Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Some Possibilities to Study New Prophylactics against Nerve Agents

Author(s): J. Bajgar, J. Kassa, T. Kucera, K. Musilek, D. Jun and K. Kuca*

Volume 19, Issue 12, 2019

Page: [970 - 979] Pages: 10

DOI: 10.2174/1389557519666190301112530

Price: $65

Abstract

Nerve agents belong to the most dangerous chemical warfare agents and can be/were misused by terrorists. Effective prophylaxis and treatment is necessary to diminish their effect. General principles of prophylaxis are summarized (protection against acetylcholinesterase inhibition, detoxification, treatment “in advance” and use of different drugs). They are based on the knowledge of mechanism of action of nerve agents. Among different examinations, it is necessary to test prophylactic effectivity in vivo and compare the results with protection in vitro. Chemical and biological approaches to the development of new prophylactics would be applied simultaneously during this research. Though the number of possible prophylactics is relatively high, the only four drugs were introduced into military medical practice. At present, pyridostigmine seems to be common prophylactic antidote; prophylactics panpal (tablets with pyridostigmine, trihexyphenidyl and benactyzine), transant (transdermal patch containing HI-6) are other means introduced into different armies as prophylactics. Scavenger commercionally available is Protexia®. Future development will be focused on scavengers, and on other drugs either reversible cholinesterase inhibitors (e.g., huperzine A, gallantamine, physostigmine, acridine derivatives) or other compounds.

Keywords: Nerve agents, prophylaxis, scavengers, antidotes, cholinesterases, in vitro, in vivo.

Graphical Abstract
[1]
Bajgar, J. Organophosphates/nerve agent poisoning: Mechanism of action, diagnosis, mprophylaxis and treatment. Adv. Clin. Chem., 2004, 38, 151-216.
[2]
Bajgar, J. The Effect of Organophosphates/Nerve Agents: Poisoning and its Treatment in Schematic Figures and Tables Elsevier, 2012. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.
[3]
Bajgar, J.; Fusek, J.; Kassa, J.; Kuca, K.; Jun, D. Chemical aspects of pharmacological prophylaxis against nerve agent poisoning. Curr. Med. Chem., 2009, 16, 2977-2986.
[4]
Benschop, H.P.; De Jong, L.P.A. Toxicokinetics of nerve agents. In: Somani, S.M.; Romano, J.A., Eds.;Chemical Warfare Agents: Toxicity at Low Levels; CRC Press: Boca Raton, FL, USA, 2001; pp. 25-81.
[5]
Wiesner, J.; Kriz, Z.; Kuca, K.; Jun, D.; Koca, J. Acetylcholinesterases - The structural similarities and differences. J. Enzyme Inhib. Med. Chem., 2007, 22, 417-424.
[6]
Gorecki, L.; Korabecny, J.; Musilek, K.; Malinak, D.; Nepovimova, E.; Kuca, K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol.,
[http://dx.doi.org/10.1007/s00204-016-1827-3]
[7]
Kassa, J.; Musilek, K.; Karasova, J.Z.; Kuca, K.; Bajgar, J. Two possibilities how to increase the efficacy of antidotal treatment of nerve agent poisonings. Mini Rev. Med. Chem., 2012, 12, 24-34.
[8]
Kuca, K.; Jun, D.; Musilek, K.; Pohanka, M.; Zdarova Karasova, J.; Soukup, O. Prophylaxis and post-exposure treatment of intoxications caused by nerve agents and organophosphorus pesticides. Mini Rev. Med. Chem., 2013, 13, 2102-2115.
[9]
Lotti, M. Organophosphorus compounds. In: Experimental and Clinical Neurotoxicology; Spencer, P.S.; Schaumburg H.H. Eds.;2nd Edition, Oxford University Press, New York. , 2000; pp. 898-925.
[10]
Marrs, T.C.; Maynard, R.L.; Sidell, F.R. Chemical Warfare Agents. Toxicology and Treatment., John Wiley and Sons, Chicester,. 1996.
[11]
Kalasz, H.; Hasan, M.Y.; Sheen, R.; Kuca, K.; Petroianu, G.; Ludanyi, K.; Gergely, A.; Tekes, K. HPLC analysis of K-48 concentration in plasma. Anal. Bioanal. Chem., 2006, 385, 1062-1067.
[12]
Rice, H. Toxicology of organophosphorus nerve agents. Issues Toxicol., 2016, 2016(26), 81-116.
[13]
Vale, A.; Marrs, T.C.; Rice, P. Chemical terrorism and nerve agents. Medicine , 2007, 35, 573-575.
[14]
Bajgar, J.; Fusek, J.; Kassa, J.; Kuca, K.; Jun, D. Pharmacological prophylaxis against nerve agent poisoning: experimental studies and practical implications. In: Handbook of Toxicology of Chemical Warfare Agents; Second Edition, R.C. Gupta, R.C. Ed. Elsevier/ AP, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2015; pp. 979-987.
[15]
Jokanovic, M. Current understanding of the mechanisms involved in metabolic detoxification of warfare nerve agents. Toxicol. Lett., 2009, 188, 1-10.
[16]
Layish, I.; Krivoy, A.; Rotman, E.; Finkelstein, A.; Tashma, Z.; Yehezkelli, Y. Pharmacologic prophylaxis against nerve agent poisoning. Isr. Med. Assoc. J., 2005, 7, 182-187.
[17]
Patočka, J.; Jun, D.; Bajgar, J.; Kuca, K. Prophylaxis against nerve agent intoxications. Def. Sci. J., 2006, 56, 775-784.
[18]
Ramalho, T.C.; de Castro, A.A.; Silva, D.R.; Silva, M.C.; Franca, T.C.C.; Bennion, B.J.; Kuca, K. Computational enzymology and organophosphorus degrading enzymes: promising approaches toward remediation technologies of warfare agents and pesticides. Curr. Med. Chem., 2016, 23, 1041-1061.
[19]
Rice, H.; Mann, T.M.; Armstrong, S.J.; Price, M.E.; Green, A.C.; Tattersall, J.E.H. The potential role of bioscavenger in the medical management of nerve-agent poisoned casualties. Chem. Biol. Interact., 2016.
[http://dx.doi.org/10.1016/j.cbi.2016.04.038]
[20]
Cabal, J. Providing of the Czech Army by antidotes against chemical warfare agents Workshop of the laboratory assistants of the 31. brchbo,, 2016. Liberec, Czech Republic, January 30-31, 2013
[21]
Thors, L.; Koch, B.; Koch, M.; Hagglund, I.; Bucht, A. Comparison of skin decontamination methods following exposure of organophosphorus compounds. 12th International Symposium on Protection against Chemical and Biological Warfare Agents, 2016Stockholm, Sweden8-10 June 2016 Abstracts, p. 77.
[22]
Bajgar, J.; Fusek, J.; Patocka, J.; Hrdina, V. The use of peritoneal dialysis in experimental intoxications with organophosphates. Sbor. Ved. Prac. LF UK (Hradec Kralove), 1982, 25, 319-326.
[23]
Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4, 131-138.
[24]
Cerasoli, D.M.; Griffiths, E.M.; Doctor, B.P.; Saxena, A.; Fedorko, J.M.; Greig, N.H.; Yu, Q.S.; Huang, Y.; Wilgus, H.; Karatzas, C.N.; Koplovitz, I.; Lenz, D.E. In vitro and in vivo characterization of recombinant human butyrylcholinesterase (Protexia) as a potential nerve agent bioscavenger. Chem. Biol. Interact., 2005, 157, 363-365.
[25]
Huang, Y-J.; Huang, Y.; Baldassarre, H.; Wang, B.; Lazaris, A.; Leduc, M.; Bilodeau, A.S.; Bellemare, A.; Cote, M.; Herskovits, P.; Touati, M.; Turcotte, C.; Valeanu, L.; Lemée, N.; Wilgus, H.; Bégin, I.; Bhatia, B.; Rao, K.; Neveu, N.; Brochu, E.; Pierson, J.; Hockley, D.K.; Cerasoli, D.M.; Lenz, D.E.; Karatzas, C.N.; Lagermann, S. Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proc. Natl. Acad. Sci. USA, 2007, 104, 13603-13608.
[26]
Saxena, A.; Doctor, B.P.; Sun, W.; Luo, C.; Bansal, R.; Naik, R.S.; Fedorko, J.M.; Koplovitz, I.; Maxwell, D.M.; Lenz, D.E.; Ross, M.C. (2004) HuBChE: A bioscavanger for protection against organophosphate chemical warfare agents. U.S. Army Med. Dep. J., 2004, 7, 22-29.
[27]
Sevelova, L.; Bajgar, J.; Saxena, A.; Doctor, B.P. Protective effect of equine butyrylcholinesterase in inhalation intoxication of rats with sarin: Determination of blood and brain cholinesterase activities. Inhal. Toxicol., 2004, 16, 531-536.
[28]
Clark, M.G.; Saxena, A.; Anderson, S.M.; Sun, W.; Bansal, R.; Myers, T.M.; Doctor, B.P. Behavioral toxicity of purified human serum butyrylcholinesterase in mice. The 4th International CBMTS,, 2002. 28 April-3 May 2002, Spiez, Switzerland, Abstract No 19.
[29]
Doctor, B.P.; Raveh, L.; Wolfe, A.D.; Maxwell, D.M.; Ashani, Y. Enzymes as pretreatment drugs for organophosphate toxicity. Neurosci. Biobehav. Rev., 1991, 15, 123-128.
[30]
Doctor, B.P.; Maxwell, D.M.; Saxena, A. Preparation and characterization of bioscavengers for possible use against organophosphate toxicity; M-CB Med. Treat. Sympos, 1997, pp. 26-30.
[31]
Doctor, B.P.; Saxena, A.; Clark, M.G.; Bansal, R.; Luo, C.; Rosenberg, Y.; Lenz, D.; Ashani, Y. Scavenger protection against organophosphates by human serum butyrylcholinesterase. The 4th International CBMTS, 2002, 28.
[32]
Saxena, A.; Sun, W.; Fedorko, J.M.; James, M.; Koplovitz, I.; Doctor, B.P. Prophylaxis with human serum butyrylcholinesterase protects guinea pigs exposed to multiple lethal doses of soman or VX. Biochem. Pharmacol., 2011, 81, 164-169.
[33]
Mazur, A. An enzyme in animal tissues capable of hydrolyzing the phosphrous-fluorine bond of alkyl fluorophosphates. J. Biol. Chem., 1946, 164, 271.
[34]
Gupta, R.D.; Goldsmith, M.; Ashani, Y.; Simo, Y.; Mullokandov, G.; Bar, H.; Ben-David, M.; Leader, H.; Margalit, R.; Silman, I.; Sussman, J.L.; Tawfik, D.S. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat. Chem. Biol., 2011, 7, 120-125.
[35]
Li, W.F.; Furlong, C.E.; Costa, L.G. Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicol. Lett., 1995, 76, 219-226.
[36]
Raveh, L.; Segall, Y.; Leader, H.; Rothschild, N.; Levanon, D.; Henis, Y.; Ashani, Y. Protection against tabun toxicity in mice by prophylaxis with an enzyme hydrolyzing organophosphate esters. Biochem. Pharmacol., 1992, 44, 397-400.
[37]
Trovasler-Leroy, M.; Musilova, L.; Renault, F.; Brazzolotto, X.; Misik, J.; Novotny, L.; Froment, M.T.; Gillon, E.; Loiodice, M.; Verdier, L.; Masson, P.; Rochu, D.; Jun, D. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol. Lett., 2011, 206, 14-23.
[38]
Masson, P.; Josse, O.; Lockridge, O.; Viguie, N.; Taupin, C.; Buhler, C. Enzymes hydrolyzing organophosphates as potential catalytic scavengers against organophosphate poisoning. J. Physiol. Paris, 1998, 92, 357-362.
[39]
Aharoni, A.; Gaidukov, L.; Yagur, S.; Toker, L.; Silman, I.; Tawfik, D.S. Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proc. Natl. Acad. Sci. USA, 2004, 101, 482-487.
[40]
Ashani, Y.; Goldsmith, M.; Leader, H.; Silman, I.; Sussman, J.L.; Tawfik, D.S. In vitro detoxification of cyclosarin in human blood pre-incubated ex vivo with recombinant serum paraoxonase. Toxicol. Lett., 2011, 206, 24-28.
[41]
Bajaj, P.; Tripathy, R.K.; Aggarwal, G.; Datusalia, A.K.; Sharma, S.S.; Pande, A.H. Refolded recombinant human paraoxonase 1 variant exhibits prophylactic activity. Appl. Biochem. Biotechnol., 2016, 180, 165-176.
[42]
Rochu, D.; Chabriere, E.; Masson, P. Human paraoxonase: A promising approach for pre-treatment and therapy of organophosphorus poisoning. Neurochem. Res., 2008, 33, 348-354.
[43]
Valiyaveettil, M.; Alamneh, Y.; Rezk, P.; Perkins, M.W.; Sciuto, A.M.; Doctor, B.P.; Nambiar, M.P. Recombinant paraoxonase 1 protects against sarin and soman toxicity following microinstuillation inhalation exposure in guinea pigs. Toxicol. Lett., 2011, 202, 203-208.
[44]
Valiyaveettil, M.; Alamneh, Y.; Rezk, P.; Biggemann, L.; Perkins, M.W.; Sciuto, A.M.; Doctor, B.P.; Nambiar, M.P. Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs. Biochem. Pharmacol., 2011, 81, 800-809.
[45]
Jun, D.; Musilova, L.; Kuca, K.; Kassa, J.; Bajgar, J. Potency of several oximes to reactivate human acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon in vitro. Chem. Biol. Interact., 2008, 175, 421-424.
[46]
Jun, D.; Musilova, L.; Musilek, K.; Kuca, K. In vitro ability of currently available oximes to reactivate organophosphate pesticide-inhibited human acetylcholinesterase and butyrylcholinesterase. Int. J. Mol. Sci., 2011, 12, 2077-2087.
[47]
Kovarik, Z.; Katalinic, M.; Sinko, G.; Binder, J.; Holas, O.; Jung, Y.S.; Musilova, L.; Jun, D.; Kuca, K. Pseudo-catalytic scavengeing: Searching for a suitable reactivator of phosphorylated butyrylcholinesterase. Chem. Biol. Interact., 2010, 187, 167-171.
[48]
Sterri, S.H.; Valdal, G.; Lyngaas, S.; Odden, E.; Malthe-Sørenssen, D.; Fonnum, F. The mechanism of soman detoxification in perfused rat liver. Biochem. Pharmacol., 1983, 32, 1941-1943.
[49]
Jokanovic, M. Liver esterases and soman toxicity in the rat following partial hepatectomy. Biochem. Pharmacol., 1990, 39, 797-799.
[50]
Skopec, F.; Bajgar, J. Changes of acetylcholinesterase activity in hepatectomized rats following soman poisoning. Sbor. Ved. Pr. LF UK Hradec Kralove, 1992, 35, 247-252.
[51]
Skopec, F.; Bajgar, J. Anticholinesterase action of organophosphates: importance of the liver. Sbor. Ved. Pr. LF UK Hradec Kralove, 1993, 36, 83-92.
[52]
Shapira, F.; Shapira, S.; Kadar, T.; Cohen, G.; Chapman, S.; Raveh, L. Effects of CBDP and MEPQ on the toxicity and distribution of (3H) soman in mice. Arch. Toxicol., 1990, 64, 663-668.
[53]
Rosman, Y.; Ravfogel, S.; Shiyovich, A.; Shrot, S.; Milk, N.; Ophir, M.; Aviram, M.; Nir, I.; Kassirer, M.; Eisenkraft, A. Reveratrol fails to provide prophylactic protection in a rat model of organophosphate poisoning. Disaster Mil. Med., 2016.
[http://dx.doi.org/10.1186/ s40696-016-0021-8]
[54]
Koelle, G.B. Protection of cholinesterase against irreversible inactivation by DFP in vitro. J. Pharmacol. Exp. Ther., 1946, 88, 323-327.
[55]
Koster, R. Synergisms and antagonisms between physostigmine and diisopropyl fluorophosphate in cats. J. Pharmacol. Exp. Ther., 1946, 88, 39-46.
[56]
Haigh, J.R.; Adler, M.; Apland, J.P.; Deshpande, S.S.; Barham, C.B.; Desmond, P.; Koplovitz, I.; Lenz, D.E.; Gordon, R.K. Protection by pyridostigmine bromide of marmoset hemidiaphragm acetylcholinesterase activity after soman exposure. Chem. Biol. Interact., 2010, 187, 416-420.
[57]
Kassa, J. Fusek, J. Bajgar, J. The importance of PANPAL pretreatment for survival of rats poisoned with supralethal dose of soman; Mini-CB Med. Treat. Sympos, 1997, pp. 26-30.
[58]
Kassa, J.; Musilek, K.; Koomlova, M.; Bajgar, J. A comparison of the efficacy of newly developed reversible inhibitors of acetylcholinesterase with commonly used pyridostigmine as pharmacological pre-treatment of soman-poisoned mice. Basic Clin. Pharmacol. Toxicol., 2012, 110, 322-326.
[59]
Koplovitz, I.; Harris, L.W.; Anderson, D.R.; Lennox, W.J.; Stewart, J.R. Reduction by pyridostigmine pretreatment of the efficacy of atropine and 2-PAM treatment of sarin and VX poisoning in rodents. Fundam. Appl. Toxicol., 1992, 18, 192-196.
[60]
Walter, K.; Muller, M.; Barkworth, M.F.; Niciecki, A.V.; Stanislaus, F. Pharmakokinetics of physostigmine in man following a single application of a transdermal system. Br. J. Clin. Pharmacol., 1995, 39, 59-63.
[61]
Kassa, J.; Vachek, J.; Bajgar, J.; Fusek, J. A comparison of the efficacy of pharmacological pretreatments against soman in mice. Vojen. Zdrav. Listy, 2001, 70, 22-25.
[62]
Nepovimova, E.; Korabecny, J.; Dolezal, R.; Nguyen, T.D.; Jun, D.; Soukup, O.; Pasdiorova, M.; Jost, P.; Muckova, L.; Malinak, D.; Gorecki, L.; Musilek, K.; Kuca, K. 7-methoxytacrine-4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxications. Toxicol. Res., 2016, 5, 1012-1016.
[63]
Galli, A.; Mazri, A. Protection against diisopropylfluorophosphate intoxication by Meptazinol. Toxicol. Appl. Pharmacol., 1988, 95, 388-396.
[64]
Karlsson, B.M.; Koch, M.; Koskinen, L.O.D. Effects of soman in animals pretreated with nimodipine. Proceed. 6th CBW Protect. Symp., 1998Stockholm15-19 May 1998, pp. 181-184.
[65]
Stojiljkovic, M.P.; Maksimovic, M.; Bokonjic, D.; Kilibarda, V.; Tadic, V.; Boskovic, B. Adamantanes versus carbamatres as prophylactic agents in soman-poisoned rats. 1998Proc. 6th CBW Protect. Symp., Stockholm10-15 May 1998, pp. 197-202.
[66]
Cho, Y. Protection by a transdermal patch system for the prophylaxis against soman poisonuing in Rhesus monkey. FASBJ, 2012, 26, 21-25.
[67]
Cho, Y.; Kim, W.S.; Hur, G.H.; Ha, Y.C. Minimum effective drug concentrations of a transdermal patch system containing procyclidine and physostigmine for prophylaxis against soman poisoning in rhesus monkeys. Environ. Toxicol. Pharmacol., 2012, 33, 1-8.
[68]
Myhrer, T.; Enger, S.; Aas, P. Soman-induced seizures in rats: Possible treatment and prophylaxis. In: Symposium Proceedings, NBC; , 2003. , 2003, Laihia, K., Ed.136-137
[69]
Kim, Y.B.; Cheon, K.C.; Hur, G.H.; Phi, T.S.; Yeon, G.B. Prophylactic effect of physostigmine and procyclidine against nerve-agent poisoning. Seventh Intl. Symp. Protect. CBWA., 2001Stockholm15-19 June 2001 Abstracts, p. 158.
[70]
Kim, Y.B.; Cheon, K.C.; Hur, G.H.; Phi, T.S.; Choi, S.J.; Hong, D.; Kang, J.K. Effects of combinational prophylactics composed of physostigmine and procyclidine on soman induced lethality, seizures and brain injuries. Environ. Toxicol. Pharmacol., 2002, 11, 15-21.
[71]
Loke, W.K.; Chua, E.; Loo, H.P.; Tan, S.H.; Teo, C. Anticonvulsant effects of post-intoxication administered atropine-clonidine drug combination in soman-poisoned rats. Seventh Intl. Symp. Protect. CBWA, 2001Stockholm15-19 June 2001 Abstracts, p. 160.
[72]
Tuovinen, K. Comparison of pyridostigmine, physostigmine, heptylphysostigmine and phosphotriesterase treatments in sarin intoxication. Suppl. Proceed. 6th CBW Protect. Symp., 1998Stockholm10-15 May 1998, p. 254.
[73]
Ashani, Y.; Peggins, J.O.; Doctor, B.P. Mechanism of inhibition of cholinesterases by huperzine A. Biochem. Biophys. Res. Commun., 1992, 184, 719-726.
[74]
Grunwald, J.; Raveh, L.; Doctor, B.P.; Ashani, Y. Huperzine A as a pretreatment candidate drug against nerve agent toxicity. Life Sci., 1994, 54, 991-997.
[75]
Patočka, J.; Huperzine, A. An interesting anticholinesterase compound from the Chinese herbal medicine. Acta Med. (Hradec Kralove), 1998, 41, 155-157.
[76]
Lallement, G.; Baille, V.; Baubichon, D.; Carpentier, P.; Collombet, J.M.; Filliat, P.; Foquin, A.; Four, E.; Masqueliez, C.; Testylier, G.; Tonduli, L.; Dorandeu, F. Review of the value of huperzine as pretreatment of organophosphate poisoning. Neurotoxicology, 2002, 23, 1-5.
[77]
Raves, M.L.; Harel, M.; Pang, Y.P.; Silman, I.; Kozikowski, A.P.; Sussman, J.L. Structure of AChE complexed with the nootropic alkaloid, (-) huperzine A. Nat. Struct. Biol., 1997, 4, 57-63.
[78]
Saxena, A.; Qian, N.; Kovach, I.M.; Kozikowski, A.P.; Pang, Y.P.; Vellom, D.C.; Radic, Z.; Quinn, D.; Taylor, P.; Doctor, B.P. Identification of aminoacid residues involved in the binding of huperzine A to cholinesterases. Protein Sci., 1994, 3, 1770-1778.
[79]
Wang, Y.; Wei, Y.L.; Oguntayo, S.; Doctor, B.P.; Nambiar, M.P. (2013) A combination of (plus) and (minus)-Huperzine A impoves protection against soman toxicity compared to (plus)-Huperzine A in guinea pigs. Chem. Biol. Interact., 2013, 2013(203), 120-124.
[80]
Ago, Y.; Koda, K.; Takuma, K. Pharmacological aspects of the acetylcholinesterase iahibitor Galantamine. J. Pharmacol. Sci., 2011, 116, 6-17.
[81]
Bajgar, J. Protective effect of reversible cholinesterase inhibitors (tacrine, pyridostigmine) and EqBuChe against VX poisoning and brain acetylcholinesterase inhibition in rats. Acta Med. (Hradec Kralove), 2008, 51, 223-228.
[82]
Freeman, S.E.; Dawson, R.M. Tacrine: A pharmacological review. Prog. Neurobiol., 1991, 36, 257-277.
[83]
Korabecny, J.; Nepovimova, E.; Soukup, O.; Dolezal, R.; Jun, D.; Musilek, K.; Spilovska, K.; Babkova, K.; Malinak, D.; Gorecki, L.; Mezeiova, E.; Kuca, K. Novel tacrine inhibitors of acetylcholinesterase with potential impact against organophosphorous poisoning. Interdiscip. Toxicol., 2016, 9(Suppl. 1), 35.
[84]
Lau, W.M. Protection by tacrine and atropine against the depressant effects of soman in guinea pig atrium. Proceedings of the 4th International Symposium Protection Against Chemical Warfare Agents, 1992Stockholm8-12 June 1992 suppl. 1, , p. 182.
[85]
Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Shafiullah, M.; Kuca, K.; Petroianu, G.A. Acetylcholinesterase inhibitors as pretreatment before acute exposure to organophosphates: Assessment using methyl-paraoxon. CNS Neurol. Disord. Drug Targets, 2012, 11, 1052-1060.
[86]
Patočka, J.; Bajgar, J.; Fusek, J.; Bielavsky, J. Protective effect of 1,2,3,4- tetrahydro- 9-aminoacridine on acetylcholinesterase inhibition by organophosphorus inhibitors. Collect. Czech. Chem. Commun., 1976, 41, 2646-2649.
[87]
Villarroya, M.; García, A.G.; Marco-Contelles, J.; López, M.G. An update on the pharmacology of galantamine. Expert Opin. Investig. Drugs, 2007, 16, 1987-1998.
[88]
Benek, O.; Musilek, K.; Horova, A.; Dohnal, V.; Dolezal, R.; Kuca, K. Preparation, in vitro screening and molecular modelling of monoquaternary compounds related to the selective acetylcholinesterase inhibitor BW284c51. Med. Chem., 2015, 11, 21-29.
[89]
Che, M.M.; Chanda, S.; Song, J.; Doctor, B.P.; Rezk, P.E.; Sabrieka, P.; Perkins, M.W.; Sciuto, A.M.; Nambiar, M.P. Aerosolized scopolamine protects against microinstillation inhalation toxicity to sarin in guinea pigs. Toxicol. Mech. Methods, 2011, 21, 463-472.
[90]
Meshulam, Y.; Cohen, G.; Chapman, S.; Alkalai, D.; Levy, A. Prophylaxis against organophosphate poisoning by sustained release of scopolamine and physostigmine. J. Appl. Toxicol., 2001, 21(Suppl. 1), S75-S78.
[91]
Anderson, D.R.; Harris, L.W.; Woodard, C.L.; Lennox, W.I. The effect of pyridostigmine pretreatment on oxime efficacy against intoxication by soman and VX in rats. Drug Chem. Toxicol., 1992, 15, 285-294.
[92]
Gordon, R.K.; Haigh, J.R.; Garcia, G.E.; Feaster, S.R.; Riel, M.A.; Lenz, D.E.; Aisen, P.S.; Doctor, B.P. Oral administration of pyridostigmine bromide and huperzine A potects human whole blood cholinesterases from ex in vivo exposure to soman. Chem. Biol. Interact., 2005, 157, 239-246.
[93]
Lorke, E.; Nurulain, S.M.; Hasan, M.Y.; Kuca, K.; Petroianu, G.A. Optimal pre-treatment for acute exposure to the organophosphate Dicrotophos. Curr. Pharm. Des., 2016.
[http://dx.doi.org/10.2174/ 1381612822666161027154303]
[94]
Kim, W.S.; Cho, Y.; Kim, J.C.; Huang, Z.Z.; Park, S.H.; Choi, E.K. Shin, S.; Kim, Y.B. Protection by a transdermal patch containing physostigmine and procyclidine of soman poisoning in dogs. Eur. J. Pharmacol., 2005, 525, 135-142.
[95]
Tuovinen, K.; Hanninen, O. Protection of mice against soman by pretreatment with eptastigmine and physostigmine. Toxicology, 1999, 139, 233-241.
[96]
Voicu, V.A.; Medvedovici, A.V.; Sakurada, K.; Ohta, H.; Rădulescu, F.S.; Miron, D.S. The forgotten or underestimated relevance of biopharmaceutical-based assessments for the oral absorption studies of oxime reactivators. Expert Opin. Drug Metab. Toxicol., 2016.
[http://dx.doi.org/10.1080/17425255.2016.1179282]
[97]
Fusek, J.; Bajgar, J.; Vachek, J. The prophylactic antidote against nerve paralytic agents - PANPAL. 2000. Working Group TG, 003, 11-13. September 2000[The Hague.].
[98]
Fusek, J.; Bajgar, J.; Merka, V. Prophylaxe von Vergiftungen mit Nervenkampfstoffen (Ergebnisse einer klinischen Studie. Koord. Sanitatsdienst., 2006, 24, 48-53.
[99]
Fusek, J.; Bajgar, J.; Merka, V. Medikamentose Prophylaxe bei Vergiftungen mit Nervenkampfstoffen. Koord. Sanitatsdienst., 2007, 25, 41-47.
[100]
Bajgar, J.; Kuca, K.; Fusek, J.; Jun, D.; Bartosova, L. Cholinesterase reactivators as prophylactics against nerve agents. Curr. Bioact. Compd., 2010, 6, 2-8.
[101]
Bajgar, J.; Kassa, J.; Kuca, K.; Fusek, J.; Stetina, R. Antidotes against chemical warfare agents (CWA) in the Czech Army.(in Czech) Urg. Med., 2010, 13, 12-14.
[102]
Fusek, J.; Bajgar, J.; Kassa, J.; Kuca, K.; Jun, D. Psychotomimetic agent BZ (3-quinuclidinyl benzilate). In: Handbook of Toxicology of Chemical Warfare Agents, Second Edition, ; Gupta, R.C., Ed.; Elsevier: AP, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2015; pp. 135-142.
[103]
Gmiro, V.E.; Serdyuk, S.E.; Veselkina, O.S. Comparison of pharmacological potency and safety of glutamic blocker IEM-1913 and memantine. Biull. Eksp. Biol. Med., 2015, 160, 80-83.
[104]
Pharmacopoeia Bohemica, 5th part, Prague, 2002. Grada Publishing a.s. pp. 5081-5226.
[105]
Kassa, J.; Fusek, J. The influence of anticholinergic drug selection on the efficacy of antidotal treatment of soman-poisoned rats. Toxicology, 2000, 154, 67-73.
[106]
Musilek, K.; Lipka, L.; Racakova, V.; Kuca, K.; Jun, D.; Dohnal, V.; Dolezal, M. New methods in synthesis of acetylcholinesterase reactivators and evaluation of their potency to reactivate cyclosarin-inhibited AChE. Chem. Pap., 2006, 60, 48-51.
[107]
Kuca, K.; Cabal, J. Evaluation of newly synthesized reactivators of the brain cholinesterase inhibited by sarin nerve agent. Toxicol. Mech. Methods, 2005, 15, 247-252.
[108]
Tekes, K.; Hasan, M.Y.; Sheen, R.; Kuca, K.; Petroianu, G.; Ludanyi, K.; Kalasz, H. High-performance liquid chromatographic determination of the plasma concentration of K-27, a novel oxime-type cholinesterase reaktivator. J. Chromatogr. A, 2006, 1122, 84-87.
[109]
Handbook of Toxicology of Chemical Warfare Agents. Part VIII; Chapters 66-75. Second Edition, Gupta, R.C., Editor. Elsevier/AP, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo., 2015, pp. 979-1123.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy