Generic placeholder image

Current Drug Targets


ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

Targeting Water in the Brain: Role of Aquaporin-4 in Ischemic Brain Edema

Author(s): Muyassar Mamtilahun, Guanghui Tang, Zhijun Zhang, Yongting Wang, Yaohui Tang* and Guo-Yuan Yang*

Volume 20 , Issue 7 , 2019

Page: [748 - 755] Pages: 8

DOI: 10.2174/1389450120666190214115309

Price: $65


Brain edema primarily occurs as a consequence of various cerebral injuries including ischemic stroke. Excessive accumulation of brain water content causes a gradual expansion of brain parenchyma, decreased blood flow and increased intracranial pressure and, ultimately, cerebral herniation and death. Current clinical treatment for ischemic edema is very limited, therefore, it is urgent to develop novel treatment strategies. Mounting evidence has demonstrated that AQP4, a water channel protein, is closely correlated with brain edema and could be an optimal therapeutic target for the reduction of ischemic brain edema. AQP4 is prevalently distributed in the central nervous system, and mainly regulates water flux in brain cells under normal and pathological conditions. This review focuses on the underlying mechanisms of AQP4 related to its dual role in edema formation and elimination.

Keywords: Aquaporin-4, brain edema, central nervous system, stroke, therapeutic target, water channel.

Graphical Abstract
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the american heart association. Circulation 2016; 133(4): e38-e360.
Zador Z, Stiver S, Wang V, Manley GT. Role of aquaporin-4 in cerebral edema and stroke. Handb Exp Pharmacol 2009; 190(2): 159-70.
Xu X, Wang B, Ren C, et al. Recent progress in vascular aging: mechanisms and its role in age-related diseases. Aging Dis 2017; 8(4): 486-505.
Stokum JA, Kurland DB, Gerzanich V, Simard JM. Mechanisms of astrocyte-mediated cerebral edema. Neurochem Res 2015; 40(2): 317-28.
Gomes D, Agasse A, Thiébaud P, et al. Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochim Biophys Acta 2009; 1788(6): 1213-28.
Takata K, Matsuzaki T, Tajika Y. Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 2004; 39(1): 1-83.
Vella J, Zammit C, Di Giovanni G, Muscat R, Valentino M. The central role of aquaporins in the pathophysiology of ischemic stroke. Front Cell Neurosci 2015; 8(9): 108.
Igarashi H, Huber VJ, Tsujita M, Nakada T. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol Sci 2011; 32(1): 113-6.
Hasegawa H, Ma T, Skach W, Matthay MA, Verkman AS. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 1994; 269(8): 5497-500.
Yang B, Ma T, Verkman A. cDNA cloning, gene organization, and chromosomal localization of a human mercurial insensitive water channel evidence for distinct transcriptional units. J Biochem 1995; 270(39): 22907-13.
Wspalz T, Fujiyoshi Y, Engel A. The AQP structure and functional implications. Handb Exp Pharmacol 2009; 190: 31-56.
Cui Y, Bastien DA. Water transport in human aquaporin-4: molecular dynamics (MD) simulations. Biochem Biophys Res Commun 2011; 412(4): 654-9.
Hub JS, Grubmüller H, Groot BL. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations? Handb Exp Pharmacol 2009; 190: 57-76.
Chu H, Huang C, Ding H, et al. Aquaporin-4 and cerebrovascular diseases. Int J Mol Sci 2016; 17(8): 1249.
Papadopoulos MC, Verkman A. Aquaporin 4 and neuromyelitis optica. Lancet Neurol 2012; 11(6): 535-44.
Lu M, Lee MD, Smith BL, et al. The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain. Proc Natl Acad Sci USA 1996; 93(20): 10908-12.
Hinson SR, Romero MF, Popescu BF, et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci USA 2012; 109(4): 1245-50.
Neely JD, Christensen BM, Nielsen S, Agre P. Heterotetrameric composition of aquaporin-4 water channels. Biochem 1999; 38(34): 11156-63.
Tajima M, Crane JM, Verkman A. Aquaporin-4 (AQP4) associations and array dynamics probed by photobleaching and single-molecule analysis of green fluorescent protein-AQP4 chimeras. J Biol Chem 2010; 285(11): 8163-70.
Verkman A, Phuan WP, Asavapanumas N, Tradtrantip L. Biology of AQP4 and Anti‐AQP4 antibody: Therapeutic implications for NMO. Brain Pathol 2013; 23(6): 684-95.
Yang B, Brown D, Verkman A. The mercurial insensitive water channel (AQP-4) forms orthogonal arrays in stably transfected Chinese hamster ovary cells. J Biol Chem 1996; 271(9): 4577-80.
Verbavatz JM, Ma T, Gobin R, Verkman AS. Absence of orthogonal arrays in kidney, brain and muscle from transgenic knockout mice lacking water channel aquaporin-4. J Cell Sci 1997; 110(22): 2855-60.
Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol 2011; 287: 1-41.
Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 1998; 95(20): 11981-6.
Rossi A, Moritz TJ, Ratelade J, Verkman AS. Super-resolution imaging of aquaporin-4 orthogonal arrays of particles in cell membranes. J Cell Sci 2012; 125(18): 4405-12.
Fenton RA, Moeller HB, Zelenina M, et al. Differential water permeability and regulation of three aquaporin 4 isoforms. Cell Mol Life Sci 2010; 67(5): 829-40.
Silberstein C, Bouley R, Huang Y, et al. Membrane organization and function of M1 and M23 isoforms of aquaporin-4 in epithelial cells. Am J Physiol Renal Physiol 2004; 287(3): F501-11.
Hiroaki Y, Tani K, Kamegawa A, et al. Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol 2006; 355(4): 628-39.
Ho JD, Yeh R, Sandstrom A, et al. Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance. Proc Natl Acad Sci USA 2009; 106(18): 7437-42.
Frydenlund DS, Bhardwaj A, Otsuka T, et al. Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proc Natl Acad Sci USA 2006; 103(36): 13532-6.
Noell S, Fallier-Becker P, Deutsch U, Mack AF, Wolburg H. Agrin defines polarized distribution of orthogonal arrays of particles in astrocytes. Cell Tissue Res 2009; 337(2): 185-95.
Solenov E, Watanabe H, Manley GT, Verkman AS. Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 2004; 286(2): C426-32.
Barbara B. Aquaporin biology and nervous system. Curr Neuropharmacol 2010; 8(2): 97-104.
Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 2004; 18(11): 1291-3.
Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channels in mouse spinal cord. Neurosci 2004; 127(3): 685-93.
Nagelhus EA, Veruki ML, Torp R, et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Müller cells and fibrous astrocytes. J Neurosci 1998; 18(7): 2506-19.
Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997; 17(1): 171-80.
Noell S, Fallier-Becker P, Beyer C, et al. Effects of agrin on the expression and distribution of the water channel protein aquaporin‐4 and volume regulation in cultured astrocytes. Eur J Neurosci 2007; 26(8): 2109-18.
Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist 2009; 15(2): 180-93.
Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 2002; 72(2): 262-5.
Nicchia GP, Frigeri A, Liuzzi GM, et al. Aquaporin-4-containing astrocytes sustain a temperature-and mercury-insensitive swelling in vitro. Glia 2000; 31(1): 29-38.
Hsu MS, Seldin M, Lee DJ, et al. Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus. Neurosc 2011; 178: 21-32.
Binder DK, Yao X, Zador Z, et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin‐4 water channels. Glia 2006; 53(6): 631-6.
Papadopoulos MC, Verkman A. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 2005; 280(14): 13906-12.
Amiry-Moghaddam M, Williamson A, Palomba M, et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of α-syntrophin-null mice. Proc Natl Acad Sci 2003; 100(23): 13615-20.
Li J, Patil RV, Verkman A. Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Invest Ophthalmol Vis Sci 2002; 43(2): 573-9.
Bloch O, Papadopoulos MC, Manley GT, Verkman AS. Aquaporin‐4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem 2005; 95(1): 254-62.
Saadoun S, Tait MJ, Reza A, et al. AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology. Neuroscience 2009; 161(3): 764-72.
Ikeshima-Kataoka H, Abe Y, Yasui M. Aquaporin 4‐dependent expression of glial fibrillary acidic protein and tenascin‐C in activated astrocytes in stab wound mouse brain and in primary culture. J Neurosci Res 2015; 93(1): 121-9.
Saadoun S, Papadopoulos MC, Watanabe H, et al. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 2005; 118(24): 5691-8.
Auguste KI, Jin S, Uchida K, et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J 2007; 21(1): 108-16.
Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta (BBA)-. Biomembranes 2006; 1758(8): 1085-93.
Huang J, Li Y, Tang Y, et al. CXCR4 antagonist AMD3100 protects blood–brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke 2013; 44(1): 190-7.
Liu Y, Tang GH, Sun YH, et al. The protective role of Tongxinluo on blood–brain barrier after ischemia–reperfusion brain injury. J Ethnopharmacol 2013; 148(2): 632-9.
Han X, Fink MP, Delude RL. Proinflammatory cytokines cause NO·-dependent and-independent changes in expression and localization of tight junction proteins in intestinal epithelial cells. Shock 2003; 19(3): 229-37.
Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007; 28(1): 12-8.
Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett 2011; 585(23): 3798-805.
Tang G, Liu Y, Zhang Z, et al. Mesenchymal stem cells maintain blood‐brain barrier integrity by inhibiting aquaporin‐4 upregulation after cerebral ischemia. Stem Cells 2014; 32(12): 3150-62.
Tomás-Camardiel M, Venero JL, de Pablos RM, et al. In vivo expression of aquaporin‐4 by reactive microglia. J Neurochem 2004; 91(4): 891-9.
Ikeshima-Kataoka H, Abe Y, Abe T, Yasui M. Immunological function of aquaporin-4 in stab-wounded mouse brain in concert with a pro-inflammatory cytokine inducer, osteopontin. Mol Cell Neurosci 2013; 56: 65-75.
Sun H, Liang R, Yang B, et al. Aquaporin-4 mediates communication between astrocyte and microglia: Implications of neuroinflammation in experimental Parkinson’s disease. Neurosci 2016; 317: 65-75.
Thrane AS, Rappold PM, Fujita T, et al. Critical role of aquaporin-4 (AQP4) in astrocytic Ca2+ signaling events elicited by cerebral edema. Proc Natl Acad Sci USA 2011; 108(2): 846-51.
Szu JI, Binder DK. The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory. Front Integr Neurosci 2016; p. 10.
Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013; 14(4): 265-77.
Walberer M, Ritschel N, Nedelmann M, et al. Aggravation of infarct formation by brain swelling in a large territorial stroke: a target for neuroprotection? 2008; 109: 287-93.
Kahle KT, Simard JM, Staley KJ, et al. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiol 2009; 24(4): 257-65.
Papadopoulos MC, Verkman AS. Aquaporin-4 and brain edema. Pediatr Nephrol 2007; 22(6): 778-84.
Tait MJ, Saadoun S, Bell BA, Papadopoulos MC. Water movements in the brain: role of aquaporins. Trends Neurosci 2008; 31(1): 37-43.
Amiry-Moghaddam M, Otsuka T, Hurn PD, et al. An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci USA 2003; 100(4): 2106-11.
Bloch O, Manley GT. The role of aquaporin-4 in cerebral water transport and edema. Neurosurg Focus 2007; 22(5): 1-7.
Taniguchi M, Yamashita T, Kumura E, et al. Induction of aquaporin-4 water channel mRNA after focal cerebral ischemia in rat. Brain Res Mol Brain Res 2000; 78(1): 131-7.
Wang WW, Xie CL, Zhou LL, Wang GS. The function of aquaporin4 in ischemic brain edema. Clin Neurol Neurosurg 2014; 127: 5-9.
Fu X, Li Q, Feng Z, Mu D. The roles of aquaporin‐4 in brain edema following neonatal hypoxia ischemia and reoxygenation in a cultured rat astrocyte model. Glia 2007; 55(9): 935-41.
Liang D, Bhatta S, Gerzanich V, Simard JM. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 2007; 22(5): 1-9.
Araque A. Astrocyte-neuron signaling in the brain--implications for disease. Curr Opin Investig Drugs (London, England: 2000), 2006; 7(7): 619-24.
de Castro Ribeiro M, Hirt L, Bogousslavsky J, Regli L, Badaut J. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 2006; 83(7): 1231-40.
Meng S, Qiao M, Foniok T, Tuor UI. White matter damage precedes that in gray matter despite similar magnetic resonance imaging changes following cerebral hypoxia-ischemia in neonatal rats. Exp Brain Res 2005; 166(1): 56-60.
Li Q, Li Z, Mei Y, Guo Y. Neuregulin attenuated cerebral ischemia–Creperfusion injury via inhibiting apoptosis and upregulating aquaporin-4. Neurosci Lett 2008; 443(3): 155-9.
Betz A, Iannotti F, Hoff J. Brain edema: a classification based on blood-brain barrier integrity. Cerebrovasc Brain Metab Rev 1989; 1(2): 133-54.
Rash JE, Yasumura T. Direct immunogold labeling of connexins and aquaporin-4 in freeze-fracture replicas of liver, brain, and spinal cord: factors limiting quantitative analysis. Cell Tissue Res 1999; 296(2): 307-21.
Dobrivojević M, Špiranec K, Sinđić A. Involvement of bradykinin in brain edema development after ischemic stroke. Pflugers Arch 2015; 467(2): 201-12.
Teng Z, Wang A, Wang P, et al. The effect of aquaporin-4 knockout on interstitial fluid flow and the structure of the extracellular space in the deep brain. Aging Dis 2018; 9(5): 808-16.
Manley GT, Binder DK, Papadopoulos MC, Verkman AS. New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neurosci 2004; 129(4): 981-9.
Bond MR. Assessment of outcome following severe closed head injury. Scott Med J 1978; 23(1): 105-6.
Huber VJ, Tsujita M, Yamazaki M, Sakimura K, Nakada T. Identification of arylsulfonamides as Aquaporin 4 inhibitors. Bioorg Med Chem Lett 2007; 17(5): 1270-3.
Huber VJ, Tsujita M, Kwee IL, Nakada T. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg Med Chem 2009; 17(1): 418-24.
Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005; 6(6): 484-94.
Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades. Nature 2001; 412(6847): 641-7.
Juul S. Neuroprotective role of erythropoietin in neonates. The J Matern Fetal Neonatal Med 2012; 25(sup4): 97-9.
Nichol A, French C, Little L, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 2015; 386(10012): 2499-506.
Wang R, Li J, Duan Y, et al. Effects of erythropoietin on gliogenesis during cerebral ischemic/reperfusion recovery in adult mice. Aging Dis 2017; 8(4): 410-9.
Gunnarson E, Song Y, Kowalewski JM, et al. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection. Proc Natl Acad Sci USA 2009; 106(5): 1602-7.
Tang G, Yang GY. Aquaporin-4: a potential therapeutic target for cerebral edema. Int J Mol Sci 2016; 17(10): 1413.
Higashida T, Kreipke CW, Rafols JA, et al. The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 2011; 114(1): 92-101.
Wang Z, Meng CJ, Shen XM, et al. Potential contribution of hypoxia-inducible factor-1α, aquaporin-4, and matrix metalloproteinase-9 to blood–brain barrier disruption and brain edema after experimental subarachnoid hemorrhage. J Mol Neurosci 2012; 48(1): 273-80.
Higashida T, Peng C, Li J, et al. Hypoxia-inducible factor-1alpha contributes to brain edema after stroke by regulating aquaporins and glycerol distribution in brain. Curr Neurovasc Res 2011; 8(1): 44-51.
Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007; 27(4): 697-709.
Lee JH, Cui HS, Shin SK, et al. Effect of propofol post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats. Neurochem Res 2013; 38(11): 2276-86.
Cruz-Orengo L, Holman DW, Dorsey D, et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J Exp Med 2011; 208: 327-39.
Xie B, Gu P, Wang W, et al. Therapeutic effects of human umbilical cord mesenchymal stem cells transplantation on hypoxic ischemic encephalopathy. Am J Transl Res 2016; 8(7): 3241-50.
Bartel DP. MicroRNAs: target recognition and regulatory functions. cell 2009; 136(2): 215-33.
Wang Y, Huang J, Ma Y, et al. MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 2015; 35(12): 1977-84.
Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 2012; 20(1): 14-20.
Arthur FE, Shivers RR, Bowman PD. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res 1987; 36(1): 155-9.
Gan C, Wang C, Tan K. Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res 2012; 11(1): 147-52.
Zheng L, Cheng W, Wang X, et al. Overexpression of microRNA-145 ameliorates astrocyte injury by targeting aquaporin 4 in cerebral ischemic stroke. BioMed Res Int 2017; 2017: 1-9.
Sepramaniam S, Armugam A, Lim KY, et al. MicroRNA 320a functions as a novel endogenous modulator of aquaporins 1 and 4 as well as a potential therapeutic target in cerebral ischemia. J Biol Chem 2010; 285(38): 29223-30.
Zheng Y, Wang L, Chen M, et al. Upregulation of miR-130b protects against cerebral ischemic injury by targeting water channel protein aquaporin 4 (AQP4). Am J Transl Res 2017; 9(7): 3452-61.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy