx.doi.org/10.1038/nature10762] [PMID: 22258609]
[4]
Rebucci, M.; Michiels, C. Molecular aspects of cancer cell resistance to chemotherapy. Biochem. Pharmacol., 2013, 85(9), 1219-1226.
[http://dx.doi.org/10.1016/j.bcp.2013.02.017]
[5]
Wijdeven, R.H.; Pang, B.; Assaraf, Y.G.; Neefjes, J. Old drugs, novel ways out: Drug resistance toward cytotoxic chemotherapeutics. Drug Resist. Updat., 2016, 28, 65-81.
[http://dx.doi.org/10.1016/j.drup.2016.07.001] [PMID: 27620955]
[6]
Joshi, G.; Singh, P.K.; Negi, A.; Rana, A.; Singh, S.; Kumar, R. Growth factors mediated cell signalling in prostate cancer progression: Implications in discovery of anti-prostate cancer agents. Chem. Biol. Interact., 2015, 240, 120-133.
[http://dx.doi.org/10.1016/j.cbi.2015.08.009] [PMID: 26297992]
[7]
Martini, M.; De Santis, M.C.; Braccini, L.; Gulluni, F.; Hirsch, E. PI3K/AKT signaling pathway and cancer: An updated review. Ann. Med., 2014, 46(6), 372-383.
[http://dx.doi.org/ 10.3109/07853890.2014.912836] [PMID: 24897931]
[8]
Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol., 2014, 4, 64.
[http://dx.doi.org/10.3389/fonc.2014.00064] [PMID: 24782981]
[9]
Steven, A.; Seliger, B. Control of CREB expression in tumors: From molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget, 2016, 7(23), 35454-35465.
[http://dx.doi.org/10.18632/oncotarget.7721] [PMID: 26934558]
[10]
Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta, 2011, 1813(11), 1978-1986.
[http://dx.doi.org/10.1016/j.bbamcr.2011.03.010] [PMID: 21440011]
[11]
Huang, K.; Fingar, D.C. Growing knowledge of the mTOR signaling network. Semin. Cell Dev. Biol., 2014, 36, 79-90.
[http://dx.doi.org/10.1016/j.semcdb.2014.09.011] [PMID: 25242279]
[12]
Hobbs, G.A.; Der, C.J.; Rossman, K.L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci., 2016, 129(7), 1287-1292.
[http://dx.doi.org/10.1242/jcs.182873] [PMID: 26985062]
[13]
Samatar, A.A.; Poulikakos, P.I. Targeting RAS-ERK signalling in cancer: promises and challenges. Nat. Rev. Drug Discov., 2014, 13(12), 928-942.
[http://dx.doi.org/10.1038/nrd4281] [PMID: 25435214]
[14]
Kranenburg, O.; Gebbink, M.F.; Voest, E.E. Stimulation of angiogenesis by Ras proteins. Biochim. Biophys. Acta, 2004, 1654(1), 23-37.
[PMID: 14984765]
[15]
Neuzillet, C.; Tijeras-Raballand, A.; de Mestier, L.; Cros, J.; Faivre, S.; Raymond, E. MEK in cancer and cancer therapy. Pharmacol. Ther., 2014, 141(2), 160-171.
[http://dx.doi.org/10.1016/j.pharmthera.2013.10.001] [PMID: 24121058]
[16]
Li, F.; Zhang, J.; Arfuso, F.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Kumar, A.P.; Ahn, K.S.; Sethi, G. NF-κB in cancer therapy. Arch. Toxicol., 2015, 89(5), 711-731.
[http://dx.doi.org/10.1007/s00204-015-1470-4] [PMID: 25690730]
[17]
McCubrey, J.A.; Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Wong, E.W.; Chang, F.; Lehmann, B.; Terrian, D.M.; Milella, M.; Tafuri, A.; Stivala, F.; Libra, M.; Basecke, J.; Evangelisti, C.; Martelli, A.M.; Franklin, R.A. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta, 2007, 1773(8), 1263-1284.
[http://dx.doi.org/10.1016/j.bbamcr.2006.10.001] [PMID: 17126425]
[18]
O’Shea, J.J.; Schwartz, D.M.; Villarino, A.V.; Gadina, M.; McInnes, I.B.; Laurence, A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med., 2015, 66, 311-328.
[http://dx.doi.org/10.1146/annurev-med-051113-024537] [PMID: 25587654]
[19]
Dorritie, K.A.; Redner, R.L.; Johnson, D.E. STAT transcription factors in normal and cancer stem cells. Adv. Biol. Regul., 2014, 56, 30-44.
[http://dx.doi.org/10.1016/j.jbior.2014.05.004] [PMID: 24931719]
[20]
Harrison, D.A. The Jak/STAT pathway. Cold Spring Harb. Perspect. Biol., 2012, 4(3), 4.
[http://dx.doi.org/10.1101/cshperspect.a011205] [PMID: 22383755]
[21]
VanKlompenberg, M.K.; Leyden, E.; Arnason, A.H.; Zhang, J.T.; Stefanski, C.D.; Prosperi, J.R. APC loss in breast cancer leads to doxorubicin resistance via STAT3 activation. Oncotarget, 2017, 8(61), 102868-102879.
[http://dx.doi.org/10.18632/oncotarget. 22263] [PMID: 29262529]
[22]
Kohsaka, S.; Wang, L.; Yachi, K.; Mahabir, R.; Narita, T.; Itoh, T.; Tanino, M.; Kimura, T.; Nishihara, H.; Tanaka, S. STAT3 inhibition overcomes temozolomide resistance in glioblastoma by downregulating MGMT expression. Mol. Cancer Ther., 2012, 11(6), 1289-1299.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0801] [PMID: 22532597]
[23]
Gaillard, H.; García-Muse, T.; Aguilera, A. Replication stress and cancer. Nat. Rev. Cancer, 2015, 15(5), 276-289.
[http://dx.doi.org/10.1038/nrc3916] [PMID: 25907220]
[24]
Tomicic, M.T.; Aasland, D.; Naumann, S.C.; Meise, R.; Barckhausen, C.; Kaina, B.; Christmann, M. Translesion polymerase η is upregulated by cancer therapeutics and confers anticancer drug resistance. Cancer Res., 2014, 74(19), 5585-5596.
[http://dx.doi.org/ 10.1158/0008-5472.CAN-14-0953] [PMID: 25125662]
[25]
Guillotin, D.; Martin, S.A. Exploiting DNA mismatch repair deficiency as a therapeutic strategy. Exp. Cell Res., 2014, 329(1), 110-115.
[http://dx.doi.org/10.1016/j.yexcr.2014.07.004] [PMID: 25017099]
[26]
Shinsato, Y.; Furukawa, T.; Yunoue, S.; Yonezawa, H.; Minami, K.; Nishizawa, Y.; Ikeda, R.; Kawahara, K.; Yamamoto, M.; Hirano, H.; Tokimura, H.; Arita, K. Reduction of MLH1 and PMS2 confers temozolomide resistance and is associated with recurrence of glioblastoma. Oncotarget, 2013, 4(12), 2261-2270.
[http://dx.doi.org/10.18632/oncotarget.1302] [PMID: 24259277]
[27]
Aebi, S.; Kurdi-Haidar, B.; Gordon, R.; Cenni, B.; Zheng, H.; Fink, D.; Christen, R.D.; Boland, C.R.; Koi, M.; Fishel, R.; Howell, S.B. Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res., 1996, 56(13), 3087-3090.
[PMID: 8674066]
[28]
Fautrel, A.; Andrieux, L.; Musso, O.; Boudjema, K.; Guillouzo, A.; Langouët, S. Overexpression of the two nucleotide excision repair genes ERCC1 and XPC in human hepatocellular carcinoma. J. Hepatol., 2005, 43(2), 288-293.
[http://dx.doi.org/10.1016/j.jhep.2005.02.020] [PMID: 15922480]
[29]
E.L., Baiomy M.A.; El Kashef, W.F. ERCC1 Expression in metastatic triple negative breast cancer patients treated with platinum-based chemotherapy. Asian Pac. J. Cancer Prev., 2017, 18(2), 507-513.
[PMID: 28345838]
[30]
Huang, M.Y.; Huang, J.J.; Huang, C.M.; Lin, C.H.; Tsai, H.L.; Huang, C.W.; Chai, C.Y.; Lin, C.Y.; Wang, J.Y. Relationship Between Expression of Proteins ERCC1, ERCC2, and XRCC1 and clinical outcomes in patients with rectal cancer treated with folfox-based preoperative chemoradiotherapy. World J. Surg., 2017, 41(11), 2884-2897.
[http://dx.doi.org/10.1007/s00268-017-4070-z] [PMID: 28608017]
[31]
Makino, T.; Mikami, T.; Hata, Y.; Otsuka, H.; Koezuka, S.; Isobe, K.; Tochigi, N.; Shibuya, K.; Homma, S.; Iyoda, A. Comprehensive biomarkers for personalized treatment in pulmonary large cell neuroendocrine carcinoma: A comparative analysis with adenocarcinoma. Ann. Thorac. Surg., 2016, 102(5), 1694-1701.
[http://dx.doi.org/10.1016/j.athoracsur.2016.04.100] [PMID: 27368130]
[32]
Ge, R.; Liu, L.; Dai, W.; Zhang, W.; Yang, Y.; Wang, H.; Shi, Q.; Guo, S.; Yi, X.; Wang, G.; Gao, T.; Luan, Q.; Li, C. Xeroderma Pigmentosum group A promotes autophagy to facilitate cisplatin resistance in melanoma cells through the activation of PARP1. J. Invest. Dermatol., 2016, 136(6), 1219-1228.
[http://dx.doi.org/ 10.1016/j.jid.2016.01.031] [PMID: 26880244]
[33]
Dingemans, A.M.; Witlox, M.A.; Stallaert, R.A.; van der Valk, P.; Postmus, P.E.; Giaccone, G. Expression of DNA topoisomerase IIalpha and topoisomerase IIbeta genes predicts survival and response to chemotherapy in patients with small cell lung cancer. Clin. Cancer Res., 1999, 5(8), 2048-2058.
[PMID: 10473085]
[34]
Bouwman, P.; Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer, 2012, 12(9), 587-598.
[http://dx.doi.org/ 10.1038/nrc3342] [PMID: 22918414]
[35]
Safra, T.; Rogowski, O.; Muggia, F.M. The effect of germ-line BRCA mutations on response to chemotherapy and outcome of recurrent ovarian cancer. Int. J. Gynecol. Cancer, 2014, 24(3), 488-495.
[http://dx.doi.org/10.1097/IGC.0000000000000086] [PMID: 24457564]
[36]
Hyman, D.M.; Zhou, Q.; Arnold, A.G.; Grisham, R.N.; Iasonos, A.; Kauff, N.D.; Spriggs, D. Topotecan in patients with BRCA-associated and sporadic platinum-resistant ovarian, fallopian tube, and primary peritoneal cancers. Gynecol. Oncol., 2011, 123(2), 196-199.
[http://dx.doi.org/10.1016/j.ygyno.2011.07.019] [PMID: 21855118]
[37]
Safra, T.; Borgato, L.; Nicoletto, M.O.; Rolnitzky, L.; Pelles-Avraham, S.; Geva, R.; Donach, M.E.; Curtin, J.; Novetsky, A.; Grenader, T.; Lai, W.C.; Gabizon, A.; Boyd, L.; Muggia, F. BRCA mutation status and determinant of outcome in women with recurrent epithelial ovarian cancer treated with pegylated liposomal doxorubicin. Mol. Cancer Ther., 2011, 10(10), 2000-2007.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0272] [PMID: 21835933]
[38]
Voskoboinik, I.; Whisstock, J.C.; Trapani, J.A. Perforin and granzymes: Function, dysfunction and human pathology. Nat. Rev. Immunol., 2015, 15(6), 388-400.
[http://dx.doi.org/10.1038/nri3839] [PMID: 25998963]
[39]
Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer, 2009, 9(7), 501-507.
[http://dx.doi.org/10.1038/nrc2663] [PMID: 19550425]
[40]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[41]
Cimoli, G.; Malacarne, D.; Ponassi, R.; Valenti, M.; Alberti, S.; Parodi, S. Meta-analysis of the role of p53 status in isogenic systems tested for sensitivity to cytotoxic antineoplastic drugs. Biochim. Biophys. Acta, 2004, 1705(2), 103-120.
[PMID: 15588765]
[42]
Nieder, C.; Petersen, S.; Petersen, C.; Thames, H.D. The challenge of p53 as prognostic and predictive factor in gliomas. Cancer Treat. Rev., 2000, 26(1), 67-73.
[http://dx.doi.org/10.1053/ctrv.1999.0145] [PMID: 10660492]
[43]
Knappskog, S.; Lønning, P.E. P53 and its molecular basis to chemoresistance in breast cancer. Expert Opin. Ther. Targets, 2012, 16(Suppl. 1), S23-S30.
[http://dx.doi.org/10.1517/14728222.2011.640322] [PMID: 22313396]
[44]
Hall, J.; Paul, J.; Brown, R. Critical evaluation of p53 as a prognostic marker in ovarian cancer. Expert Rev. Mol. Med., 2004, 6(12), 1-20.
[http://dx.doi.org/10.1017/S1462399404007781] [PMID: 15147608]
[45]
Rudolf, E.; Rudolf, K.; Cervinka, M. Camptothecin induces p53-dependent and independent apoptogenic signaling in melanoma cells. Apoptosis, 2011, 16(11), 1165-1176.
[http://dx.doi.org/ 10.1007/s10495-011-0635-8] [PMID: 21809047]
[46]
Stravopodis, D.J.; Karkoulis, P.K.; Konstantakou, E.G.; Melachroinou, S.; Thanasopoulou, A.; Aravantinos, G.; Margaritis, L.H.; Anastasiadou, E.; Voutsinas, G.E. Thymidylate synthase inhibition induces p53-dependent and p53-independent apoptotic responses in human urinary bladder cancer cells. J. Cancer Res. Clin. Oncol., 2011, 137(2), 359-374.
[http://dx.doi.org/10.1007/s00432-010-0891-y] [PMID: 20425122]
[47]
Yang, T.Y.; Chang, G.C.; Chen, K.C.; Hung, H.W.; Hsu, K.H.; Wu, C.H.; Sheu, G.T.; Hsu, S.L. Pemetrexed induces both intrinsic and extrinsic apoptosis through ataxia telangiectasia mutated/p53-dependent and -independent signaling pathways. Mol. Carcinog., 2013, 52(3), 183-194.
[http://dx.doi.org/10.1002/mc.21842] [PMID: 22086658]
[48]
García, M.A.; Carrasco, E.; Aguilera, M.; Alvarez, P.; Rivas, C.; Campos, J.M.; Prados, J.C.; Calleja, M.A.; Esteban, M.; Marchal, J.A.; Aránega, A. The chemotherapeutic drug 5-fluorouracil promotes PKR-mediated apoptosis in a p53-independent manner in colon and breast cancer cells. PLoS One, 2011, 6(8), e23887.
[http://dx.doi.org/10.1371/journal.pone.0023887] [PMID: 21887339]
[49]
Konstantakou, E.G.; Voutsinas, G.E.; Karkoulis, P.K.; Aravantinos, G.; Margaritis, L.H.; Stravopodis, D.J. Human bladder cancer cells undergo cisplatin-induced apoptosis that is associated with p53-dependent and p53-independent responses. Int. J. Oncol., 2009, 35(2), 401-416.
[PMID: 19578756]
[50]
Vikhanskaya, F.; Vignati, S.; Beccaglia, P.; Ottoboni, C.; Russo, P.; D’Incalci, M.; Broggini, M. Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis. Exp. Cell Res., 1998, 241(1), 96-101.
[http://dx.doi.org/10.1006/excr.1998.4018] [PMID: 9633517]
[51]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002] [PMID: 25554624]
[52]
Begicevic, R.R.; Falasca, M. ABC transporters in cancer stem cells: beyond chemoresistance. Int. J. Mol. Sci., 2017, 18(11), 18.
[http://dx.doi.org/10.3390/ijms18112362] [PMID: 29117122]
[53]
Tiwari, A.K.; Zhang, R.; Gallo, J.M. Overlapping functions of ABC transporters in topotecan disposition as determined in gene knockout mouse models. Mol. Cancer Ther., 2013, 12(7), 1343-1355.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0100] [PMID: 23635651]
[54]
Assaraf, Y.G. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist. Updat., 2006, 9(4-5), 227-246.
[http://dx.doi.org/10.1016/j.drup.2006.09.001] [PMID: 17092765]
[55]
Robey, R.W.; Honjo, Y.; Morisaki, K.; Nadjem, T.A.; Runge, S.; Risbood, M.; Poruchynsky, M.S.; Bates, S.E. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br. J. Cancer, 2003, 89(10), 1971-1978.
[http://dx.doi.org/ 10.1038/sj.bjc.6601370] [PMID: 14612912]
[56]
Chen, K.G.; Wang, Y.C.; Schaner, M.E.; Francisco, B.; Durán, G.E.; Juric, D.; Huff, L.M.; Padilla-Nash, H.; Ried, T.; Fojo, T.; Sikic, B.I. Genetic and epigenetic modeling of the origins of multidrug-resistant cells in a human sarcoma cell line. Cancer Res., 2005, 65(20), 9388-9397.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4133] [PMID: 16230402]
[57]
Zhu, M.M.; Tong, J.L.; Xu, Q.; Nie, F.; Xu, X.T.; Xiao, S.D.; Ran, Z.H. Increased JNK1 signaling pathway is responsible for ABCG2-mediated multidrug resistance in human colon cancer. PLoS One, 2012, 7(8), e41763.
[http://dx.doi.org/10.1371/journal.pone.0041763] [PMID: 22870247]
[58]
Tomiyasu, H.; Watanabe, M.; Sugita, K.; Goto-Koshino, Y.; Fujino, Y.; Ohno, K.; Sugano, S.; Tsujimoto, H. Regulations of ABCB1 and ABCG2 expression through MAPK pathways in acute lymphoblastic leukemia cell lines. Anticancer Res., 2013, 33(12), 5317-5323.
[PMID: 24324065]
[59]
Lin, S.; Hoffmann, K.; Xiao, Z.; Jin, N.; Galli, U.; Mohr, E.; Büchler, M.W.; Schemmer, P. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int., 2013, 13(1), 3.
[http://dx.doi.org/10.1186/1475-2867-13-3] [PMID: 23320839]
[60]
Chen, X.; Jiang, M.; Zhao, R.K.; Gu, G.H. Quantitative assessment of the association between ABC polymorphisms and osteosarcoma response: A meta-analysis. Asian Pac. J. Cancer Prev., 2015, 16(11), 4659-4664.
[http://dx.doi.org/10.7314/APJCP. 2015.16.11. 4659] [PMID: 26107220]
[61]
Sun, S.; Cai, J.; Yang, Q.; Zhu, Y.; Zhao, S.; Wang, Z. Prognostic value and implication for chemotherapy treatment of ABCB1 in epithelial ovarian cancer: A meta-analysis. PLoS One, 2016, 11(11), e0166058.
[http://dx.doi.org/10.1371/journal.pone.0166058] [PMID: 27812204]
[62]
Korita, P.V.; Wakai, T.; Shirai, Y.; Matsuda, Y.; Sakata, J.; Takamura, M.; Yano, M.; Sanpei, A.; Aoyagi, Y.; Hatakeyama, K.; Ajioka, Y. Multidrug resistance-associated protein 2 determines the efficacy of cisplatin in patients with hepatocellular carcinoma. Oncol. Rep., 2010, 23(4), 965-972.
[PMID: 20204280]
[63]
Nakagawa, M.; Emoto, A.; Nasu, N.; Hanada, T.; Kuwano, M.; Cole, S.P.; Nomura, Y. Clinical significance of multi-drug resistance associated protein and P-glycoprotein in patients with bladder cancer. J. Urol., 1997, 157(4), 1260-1264.
[http://dx.doi.org/ 10.1016/S0022-5347(01)64944-9] [PMID: 9120915]
[64]
Nooter, K.; Kok, T.; Bosman, F.T.; van Wingerden, K.E.; Stoter, G. Expression of the multidrug resistance protein (MRP) in squamous cell carcinoma of the oesophagus and response to pre-operative chemotherapy. Eur. J. Cancer, 1998, 34(1), 81-86.
[http://dx.doi.org/10.1016/S0959-8049(97)00356-0] [PMID: 9624242]
[65]
Filipits, M.; Haddad, V.; Schmid, K.; Huynh, A.; Dunant, A.; André, F.; Brambilla, E.; Stahel, R.; Pignon, J.P.; Soria, J.C.; Popper, H.H.; Le Chevalier, T.; Pirker, R. Multidrug resistance proteins do not predict benefit of adjuvant chemotherapy in patients with completely resected non-small cell lung cancer: International Adjuvant Lung Cancer Trial Biologic Program. Clin. Cancer Res., 2007, 13(13), 3892-3898.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2446] [PMID: 17606722]
[66]
Leith, C.P.; Kopecky, K.J.; Chen, I.M.; Eijdems, L.; Slovak, M.L.; McConnell, T.S.; Head, D.R.; Weick, J.; Grever, M.R.; Appelbaum, F.R.; Willman, C.L. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: A southwest oncology group study. Blood, 1999, 94(3), 1086-1099.
[PMID: 10419902]
[67]
Higgins, C.F. Multiple molecular mechanisms for multidrug resistance transporters. Nature, 2007, 446(7137), 749-757.
[http://dx.doi.org/10.1038/nature05630] [PMID: 17429392]
[68]
Goldsmith, J.; Levine, B.; Debnath, J. Autophagy and cancer metabolism. Methods Enzymol., 2014, 542, 25-57.
[http://dx.doi.org/ 10.1016/B978-0-12-416618-9.00002-9] [PMID: 24862259]
[69]
Abdel Malek, M.A.; Jagannathan, S.; Malek, E.; Sayed, D.M.; Elgammal, S.A.; Abd El-Azeem, H.G.; Thabet, N.M.; Driscoll, J.J. Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma. Oncotarget, 2015, 6(5), 3098-3110.
[PMID: 25605012] [http://dx.doi.org/10.1007/s00018-011-0865-5]
[70]
Li, W.; Yang, Q.; Mao, Z. Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell. Mol. Life Sci., 2011, 68(5), 749-763.
[http://dx.doi.org/10.1007/s00018-010-0565-6] [PMID: 20976518]
[71]
Li, W.W.; Li, J.; Bao, J.K. Microautophagy: Lesser-known self-eating. Cell. Mol. Life Sci., 2012, 69(7), 1125-1136.
[http://dx.doi.org/10.1007/s00018-011-0865-5] [PMID: 22080117]
[72]
Lippai, M.; Szatmári, Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol. Toxicol., 2016, 33(2), 145-168.
[PMID: 27957648] [http://dx.doi.org/10.1007/s10565-016-9374-5]
[73]
Kumar, A.; Singh, U.K.; Chaudhary, A. Targeting autophagy to overcome drug resistance in cancer therapy. Future Med. Chem., 2015, 7(12), 1535-1542.
[http://dx.doi.org/10.4155/fmc.15.88] [PMID: 26334206]
[74]
Thorburn, A.; Thamm, D.H.; Gustafson, D.L. Autophagy and cancer therapy. Mol. Pharmacol., 2014, 85(6), 830-838.
[http://dx.doi.org/10.1124/mol.114.091850] [PMID: 24574520]
[75]
Levy, J.M.M.; Towers, C.G.; Thorburn, A. Targeting autophagy in cancer. Nat. Rev. Cancer, 2017, 17(9), 528-542.
[http://dx.doi.org/ 10.1038/nrc.2017.53] [PMID: 28751651]
[76]
Bhattacharya, B.; Mohd Omar, M.F.; Soong, R. The Warburg effect and drug resistance. Br. J. Pharmacol., 2016, 173(6), 970-979.
[http://dx.doi.org/10.1111/bph.13422] [PMID: 26750865]
[77]
Jang, M.; Kim, S.S.; Lee, J. Cancer cell metabolism: implications for therapeutic targets. Exp. Mol. Med., 2013, 45, e45.
[http://dx.doi.org/10.1038/emm.2013.85] [PMID: 24091747]
[78]
Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis., 2013, 4, e532.
[http://dx.doi.org/10.1038/cddis.2013.60] [PMID: 23470539]
[79]
Wojtkowiak, J.W.; Verduzco, D.; Schramm, K.J.; Gillies, R.J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm., 2011, 8(6), 2032-2038.
[http://dx.doi.org/10.1021/mp200292c] [PMID: 21981633]
[80]
Lau, J.; Lin, K.S.; Bénard, F. Past, present, and future: Development of theranostic agents targeting carbonic anhydrase IX. Theranostics, 2017, 7(17), 4322-4339.
[http://dx.doi.org/10.7150/thno.21848] [PMID: 29158829]
[81]
Betof, A.S.; Rabbani, Z.N.; Hardee, M.E.; Kim, S.J.; Broadwater, G.; Bentley, R.C.; Snyder, S.A.; Vujaskovic, Z.; Oosterwijk, E.; Harris, L.N.; Horton, J.K.; Dewhirst, M.W.; Blackwell, K.L. Carbonic anhydrase IX is a predictive marker of doxorubicin resistance in early-stage breast cancer independent of HER2 and TOP2A amplification. Br. J. Cancer, 2012, 106(5), 916-922.
[http://dx.doi.org/10.1038/bjc.2012.32] [PMID: 22333602]
[82]
Correia, A.L.; Bissell, M.J. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist. Updat., 2012, 15(1-2), 39-49.
[http://dx.doi.org/10.1016/j.drup.2012.01.006] [PMID: 22335920]
[83]
Weaver, V.M.; Lelièvre, S.; Lakins, J.N.; Chrenek, M.A.; Jones, J.C.; Giancotti, F.; Werb, Z.; Bissell, M.J. beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell, 2002, 2(3), 205-216.
[http://dx.doi.org/10.1016/S1535-6108(02)00125-3] [PMID: 12242153]
[84]
Shain, K.H.; Yarde, D.N.; Meads, M.B.; Huang, M.; Jove, R.; Hazlehurst, L.A.; Dalton, W.S. Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res., 2009, 69(3), 1009-1015.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2419] [PMID: 19155309]
[85]
Shain, K.H.; Landowski, T.H.; Dalton, W.S. Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines. J. Immunol., 2002, 168(5), 2544-2553.
[http://dx.doi.org/ 10.4049/jimmunol.168.5.2544] [PMID: 11859150]
[86]
Lin, L.; Yan, F.; Zhao, D.; Lv, M.; Liang, X.; Dai, H.; Qin, X.; Zhang, Y.; Hao, J.; Sun, X.; Yin, Y.; Huang, X.; Zhang, J.; Lu, J.; Ge, Q. Reelin promotes the adhesion and drug resistance of multiple myeloma cells via integrin β1 signaling and STAT3. Oncotarget, 2016, 7(9), 9844-9858.
[http://dx.doi.org/10.18632/oncotarget.7151] [PMID: 26848618]
[87]
Dewhirst, M.W.; Secomb, T.W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer, 2017, 17(12), 738-750.
[http://dx.doi.org/10.1038/nrc.2017.93] [PMID: 29123246]
[88]
Huang, Y.; Kim, B.Y.S.; Chan, C.K.; Hahn, S.M.; Weissman, I.L.; Jiang, W. Improving immune-vascular crosstalk for cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(3), 195-203.
[http://dx.doi.org/10.1038/nri.2017.145] [PMID: 29332937]
[89]
Inoue, H.; Tani, K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ., 2014, 21(1), 39-49.
[http://dx.doi.org/10.1038/cdd.2013.84] [PMID: 23832118]
[90]
Yarchoan, M.; Johnson, B.A., III; Lutz, E.R.; Laheru, D.A.; Jaffee, E.M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer, 2017, 17(4), 209-222.
[http://dx.doi.org/10.1038/nrc.2016.154] [PMID: 28233802]
[91]
Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol., 2017.
[http://dx.doi.org/10.1038/nri.2017.108] [PMID: 28990585]
[92]
Van Der Kraak, L.; Goel, G.; Ramanan, K.; Kaltenmeier, C.; Zhang, L.; Normolle, D.P.; Freeman, G.J.; Tang, D.; Nason, K.S.; Davison, J.M.; Luketich, J.D.; Dhupar, R.; Lotze, M.T. 5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in gastrointestinal cancers. J. Immunother. Cancer, 2016, 4, 65.
[http://dx.doi.org/10.1186/s40425-016-0163-8] [PMID: 27777774]
[93]
Yang, M.; Liu, P.; Wang, K.; Glorieux, C.; Hu, Y.; Wen, S.; Jiang, W.; Huang, P. Chemotherapy induces tumor immune evasion by upregulation of programmed cell death ligand 1 expression in bone marrow stromal cells. Mol. Oncol., 2017, 11(4), 358-372.
[http://dx.doi.org/10.1002/1878-0261.12032] [PMID: 28218497]
[94]
Peng, J.; Hamanishi, J.; Matsumura, N.; Abiko, K.; Murat, K.; Baba, T.; Yamaguchi, K.; Horikawa, N.; Hosoe, Y.; Murphy, S.K.; Konishi, I.; Mandai, M. Chemotherapy Induces Programmed Cell Death-Ligand 1 Overexpression via the Nuclear Factor-κB to Foster an Immunosuppressive Tumor Microenvironment in Ovarian Cancer. Cancer Res., 2015, 75(23), 5034-5045.
[http://dx.doi.org/ 10.1158/0008-5472.CAN-14-3098] [PMID: 26573793]
[95]
Liu, J.; Quan, L.; Zhang, C.; Liu, A.; Tong, D.; Wang, J. Over-activated PD-1/PD-L1 axis facilitates the chemoresistance of diffuse large B-cell lymphoma cells to the CHOP regimen. Oncol. Lett., 2018, 15(3), 3321-3328.
[PMID: 29435074] [http://dx.doi.org/10.3892/01.2017.7682]
[96]
Black, M.; Barsoum, I.B.; Truesdell, P.; Cotechini, T.; Macdonald-Goodfellow, S.K.; Petroff, M.; Siemens, D.R.; Koti, M.; Craig, A.W.; Graham, C.H. Activation of the PD-1/PD-L1 immune checkpoint confers tumor cell chemoresistance associated with increased metastasis. Oncotarget, 2016, 7(9), 10557-10567.
[http://dx.doi.org/10.18632/oncotarget.7235] [PMID: 26859684]
[97]
Shojaee, S.; Chan, L.N.; Buchner, M.; Cazzaniga, V.; Cosgun, K.N.; Geng, H.; Qiu, Y.H.; von Minden, M.D.; Ernst, T.; Hochhaus, A.; Cazzaniga, G.; Melnick, A.; Kornblau, S.M.; Graeber, T.G.; Wu, H.; Jumaa, H.; Müschen, M. PTEN opposes negative selection and enables oncogenic transformation of pre-B cells. Nat. Med., 2016, 22(4), 379-387.
[http://dx.doi.org/10.1038/nm.4062] [PMID: 26974310]
[98]
Müschen, M. Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nat. Rev. Cancer, 2018, 18(2), 103-116.
[http://dx.doi.org/10.1038/nrc.2017.111] [PMID: 29302068]
[99]
Bamias, A.; Koutsoukou, V.; Terpos, E.; Tsiatas, M.L.; Liakos, C.; Tsitsilonis, O.; Rodolakis, A.; Voulgaris, Z.; Vlahos, G.; Papageorgiou, T.; Papatheodoridis, G.; Archimandritis, A.; Antsaklis, A.; Dimopoulos, M.A. Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: Association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecol. Oncol., 2008, 108(2), 421-427.
[http://dx.doi.org/10.1016/j.ygyno.2007.10.018] [PMID: 18036640]
[100]
Lu, L.; Barbi, J.; Pan, F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol., 2017, 17(11), 703-717.
[http://dx.doi.org/10.1038/nri.2017.75] [PMID: 28757603]
[101]
Roychoudhuri, R.; Eil, R.L.; Restifo, N.P. The interplay of effector and regulatory T cells in cancer. Curr. Opin. Immunol., 2015, 33, 101-111.
[http://dx.doi.org/10.1016/j.coi.2015.02.003] [PMID: 25728990]
[102]
Bantug, G.R.; Galluzzi, L.; Kroemer, G.; Hess, C. The spectrum of T cell metabolism in health and disease. Nat. Rev. Immunol., 2018, 18(1), 19-34.
[http://dx.doi.org/10.1038/nri.2017.99] [PMID: 28944771]
[103]
Genin, M.; Clement, F.; Fattaccioli, A.; Raes, M.; Michiels, C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 2015, 15, 577.
[http://dx.doi.org/10.1186/s12885-015-1546-9] [PMID: 26253167]
[104]
Jinushi, M.; Chiba, S.; Yoshiyama, H.; Masutomi, K.; Kinoshita, I.; Dosaka-Akita, H.; Yagita, H.; Takaoka, A.; Tahara, H. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc. Natl. Acad. Sci. USA, 2011, 108(30), 12425-12430.
[http://dx.doi.org/ 10.1073/pnas.1106645108] [PMID: 21746895]
[105]
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer, 2016, 16(9), 582-598.
[http://dx.doi.org/10.1038/nrc.2016.73] [PMID: 27550820]
[106]
Valent, P.; Bonnet, D.; De Maria, R.; Lapidot, T.; Copland, M.; Melo, J.V.; Chomienne, C.; Ishikawa, F.; Schuringa, J.J.; Stassi, G.; Huntly, B.; Herrmann, H.; Soulier, J.; Roesch, A.; Schuurhuis, G.J.; Wöhrer, S.; Arock, M.; Zuber, J.; Cerny-Reiterer, S.; Johnsen, H.E.; Andreeff, M.; Eaves, C. Cancer stem cell definitions and terminology: the devil is in the details. Nat. Rev. Cancer, 2012, 12(11), 767-775.
[http://dx.doi.org/10.1038/nrc3368] [PMID: 23051844]
[107]
Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer, 2005, 5(4), 275-284.
[http://dx.doi.org/ 10.1038/nrc1590] [PMID: 15803154]
[108]
Beck, B.; Blanpain, C. Unravelling cancer stem cell potential. Nat. Rev. Cancer, 2013, 13(10), 727-738.
[http://dx.doi.org/10.1038/nrc3597] [PMID: 24060864]
[109]
Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; Campbell, L.L.; Polyak, K.; Brisken, C.; Yang, J.; Weinberg, R.A. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 2008, 133(4), 704-715.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[110]
Dilruba, S.; Kalayda, G.V. Platinum-based drugs: past, present and future. Cancer Chemother. Pharmacol., 2016, 77(6), 1103-1124.
[http://dx.doi.org/10.1007/s00280-016-2976-z] [PMID: 26886018]
[111]
Holzer, A.K.; Katano, K.; Klomp, L.W.; Howell, S.B. Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin. Cancer Res., 2004, 10(19), 6744-6749.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0748] [PMID: 15475465]
[112]
Öhrvik, H.; Thiele, D.J. The role of Ctr1 and Ctr2 in mammalian copper homeostasis and platinum-based chemotherapy. J. Trace Elem. Med. Biol., 2015, 31, 178-182.
[http://dx.doi.org/10.1016/j.jtemb.2014.03.006] [PMID: 24703712]
[113]
Blair, B.G.; Larson, C.A.; Safaei, R.; Howell, S.B. Copper transporter 2 regulates the cellular accumulation and cytotoxicity of Cisplatin and Carboplatin. Clin. Cancer Res., 2009, 15(13), 4312-4321.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0311] [PMID: 19509135]
[114]
Safaei, R.; Maktabi, M.H.; Blair, B.G.; Larson, C.A.; Howell, S.B. Effects of the loss of Atox1 on the cellular pharmacology of cisplatin. J. Inorg. Biochem., 2009, 103(3), 333-341.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.11.012] [PMID: 19124158]
[115]
Tadini-Buoninsegni, F.; Bartolommei, G.; Moncelli, M.R.; Inesi, G.; Galliani, A.; Sinisi, M.; Losacco, M.; Natile, G.; Arnesano, F. Translocation of platinum anticancer drugs by human copper ATPases ATP7A and ATP7B. Angew. Chem. Int. Ed. Engl., 2014, 53(5), 1297-1301.
[http://dx.doi.org/10.1002/anie.201307718] [PMID: 24375922]
[116]
Li, Z.H.; Zheng, R.; Chen, J.T.; Jia, J.; Qiu, M. The role of copper transporter ATP7A in platinum-resistance of esophageal squamous cell cancer (ESCC). J. Cancer, 2016, 7(14), 2085-2092.
[http://dx.doi.org/10.7150/jca.16117] [PMID: 27877224]
[117]
Moinuddin, F.M.; Shinsato, Y.; Komatsu, M.; Mitsuo, R.; Minami, K.; Yamamoto, M.; Kawahara, K.; Hirano, H.; Arita, K.; Furukawa, T. ATP7B expression confers multidrug resistance through drug sequestration. Oncotarget, 2016, 7(16), 22779-22790.
[http://dx.doi.org/10.18632/oncotarget.8059] [PMID: 26988911]
[118]
Nakagawa, T.; Inoue, Y.; Kodama, H.; Yamazaki, H.; Kawai, K.; Suemizu, H.; Masuda, R.; Iwazaki, M.; Yamada, S.; Ueyama, Y.; Inoue, H.; Nakamura, M. Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) correlates with cisplatin resistance in human non-small cell lung cancer xenografts. Oncol. Rep., 2008, 20(2), 265-270.
[PMID: 18636185]
[119]
Sun, S.; Cai, J.; Yang, Q.; Zhao, S.; Wang, Z. The association between copper transporters and the prognosis of cancer patients undergoing chemotherapy: a meta-analysis of literatures and datasets. Oncotarget, 2017, 8(9), 16036-16051.
[http://dx.doi.org/10.18632/oncotarget.13917] [PMID: 27980217]
[120]
Galluzzi, L.; Vitale, I.; Michels, J.; Brenner, C.; Szabadkai, G.; Harel-Bellan, A.; Castedo, M.; Kroemer, G. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis., 2014, 5, e1257.
[http://dx.doi.org/10.1038/cddis.2013.428] [PMID: 24874729]
[121]
Chen, J.; Solomides, C.; Simpkins, H. Sensitization of mesothelioma cells to platinum-based chemotherapy by GSTπ knockdown. Biochem. Biophys. Res. Commun., 2014, 447(1), 77-82.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.100] [PMID: 24690178]
[122]
Sawers, L.; Ferguson, M.J.; Ihrig, B.R.; Young, H.C.; Chakravarty, P.; Wolf, C.R.; Smith, G. Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines. Br. J. Cancer, 2014, 111(6), 1150-1158.
[http://dx.doi.org/10.1038/bjc.2014.386] [PMID: 25010864]
[123]
Ikeda, K.; Sakai, K.; Yamamoto, R.; Hareyama, H.; Tsumura, N.; Watari, H.; Shimizu, M.; Minakami, H.; Sakuragi, N. Multivariate analysis for prognostic significance of histologic subtype, GST-pi, MDR-1, and p53 in stages II-IV ovarian cancer. Int. J. Gynecol. Cancer, 2003, 13(6), 776-784.
[http://dx.doi.org/10.1136/ijgc-00009577-200311000-00008] [PMID: 14675314]
[124]
van der Zee, A.G.; Hollema, H.; Suurmeijer, A.J.; Krans, M.; Sluiter, W.J.; Willemse, P.H.; Aalders, J.G.; de Vries, E.G. Value of P-glycoprotein, glutathione S-transferase pi, c-erbB-2, and p53 as prognostic factors in ovarian carcinomas. J. Clin. Oncol., 1995, 13(1), 70-78.
[http://dx.doi.org/10.1200/JCO.1995.13.1.70] [PMID: 7799045]
[125]
Nishimura, T.; Newkirk, K.; Sessions, R.B.; Andrews, P.A.; Trock, B.J.; Rasmussen, A.A.; Montgomery, E.A.; Bischoff, E.K.; Cullen, K.J. Immunohistochemical staining for glutathione S-transferase predicts response to platinum-based chemotherapy in head and neck cancer. Clin. Cancer Res., 1996, 2(11), 1859-1865.
[PMID: 9816141]
[126]
Lee, J.H.; Chae, J.W.; Kim, J.K.; Kim, H.J.; Chung, J.Y.; Kim, Y.H. Inhibition of cisplatin-resistance by RNA interference targeting metallothionein using reducible oligo-peptoplex. J. Control. Release, 2015, 215, 82-90.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.015] [PMID: 26210439]
[127]
Galizia, G.; Ferraraccio, F.; Lieto, E.; Orditura, M.; Castellano, P.; Imperatore, V.; La Manna, G.; Pinto, M.; Ciardiello, F.; La Mura, A.; De Vita, F. p27 downregulation and metallothionein overexpression in gastric cancer patients are associated with a poor survival rate. J. Surg. Oncol., 2006, 93(3), 241-252.
[http://dx.doi.org/10.1002/jso.20402] [PMID: 16482605]
[128]
Hishikawa, Y.; Abe, S.; Kinugasa, S.; Yoshimura, H.; Monden, N.; Igarashi, M.; Tachibana, M.; Nagasue, N. Overexpression of metallothionein correlates with chemoresistance to cisplatin and prognosis in esophageal cancer. Oncology, 1997, 54(4), 342-347.
[http://dx.doi.org/10.1159/000227714] [PMID: 9216861]
[129]
Weinlich, G.; Eisendle, K.; Hassler, E.; Baltaci, M.; Fritsch, P.O.; Zelger, B. Metallothionein - overexpression as a highly significant prognostic factor in melanoma: a prospective study on 1270 patients. Br. J. Cancer, 2006, 94(6), 835-841.
[http://dx.doi.org/10.1038/sj.bjc.6603028] [PMID: 16508630]
[130]
Weinlich, G.; Topar, G.; Eisendle, K.; Fritsch, P.O.; Zelger, B. Comparison of metallothionein-overexpression with sentinel lymph node biopsy as prognostic factors in melanoma. J. Eur. Acad. Dermatol. Venereol., 2007, 21(5), 669-677.
[PMID: 17447982] [http://dx.doi.org/10.1111/j.1468-3083.2006.02051.x]
[131]
Werynska, B.; Pula, B.; Muszczynska-Bernhard, B.; Gomulkiewicz, A.; Piotrowska, A.; Prus, R.; Podhorska-Okolow, M.; Jankowska, R.; Dziegiel, P. Metallothionein 1F and 2A overexpression predicts poor outcome of non-small cell lung cancer patients. Exp. Mol. Pathol., 2013, 94(1), 301-308.
[http://dx.doi.org/ 10.1016/j.yexmp.2012.10.006] [PMID: 23064051]
[132]
Wülfing, C.; van Ahlen, H.; Eltze, E.; Piechota, H.; Hertle, L.; Schmid, K.W. Metallothionein in bladder cancer: Correlation of overexpression with poor outcome after chemotherapy. World J. Urol., 2007, 25(2), 199-205.
[http://dx.doi.org/10.1007/s00345-006-0141-8] [PMID: 17253087]
[133]
Cheetham, P.; Petrylak, D.P. Tubulin-targeted agents including docetaxel and cabazitaxel. Cancer J., 2013, 19(1), 59-65.
[http://dx.doi.org/10.1097/PPO.0b013e3182828d38] [PMID: 23337758]
[134]
Raspaglio, G.; Filippetti, F.; Prislei, S.; Penci, R.; De Maria, I.; Cicchillitti, L.; Mozzetti, S.; Scambia, G.; Ferlini, C. Hypoxia induces class III beta-tubulin gene expression by HIF-1alpha binding to its 3′ flanking region. Gene, 2008, 409(1-2), 100-108.
[http://dx.doi.org/10.1016/j.gene.2007.11.015] [PMID: 18178340]
[135]
Sève, P.; Reiman, T.; Lai, R.; Hanson, J.; Santos, C.; Johnson, L.; Dabbagh, L.; Sawyer, M.; Dumontet, C.; Mackey, J.R. Class III beta-tubulin is a marker of paclitaxel resistance in carcinomas of unknown primary site. Cancer Chemother. Pharmacol., 2007, 60(1), 27-34.
[http://dx.doi.org/10.1007/s00280-006-0343-1] [PMID: 17021819]
[136]
Edelman, M.J.; Schneider, C.P.; Tsai, C.M.; Kim, H.T.; Quoix, E.; Luft, A.V.; Kaleta, R.; Mukhopadhyay, P.; Trifan, O.C.; Whitaker, L.; Reck, M. Randomized phase II study of ixabepilone or paclitaxel plus carboplatin in patients with non-small-cell lung cancer prospectively stratified by beta-3 tubulin status. J. Clin. Oncol., 2013, 31(16), 1990-1996.
[http://dx.doi.org/ 10.1200/JCO.2012.45.3282] [PMID: 23589560]
[137]
Sève, P.; Dumontet, C. Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol., 2008, 9(2), 168-175.
[http://dx.doi.org/10.1016/S1470-2045(08)70029-9] [PMID: 18237851]
[138]
Kavallaris, M.; Kuo, D.Y.; Burkhart, C.A.; Regl, D.L.; Norris, M.D.; Haber, M.; Horwitz, S.B. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J. Clin. Invest., 1997, 100(5), 1282-1293.
[http://dx.doi.org/10.1172/JCI119642] [PMID: 9276747]
[139]
Urano, N.; Fujiwara, Y.; Doki, Y.; Kim, S.J.; Miyoshi, Y.; Noguchi, S.; Miyata, H.; Takiguchi, S.; Yasuda, T.; Yano, M.; Monden, M. Clinical significance of class III beta-tubulin expression and its predictive value for resistance to docetaxel-based chemotherapy in gastric cancer. Int. J. Oncol., 2006, 28(2), 375-381.
[PMID: 16391792]
[140]
Freedman, H.; Huzil, J.T.; Luchko, T.; Ludueña, R.F.; Tuszynski, J.A. Identification and characterization of an intermediate taxol binding site within microtubule nanopores and a mechanism for tubulin isotype binding selectivity. J. Chem. Inf. Model., 2009, 49(2), 424-436.
[http://dx.doi.org/10.1021/ci8003336] [PMID: 19434843]
[141]
McCarroll, J.A.; Gan, P.P.; Erlich, R.B.; Liu, M.; Dwarte, T.; Sagnella, S.S.; Akerfeldt, M.C.; Yang, L.; Parker, A.L.; Chang, M.H.; Shum, M.S.; Byrne, F.L.; Kavallaris, M. TUBB3/βIII-tubulin acts through the PTEN/AKT signaling axis to promote tumorigenesis and anoikis resistance in non-small cell lung cancer. Cancer Res., 2015, 75(2), 415-425.
[http://dx.doi.org/ 10.1158/0008-5472.CAN-14-2740] [PMID: 25414139]
[142]
Martello, L.A.; Verdier-Pinard, P.; Shen, H.J.; He, L.; Torres, K.; Orr, G.A.; Horwitz, S.B. Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an alpha-tubulin mutation. Cancer Res., 2003, 63(6), 1207-1213.
[PMID: 12649178]
[143]
Giannakakou, P.; Sackett, D.L.; Kang, Y.K.; Zhan, Z.; Buters, J.T.; Fojo, T.; Poruchynsky, M.S. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J. Biol. Chem., 1997, 272(27), 17118-17125.
[http://dx.doi.org/10.1074/jbc.272.27.17118] [PMID: 9202030]
[144]
Verma, K.; Ramanathan, K. Investigation of paclitaxel resistant R306C mutation in β-Tubulin—A computational approach. J. Cell. Biochem., 2015, 116(7), 1318-1324.
[http://dx.doi.org/ 10.1002/jcb.25087] [PMID: 25735511]
[145]
Alli, E.; Bash-Babula, J.; Yang, J.M.; Hait, W.N. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res., 2002, 62(23), 6864-6869.
[PMID: 12460900]
[146]
Zhai, Y.; Kronebusch, P.J.; Simon, P.M.; Borisy, G.G. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol., 1996, 135(1), 201-214.
[http://dx.doi.org/10.1083/jcb.135.1.201] [PMID: 8858174]
[147]
Nishio, K.; Nakamura, T.; Koh, Y.; Kanzawa, F.; Tamura, T.; Saijo, N. Oncoprotein 18 overexpression increases the sensitivity to vindesine in the human lung carcinoma cells. Cancer, 2001, 91(8), 1494-1499.
[http://dx.doi.org/10.1002/1097-0142(20010415)91:8< 1494:AID-CNCR1157>3.0.CO;2-7] [PMID: 11301397]
[148]
Malesinski, S.; Tsvetkov, P.O.; Kruczynski, A.; Peyrot, V.; Devred, F. Stathmin potentiates vinflunine and inhibits Paclitaxel activity. PLoS One, 2015, 10(6), e0128704.
[http://dx.doi.org/ 10.1371/journal.pone.0128704] [PMID: 26030092]
[149]
Chen, S.; Dong, Q.; Hu, S.; Cai, J.; Zhang, W.; Sun, J.; Wang, T.; Xie, J.; He, H.; Xing, J.; Lu, J.; Dong, Y. Proteomic analysis of the proteins that are associated with the resistance to paclitaxel in human breast cancer cells. Mol. Biosyst., 2014, 10(2), 294-303.
[http://dx.doi.org/10.1039/C3MB70428A] [PMID: 24292090]
[150]
Murphy, L.; Henry, M.; Meleady, P.; Clynes, M.; Keenan, J. Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line. Biochim. Biophys. Acta, 2008, 1784(9), 1184-1191.
[http://dx.doi.org/10.1016/j.bbapap.2008.04.014] [PMID: 18503785]
[151]
Verrills, N.M.; Liem, N.L.; Liaw, T.Y.; Hood, B.D.; Lock, R.B.; Kavallaris, M. Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia-An in vivo study. Proteomics, 2006, 6(5), 1681-1694.
[http://dx.doi.org/ 10.1002/pmic.200500417] [PMID: 16456880]
[152]
Xu, H.; Dephoure, N.; Sun, H.; Zhang, H.; Fan, F.; Liu, J.; Ning, X.; Dai, S.; Liu, B.; Gao, M.; Fu, S.; Gygi, S.P.; Zhou, C. Proteomic profiling of paclitaxel treated cells identifies a novel mechanism of drug resistance mediated by PDCD4. J. Proteome Res., 2015, 14(6), 2480-2491.
[http://dx.doi.org/10.1021/acs.jproteome. 5b00004] [PMID: 25928036]
[153]
Zu, S.; Ma, W.; Xiao, P.; Cui, Y.; Ma, T.; Zhou, C.; Zhang, H. Evaluation of docetaxel-sensitive and docetaxel-resistant proteomes in PC-3 cells. Urol. Int., 2015, 95(1), 114-119.
[http://dx.doi.org/10.1159/000351263] [PMID: 25999365]
[154]
Po’uha, S.T.; Honore, S.; Braguer, D.; Kavallaris, M. Partial depletion of gamma-actin suppresses microtubule dynamics. Cytoskeleton (Hoboken), 2013, 70(3), 148-160.
[http://dx.doi.org/ 10.1002/cm.21096] [PMID: 23335583]
[155]
Gonen, N.; Assaraf, Y.G. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist. Updat., 2012, 15(4), 183-210.
[http://dx.doi.org/10.1016/j.drup.2012. 07.002] [PMID: 22921318]
[156]
Brigle, K.E.; Spinella, M.J.; Sierra, E.E.; Goldman, I.D. Characterization of a mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. J. Biol. Chem., 1995, 270(39), 22974-22979.
[http://dx.doi.org/10.1074/jbc.270.39. 22974] [PMID: 7559435]
[157]
Gifford, A.J.; Haber, M.; Witt, T.L.; Whetstine, J.R.; Taub, J.W.; Matherly, L.H.; Norris, M.D. Role of the E45K-reduced folate carrier gene mutation in methotrexate resistance in human leukemia cells. Leukemia, 2002, 16(12), 2379-2387.
[http://dx.doi.org/ 10.1038/sj.leu.2402655] [PMID: 12454742]
[158]
Liu, X.Y.; Witt, T.L.; Matherly, L.H. Restoration of high-level transport activity by human reduced folate carrier/ThTr1 thiamine transporter chimaeras: role of the transmembrane domain 6/7 linker region in reduced folate carrier function. Biochem. J., 2003, 369(Pt 1), 31-37.
[http://dx.doi.org/10.1042/bj20020419] [PMID: 12227830]
[159]
Zhao, R.; Gao, F.; Goldman, I.D. Discrimination among reduced folates and methotrexate as transport substrates by a phenylalanine substitution for serine within the predicted eighth transmembrane domain of the reduced folate carrier. Biochem. Pharmacol., 1999, 58(10), 1615-1624.
[http://dx.doi.org/10.1016/S0006-2952(99) 00257-9] [PMID: 10535753]
[160]
Zhao, R.; Assaraf, Y.G.; Goldman, I.D. A mutated murine reduced folate carrier (RFC1) with increased affinity for folic acid, decreased affinity for methotrexate, and an obligatory anion requirement for transport function. J. Biol. Chem., 1998, 273(30), 19065-19071.
[http://dx.doi.org/10.1074/jbc.273.30.19065] [PMID: 9668089]
[161]
Anderson, R.G.; Kamen, B.A.; Rothberg, K.G.; Lacey, S.W. Potocytosis: sequestration and transport of small molecules by caveolae. Science, 1992, 255(5043), 410-411.
[http://dx.doi.org/ 10.1126/science.1310359] [PMID: 1310359]
[162]
Wilson, M.R.; Hou, Z.; Wilson, L.J.; Ye, J.; Matherly, L.H. Functional and mechanistic roles of the human proton-coupled folate transporter transmembrane domain 6-7 linker. Biochem. J., 2016, 473(20), 3545-3562.
[http://dx.doi.org/10.1042/BCJ20160399] [PMID: 27514717]
[163]
Zhao, R.; Diop-Bove, N.; Goldman, I.D. Enhanced receptor-mediated endocytosis and cytotoxicity of a folic acid-desacetylvinblastine monohydrazide conjugate in a pemetrexed-resistant cell line lacking folate-specific facilitative carriers but with increased folate receptor expression. Mol. Pharmacol., 2014, 85(2), 310-321.
[http://dx.doi.org/10.1124/mol.113.089110] [PMID: 24249723]
[164]
Giovannetti, E.; Zucali, P.A.; Assaraf, Y.G.; Funel, N.; Gemelli, M.; Stark, M.; Thunnissen, E.; Hou, Z.; Muller, I.B.; Struys, E.A.; Perrino, M.; Jansen, G.; Matherly, L.H.; Peters, G.J. Role of proton-coupled folate transporter in pemetrexed resistance of mesothelioma: Clinical evidence and new pharmacological tools. Ann. Oncol., 2017, 28(11), 2725-2732.
[http://dx.doi.org/ 10.1093/annonc/mdx499] [PMID: 28945836]
[165]
Raz, S.; Stark, M.; Assaraf, Y.G. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist. Updat., 2016, 28, 43-64.
[http://dx.doi.org/10.1016/j.drup.2016.06.004] [PMID: 27620954]
[166]
Wojtuszkiewicz, A.; Raz, S.; Stark, M.; Assaraf, Y.G.; Jansen, G.; Peters, G.J.; Sonneveld, E.; Kaspers, G.J.; Cloos, J. Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance. Int. J. Cancer, 2016, 138(7), 1645-1656.
[http://dx.doi.org/10.1002/ijc.29919] [PMID: 26547381]
[167]
Wojtuszkiewicz, A.; Assaraf, Y.G.; Hoekstra, M.; Sciarrillo, R.; Jansen, G.; Peters, G.J.; Pieters, R.; Sonneveld, E.; Escherich, G.; Kaspers, G.J.; Cloos, J. The association of aberrant folylpolyglutamate synthetase splicing with ex vivo methotrexate resistance and clinical outcome in childhood acute lymphoblastic leukemia. Haematologica, 2016, 101(7), e291-e294.
[http://dx.doi.org/10.3324/haematol.2016.142794] [PMID: 27036162]
[168]
Lustgarten, D.E.; Deshpande, C.; Aggarwal, C.; Wang, L.C.; Saloura, V.; Vachani, A.; Wang, L.P.; Litzky, L.; Feldman, M.; Creaney, J.; Nowak, A.K.; Langer, C.; Inghilleri, S.; Stella, G.; Albelda, S.M. Thymidylate synthase and folyl-polyglutamate synthase are not clinically useful markers of response to pemetrexed in patients with malignant pleural mesothelioma. J. Thorac. Oncol., 2013, 8(4), 469-477.
[http://dx.doi.org/10.1097/JTO.0b013e318283da3e] [PMID: 23486267]
[169]
Jansen, G.; Mauritz, R.M.; Assaraf, Y.G.; Sprecher, H.; Drori, S.; Kathmann, I.; Westerhof, G.R.; Priest, D.G.; Bunni, M.; Pinedo, H.M.; Schornagel, J.H.; Peters, G.J. Regulation of carrier-mediated transport of folates and antifolates in methotrexate-sensitive and-resistant leukemia cells. Adv. Enzyme Regul., 1997, 37, 59-76.
[http://dx.doi.org/10.1016/S0065-2571(96)00012-X] [PMID: 9381986]
[170]
Cole, P.D.; Kamen, B.A.; Gorlick, R.; Banerjee, D.; Smith, A.K.; Magill, E.; Bertino, J.R. Effects of overexpression of gamma-Glutamyl hydrolase on methotrexate metabolism and resistance. Cancer Res., 2001, 61(11), 4599-4604.
[PMID: 11389096]
[171]
Kim, S.E.; Cole, P.D.; Cho, R.C.; Ly, A.; Ishiguro, L.; Sohn, K.J.; Croxford, R.; Kamen, B.A.; Kim, Y.I. γ-Glutamyl hydrolase modulation and folate influence chemosensitivity of cancer cells to 5-fluorouracil and methotrexate. Br. J. Cancer, 2013, 109(8), 2175-2188.
[http://dx.doi.org/10.1038/bjc.2013.579] [PMID: 24045662]
[172]
Shimizu, T.; Nakagawa, Y.; Takahashi, N.; Hashimoto, S. Thymidylate synthase gene amplification predicts pemetrexed resistance in patients with advanced non-small cell lung cancer. Clin. Transl. Oncol., 2016, 18(1), 107-112.
[http://dx.doi.org/ 10.1007/s12094-015-1359-y] [PMID: 26220094]
[173]
Sun, J.M.; Ahn, J.S.; Jung, S.H.; Sun, J.; Ha, S.Y.; Han, J.; Park, K.; Ahn, M.J. Pemetrexed plus cisplatin versus gemcitabine plus cisplatin according to thymidylate synthase expression in nonsquamous non-small-cell lung cancer: a biomarker-stratified randomized phase II trial. J. Clin. Oncol., 2015, 33(22), 2450-2456.
[http://dx.doi.org/10.1200/JCO.2014.59.9324] [PMID: 26124486]
[174]
Grønberg, B.H.; Lund-Iversen, M.; Strøm, E.H.; Brustugun, O.T.; Scott, H. Associations between TS, TTF-1, FR-α, FPGS, and overall survival in patients with advanced non-small-cell lung cancer receiving pemetrexed plus carboplatin or gemcitabine plus carboplatin as first-line chemotherapy. J. Thorac. Oncol., 2013, 8(10), 1255-1264.
[http://dx.doi.org/10.1097/JTO.0b013e3182a406a3] [PMID: 24457236]
[175]
Nicolson, M.C.; Fennell, D.A.; Ferry, D.; O’Byrne, K.; Shah, R.; Potter, V.; Skailes, G.; Upadhyay, S.; Taylor, P.; André, V.; Nguyen, T.S.; Myrand, S.P.; Visseren-Grul, C.; Das, M.; Kerr, K.M. Thymidylate synthase expression and outcome of patients receiving pemetrexed for advanced nonsquamous non-small-cell lung cancer in a prospective blinded assessment phase II clinical trial. J. Thorac. Oncol., 2013, 8(7), 930-939.
[http://dx.doi.org/10.1097/JTO.0b013e318292c500] [PMID: 23722170]
[176]
Farrugia, D.C.; Ford, H.E.; Cunningham, D.; Danenberg, K.D.; Danenberg, P.V.; Brabender, J.; McVicar, A.D.; Aherne, G.W.; Hardcastle, A.; McCarthy, K.; Jackman, A.L. Thymidylate synthase expression in advanced colorectal cancer predicts for response to raltitrexed. Clin. Cancer Res., 2003, 9(2), 792-801.
[PMID: 12576452]
[177]
He, Y.W.; Zhao, M.L.; Yang, X.Y.; Zeng, J.; Deng, Q.H.; He, J.X. Prognostic value of ERCC1, RRM1, and TS proteins in patients with resected non-small cell lung cancer. Cancer Chemother. Pharmacol., 2015, 75(4), 861-867.
[http://dx.doi.org/10.1007/s00280-015-2714-y] [PMID: 25732635]
[178]
Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules, 2008, 13(8), 1551-1569.
[http://dx.doi.org/10.3390/molecules13081551] [PMID: 18794772]
[179]
Bergman, A.M.; Pinedo, H.M.; Peters, G.J. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist. Updat., 2002, 5(1), 19-33.
[http://dx.doi.org/10.1016/S1368-7646(02)00002-X] [PMID: 12127861]
[180]
Wang, W.B.; Yang, Y.; Zhao, Y.P.; Zhang, T.P.; Liao, Q.; Shu, H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-15690.
[http://dx.doi.org/10.3748/wjg.v20.i42.15682] [PMID: 25400452]
[181]
Showalter, S.L.; Showalter, T.N.; Witkiewicz, A.; Havens, R.; Kennedy, E.P.; Hucl, T.; Kern, S.E.; Yeo, C.J.; Brody, J.R. Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil. Is it time to move forward? Cancer Biol. Ther., 2008, 7(7), 986-994.
[http://dx.doi.org/10.4161/cbt.7.7.6181] [PMID: 18443433]
[182]
Zhang, C.; Liu, H.; Ma, B.; Song, Y.; Gao, P.; Xu, Y.; Yu, D.; Wang, Z. The impact of the expression level of intratumoral dihydropyrimidine dehydrogenase on chemotherapy sensitivity and survival of patients in gastric cancer: A meta-analysis. Dis. Markers, 2017, 2017, 9202676.
[http://dx.doi.org/10.1155/2017/9202676] [PMID: 28255193]
[183]
Pommier, Y. Drugging topoisomerases: Lessons and challenges. ACS Chem. Biol., 2013, 8(1), 82-95.
[http://dx.doi.org/10.1021/cb300648v] [PMID: 23259582]
[184]
Silvestris, N.; Simone, G.; Partipilo, G.; Scarpi, E.; Lorusso, V.; Brunetti, A.E.; Maiello, E.; Paradiso, A.; Mangia, A. CES2, ABCG2, TS and Topo-I primary and synchronous metastasis expression and clinical outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI regimen. Int. J. Mol. Sci., 2014, 15(9), 15767-15777.
[http://dx.doi.org/10.3390/ijms150915767] [PMID: 25198900]
[185]
Xie, F.W.; Peng, Y.; Chen, X.; Chen, X.; Li, J.; Wang, W.; Yu, Z.; Ouyang, X. Relationship between the expression of CES2, UGT1A1, and GUSB in colorectal cancer tissues and aberrant methylation. Neoplasma, 2014, 61(1), 99-109.
[http://dx.doi.org/ 10.4149/neo_2014_014] [PMID: 24195516]
[186]
Jones, R.P.; Sutton, P.; Greensmith, R.M.; Santoyo-Castelazo, A.; Carr, D.F.; Jenkins, R.; Rowe, C.; Hamlett, J.; Park, B.K.; Terlizzo, M.; O’Grady, E.; Ghaneh, P.; Fenwick, S.W.; Malik, H.Z.; Poston, G.J.; Kitteringham, N.R. Hepatic activation of irinotecan predicts tumour response in patients with colorectal liver metastases treated with DEBIRI: exploratory findings from a phase II study. Cancer Chemother. Pharmacol., 2013, 72(2), 359-368.
[http://dx.doi.org/ 10.1007/s00280-013-2199-5] [PMID: 23756919]
[187]
Okumura, M.; Iwakiri, T.; Takagi, A.; Hirabara, Y.; Kawano, Y.; Arimori, K. Hepatocyte growth factor suppresses the anticancer effect of irinotecan by decreasing the level of active metabolite in HepG2 cells. Biochem. Pharmacol., 2011, 82(11), 1720-1730.
[http://dx.doi.org/10.1016/j.bcp.2011.07.095] [PMID: 21840303]
[188]
Fujimori, A.; Harker, W.G.; Kohlhagen, G.; Hoki, Y.; Pommier, Y. Mutation at the catalytic site of topoisomerase I in CEM/C2, a human leukemia cell line resistant to camptothecin. Cancer Res., 1995, 55(6), 1339-1346.
[PMID: 7882333]
[189]
Yanase, K.; Sugimoto, Y.; Andoh, T.; Tsuruo, T. Retroviral expression of a mutant (Gly-533) human DNA topoisomerase I cDNA confers a dominant form of camptothecin resistance. Int. J. Cancer, 1999, 81(1), 134-140.
[http://dx.doi.org/ 10.1002/(SICI)1097-0215(19990331)81:1<134:AID-IJC22>3.0.CO;2-Y] [PMID: 10077164]
[190]
Chang, J.Y.; Dethlefsen, L.A.; Barley, L.R.; Zhou, B.S.; Cheng, Y.C. Characterization of camptothecin-resistant Chinese hamster lung cells. Biochem. Pharmacol., 1992, 43(11), 2443-2452.
[http://dx.doi.org/10.1016/0006-2952(92)90325-D] [PMID: 1319161]
[191]
Kizek, R.; Adam, V.; Hrabeta, J.; Eckschlager, T.; Smutny, S.; Burda, J.V.; Frei, E.; Stiborova, M. Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharmacol. Ther., 2012, 133(1), 26-39.
[http://dx.doi.org/10.1016/j.pharmthera.2011.07.006] [PMID: 21839775]
[192]
Withoff, S.; Keith, W.N.; Knol, A.J.; Coutts, J.C.; Hoare, S.F.; Mulder, N.H.; de Vries, E.G. Selection of a subpopulation with fewer DNA topoisomerase II alpha gene copies in a doxorubicin-resistant cell line panel. Br. J. Cancer, 1996, 74(4), 502-507.
[http://dx.doi.org/10.1038/bjc.1996.393] [PMID: 8761362]
[193]
Fortune, J.M.; Osheroff, N. Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Prog. Nucleic Acid Res. Mol. Biol., 2000, 64, 221-253.
[http://dx.doi.org/10.1016/S0079-6603(00)64006-0] [PMID: 10697411]
[194]
Du, Y.; Zhou, Q.; Yin, W.; Zhou, L.; Di, G.; Shen, Z.; Shao, Z.; Lu, J. The role of topoisomerase IIα in predicting sensitivity to anthracyclines in breast cancer patients: a meta-analysis of published literatures. Breast Cancer Res. Treat., 2011, 129(3), 839-848.
[http://dx.doi.org/10.1007/s10549-011-1694-9] [PMID: 21809115]
[195]
Knez, L.; Sodja, E.; Kern, I.; Košnik, M.; Cufer, T. Predictive value of multidrug resistance proteins, topoisomerases II and ERCC1 in small cell lung cancer: a systematic review. Lung Cancer, 2011, 72(3), 271-279.
[http://dx.doi.org/10.1016/j.lungcan.2011.02.014] [PMID: 21440950]
[196]
Wong, N.; Yeo, W.; Wong, W.L.; Wong, N.L.; Chan, K.Y.; Mo, F.K.; Koh, J.; Chan, S.L.; Chan, A.T.; Lai, P.B.; Ching, A.K.; Tong, J.H.; Ng, H.K.; Johnson, P.J.; To, K.F. TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. Int. J. Cancer, 2009, 124(3), 644-652.
[http://dx.doi.org/10.1002/ijc.23968] [PMID: 19003983]
[197]
Puyo, S.; Montaudon, D.; Pourquier, P. From old alkylating agents to new minor groove binders. Crit. Rev. Oncol. Hematol., 2014, 89(1), 43-61.
[http://dx.doi.org/10.1016/j.critrevonc.2013.07.006] [PMID: 23972663]
[198]
Zhang, J.; Tian, Q.; Chan, S.Y.; Duan, W.; Zhou, S. Insights into oxazaphosphorine resistance and possible approaches to its circumvention. Drug Resist. Updat., 2005, 8(5), 271-297.
[http://dx.doi.org/10.1016/j.drup.2005.08.003] [PMID: 16154799]
[199]
Johnson, G.G.; Lin, K.; Cox, T.F.; Oates, M.; Sibson, D.R.; Eccles, R.; Lloyd, B.; Gardiner, L.J.; Carr, D.F.; Pirmohamed, M.; Strefford, J.C.; Oscier, D.G.; Gonzalez de Castro, D.; Else, M.; Catovsky, D.; Pettitt, A.R. CYP2B6*6 is an independent determinant of inferior response to fludarabine plus cyclophosphamide in chronic lymphocytic leukemia. Blood, 2013, 122(26), 4253-4258.
[http://dx.doi.org/10.1182/blood-2013-07-516666] [PMID: 24128861]
[200]
Magni, M.; Shammah, S.; Schiró, R.; Mellado, W.; Dalla-Favera, R.; Gianni, A.M. Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood, 1996, 87(3), 1097-1103.
[PMID: 8562935]
[201]
Dong, Y.; Ochsenreither, S.; Cai, C.; Kaufmann, A.M.; Albers, A.E.; Qian, X. Aldehyde dehydrogenase 1 isoenzyme expression as a marker of cancer stem cells correlates to histopathological features in head and neck cancer: A meta-analysis. PLoS One, 2017, 12(11), e0187615.
[http://dx.doi.org/10.1371/journal.pone.0187615] [PMID: 29112953]
[202]
Avoranta, S.T.; Korkeila, E.A.; Ristamäki, R.H.; Syrjänen, K.J.; Carpén, O.M.; Pyrhönen, S.O.; Sundström, J.T. ALDH1 expression indicates chemotherapy resistance and poor outcome in node-negative rectal cancer. Hum. Pathol., 2013, 44(6), 966-974.
[http://dx.doi.org/10.1016/j.humpath.2012.10.003] [PMID: 23332924]
[203]
Nakahata, K.; Uehara, S.; Nishikawa, S.; Kawatsu, M.; Zenitani, M.; Oue, T.; Okuyama, H. Aldehyde Dehydrogenase 1 (ALDH1) Is a potential marker for cancer stem cells in embryonal rhabdomyosarcoma. PLoS One, 2015, 10(4), e0125454.
[http://dx.doi.org/10.1371/journal.pone.0125454] [PMID: 25915760]
[204]
Honoki, K.; Fujii, H.; Kubo, A.; Kido, A.; Mori, T.; Tanaka, Y.; Tsujiuchi, T. Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol. Rep., 2010, 24(2), 501-505.
[http://dx.doi.org/10.3892/or_00000885] [PMID: 20596639]
[205]
Kida, K.; Ishikawa, T.; Yamada, A.; Shimada, K.; Narui, K.; Sugae, S.; Shimizu, D.; Tanabe, M.; Sasaki, T.; Ichikawa, Y.; Endo, I. Effect of ALDH1 on prognosis and chemoresistance by breast cancer subtype. Breast Cancer Res. Treat., 2016, 156(2), 261-269.
[http://dx.doi.org/10.1007/s10549-016-3738-7] [PMID: 26975188]
[206]
Li, D.; Zhang, T.; Gu, W.; Li, P.; Cheng, X.; Tong, T.; Wang, W. The ALDH1+ subpopulation of the human NMFH-1 cell line exhibits cancer stem-like characteristics. Oncol. Rep., 2015, 33(5), 2291-2298.
[http://dx.doi.org/10.3892/or.2015.3842] [PMID: 25760144]
[207]
Richardson, M.E.; Siemann, D.W. DNA damage in cyclophosphamide-resistant tumor cells: The role of glutathione. Cancer Res., 1995, 55(8), 1691-1695.
[PMID: 7712476]
[208]
Kohsaka, S.; Takahashi, K.; Wang, L.; Tanino, M.; Kimura, T.; Nishihara, H.; Tanaka, S. Inhibition of GSH synthesis potentiates temozolomide-induced bystander effect in glioblastoma. Cancer Lett., 2013, 331(1), 68-75.
[http://dx.doi.org/10.1016/j.canlet.2012.12.005] [PMID: 23246370]
[209]
Weiler, M.; Blaes, J.; Pusch, S.; Sahm, F.; Czabanka, M.; Luger, S.; Bunse, L.; Solecki, G.; Eichwald, V.; Jugold, M.; Hodecker, S.; Osswald, M.; Meisner, C.; Hielscher, T.; Rübmann, P.; Pfenning, P.N.; Ronellenfitsch, M.; Kempf, T.; Schnölzer, M.; Abdollahi, A.; Lang, F.; Bendszus, M.; von Deimling, A.; Winkler, F.; Weller, M.; Vajkoczy, P.; Platten, M.; Wick, W. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy. Proc. Natl. Acad. Sci. USA, 2014, 111(1), 409-414.
[http://dx.doi.org/10.1073/pnas.1314469111] [PMID: 24367102]
[210]
Chen, W.; Xiao, Z.; Zhao, Y.; Huang, L.; Du, G. HIF-1α inhibition sensitizes pituitary adenoma cells to temozolomide by regulating MGMT expression. Oncol. Rep., 2013, 30(5), 2495-2501.
[http://dx.doi.org/10.3892/or.2013.2689] [PMID: 23970362]
[211]
Kewitz, S.; Stiefel, M.; Kramm, C.M.; Staege, M.S. Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin’s lymphoma cells. Leuk. Res., 2014, 38(1), 138-143.
[http://dx.doi.org/10.1016/j.leukres.2013.11.001] [PMID: 24284332]
[212]
Qiu, Z.K.; Shen, D.; Chen, Y.S.; Yang, Q.Y.; Guo, C.C.; Feng, B.H.; Chen, Z.P. Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells. Chin. J. Cancer, 2014, 33(2), 115-122.
[http://dx.doi.org/10.5732/cjc.012.10236] [PMID: 23958055]
[213]
Gilbert, M.R.; Wang, M.; Aldape, K.D.; Stupp, R.; Hegi, M.E.; Jaeckle, K.A.; Armstrong, T.S.; Wefel, J.S.; Won, M.; Blumenthal, D.T.; Mahajan, A.; Schultz, C.J.; Erridge, S.; Baumert, B.; Hopkins, K.I.; Tzuk-Shina, T.; Brown, P.D.; Chakravarti, A.; Curran, W.J., Jr; Mehta, M.P. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J. Clin. Oncol., 2013, 31(32), 4085-4091.
[http://dx.doi.org/10.1200/JCO.2013.49.6968] [PMID: 24101040]
[214]
Weller, M.; Tabatabai, G.; Kästner, B.; Felsberg, J.; Steinbach, J.P.; Wick, A.; Schnell, O.; Hau, P.; Herrlinger, U.; Sabel, M.C.; Wirsching, H.G.; Ketter, R.; Bähr, O.; Platten, M.; Tonn, J.C.; Schlegel, U.; Marosi, C.; Goldbrunner, R.; Stupp, R.; Homicsko, K.; Pichler, J.; Nikkhah, G.; Meixensberger, J.; Vajkoczy, P.; Kollias, S.; Hüsing, J.; Reifenberger, G.; Wick, W.; Group, D.S. MGMT Promoter Methylation Is a Strong Prognostic Biomarker for Benefit from Dose-Intensified Temozolomide Rechallenge in Progressive Glioblastoma: The DIRECTOR Trial. Clin. Cancer Res., 2015, 21(9), 2057-2064.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2737] [PMID: 25655102]
[215]
Zhao, H.; Wang, S.; Song, C.; Zha, Y.; Li, L. The prognostic value of MGMT promoter status by pyrosequencing assay for glioblastoma patients’ survival: a meta-analysis. World J. Surg. Oncol., 2016, 14(1), 261.
[http://dx.doi.org/10.1186/s12957-016-1012-4] [PMID: 27733166]
[216]
Ang, C.; Guiot, M.C.; Ramanakumar, A.V.; Roberge, D.; Kavan, P. Clinical significance of molecular biomarkers in glioblastoma. Can. J. Neurol. Sci., 2010, 37(5), 625-630.
[http://dx.doi.org/ 10.1017/S0317167100010805] [PMID: 21059509]
[217]
Esteller, M.; Gaidano, G.; Goodman, S.N.; Zagonel, V.; Capello, D.; Botto, B.; Rossi, D.; Gloghini, A.; Vitolo, U.; Carbone, A.; Baylin, S.B.; Herman, J.G. Hypermethylation of the DNA repair gene O(6)-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J. Natl. Cancer Inst., 2002, 94(1), 26-32.
[http://dx.doi.org/10.1093/jnci/94.1.26] [PMID: 11773279]
[218]
Ohno, T.; Hiraga, J.; Ohashi, H.; Sugisaki, C.; Li, E.; Asano, H.; Ito, T.; Nagai, H.; Yamashita, Y.; Mori, N.; Kinoshita, T.; Naoe, T. Loss of O6-methylguanine-DNA methyltransferase protein expression is a favorable prognostic marker in diffuse large B-cell lymphoma. Int. J. Hematol., 2006, 83(4), 341-347.
[http://dx.doi.org/10.1532/IJH97.05182] [PMID: 16757436]
[219]
Tuominen, R.; Jewell, R.; van den Oord, J.J.; Wolter, P.; Stierner, U.; Lindholm, C.; Hertzman Johansson, C.; Lindén, D.; Johansson, H.; Frostvik Stolt, M.; Walker, C.; Snowden, H.; Newton-Bishop, J.; Hansson, J.; Egyházi Brage, S. MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma. Int. J. Cancer, 2015, 136(12), 2844-2853.
[http://dx.doi.org/10.1002/ijc.29332] [PMID: 25400033]
[220]
Middleton, M.R.; Lunn, J.M.; Morris, C.; Rustin, G.; Wedge, S.R.; Brampton, M.H.; Lind, M.J.; Lee, S.M.; Newell, D.R.; Bleehen, N.M.; Newlands, E.S.; Calvert, A.H.; Margison, G.P.; Thatcher, N. O6-methylguanine-DNA methyltransferase in pretreatment tumour biopsies as a predictor of response to temozolomide in melanoma. Br. J. Cancer, 1998, 78(9), 1199-1202.
[http://dx.doi.org/10.1038/bjc.1998.654] [PMID: 9820180]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy