Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets


ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

New Advances of ICG Angiography in Parathyroid Identification

Author(s): Hao Jin and Min Cui*

Volume 19, Issue 7, 2019

Page: [936 - 940] Pages: 5

DOI: 10.2174/1871530319666190206212456

Price: $65


Objective: For surgeons, locating parathyroid in thyroidectomy and parathyroidectomy is critical since parathyroid plays an important role in calcium balance. The fluorescence of parathyroid has already been found by researchers and the angiography equipment detecting the fluorescence of parathyroid with indocyanine green has been widely applied. Using the indocyanine green angiography and looking at the actual fluorescence of in vivo and in vitro tissues, it was possible to identify thyroid, parathyroid, lymph nodes and fat tissues during the surgical procedure. This mini-review aims to present the application of indocyanine green angiography in parathyroid detection and discusses the safety of this method.

Methods: The relevant data were searched by using the keywords “Indocyanine green,” “Parathyroid,” and “Identification” and “Protection” in “Pubmed,” “Web of Science” and “China Knowledge Resource Integrated databases”, and a manual search was done to acquire peer-reviewed articles and reports about indocyanine green.

Results: Indocyanine green dye along with the intraoperative fluorescence imaging system is safe in detecting parathyroid and predicting postoperative hypoparathyroidism.

Conclusion: The conclusion suggests that indocyanine green angiography is a safe, effective and easy way to detect parathyroid glands. The conclusion will be of interest to surgeons regarding thyroidectomy and parathyroidectomy.

Keywords: Indocyanine green, intraoperative fluorescence imaging system, parathyroid, identification and protection, advances, hypoparathyroidism.

Graphical Abstract
Slakter, J.S.; Yannuzzi, L.A.; Guyer, D.R.; Sorenson, J.A.; Orlock, D.A. Indocyanine-green angiography. Curr. Opin. Ophthalmol., 1995, 6(3), 25-32.
Hayashi, K.; Hasegawa, Y.; Tokoro, T.; Delaey, J.J. Valve of indocyanine green angiography in the diagnosis of occult cho-roidal neovascular membrane. Jpn. J. Opbtbalmol., 1988, 32(1), 827-829.
Destro, M.; Puliafito, C.A. Indocyanine green videoangi-ography of choroidal neovascularization. Ophthalmology, 1989, 96(8), 846-853.
Hope-Ross, M.; Yannuzzi, L.A.; Gragoudas, E.S.; Guyer, D.R.; Slakter, J.S.; Sorenson, J.A.; Krupsky, S.; Orlock, D.A.; Puliafito, C.A. Adverse reactions due to indocyanine green. Ophthalmology, 1994, 101(3), 529-533.
Reichel, E.; Puliafito, C.A.; Duker, J.S.; Guyer, D.R. Indocya-nine green dye-enhanced diode laser photocoagulation of poorly defined sub-foveal choroidal neovascularization. Op-btbalmic. Surg., 1994, 25(3), 195-201.
Gioux, S.; Choi, H.S.; Frangioni, J.V. Image-guided surgery using invisible near-infrared light: Fundamentals of clinical translation. Mol. Imaging, 2010, 9(5), 237-255.
Boni, L.; David, G.; Mangano, A.; Dionigi, G.; Rausei, S.; Spampatti, S.; Cassinotti, E.; Fingerhut, A. Clinical applica-tions of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg. Endosc., 2015, 29(7), 2046-2055.
Imboden, S.; Papadia, A.; Nauwerk, M.; McKinnon, B.; Koll-mann, Z.; Mohr, S.; Lanz, S.; Mueller, M.D. A comparison of radiocolloid and indocyanine green fluorescence imaging, sentinel lymph node mapping in patients with cervical cancer undergoing laparoscopic surgery. Ann. Surg. Oncol., 2015, 22(13), 4198-4203.
Halle, B.M.; Poulsen, T.D.; Pedersen, H.P. Indocyanine green plasma disappearance rate as dynamic liver function test in critically ill patients. Acta Anaesthesiol. Scand., 2014, 58(10), 1214-1219.
Shoback, D. Clinical practice. Hypoparathyroidism. N. Engl. J.Med., 2008, 359(4), 391-403.
Edafe, O.; Antakia, R.; Laskar, N.; Uttley, L.; Balasubramani-an, S.P. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br. J. Surg., 2014, 101(4), 307-320.
Lorente-Poch, L.; Sancho, J.J.; Muñoz-Nova, J.L.; Sánchez-Velázquez, P.; Sitges-Serra, A. Defining the syndromes of parathyroid failure after total thyroidectomy. Gland Surg., 2015, 4(1), 82-90.
Dudley, N.E. Methylene blue for rapid identification of the parathyroids. BMJ, 1971, 3(5776), 680-681.
Prosst, R.L.; Willeke, F.; Schroeter, L.; Post, S.; Gahlen, J. Fluorescence-guided minimally invasive parathyroidectomy: A novel detection technique for parathyroid glands. Surg. Endosc., 2006, 20(9), 1488-1492.
Orloff, L.A. Methylene blue and sestamibi: Complementary tools for localizing parathyroids. Laryngoscope, 2001, 111(11), 1901-1904.
Oltmann, S.C.; Brekke, A.V.; Macatangay, J.D.; Schneider, D.F.; Chen, H.; Sippel, R.S. Surgeon and staff radiation expo-sure during radioguided parathyroidectomy at a high-volume institution. Ann. Surg. Oncol., 2014, 21(12), 3853-3858.
Vidal, F.J.; Sadowski, S.M.; Belfontali, V.; Karenovics, W.; Guigard, S.; Triponez, F. Indocyanine green angiography in subtotal parathyroidectomy: Technique for the function of the parathyroid remnant. J. Am. Coll. Surg., 2016, 223(5), e43-e49.
Chakedis, J.M.; Maser, C.; Brumund, K.T.; Bouvet, M. Indo-cyanine green fluorescence-guided redo parathyroidectomy. BMJ Case Rep., 2015, 2015(Suppl.), 1-3.
Zaidi, N.; Bucak, E.; Okoh, A.; Yazici, P.; Yigitbas, H.; Berber, E. The utility of indocyanine green near infrared fluorescent imaging in the identification of parathyroid glands during sur-gery for primary hyperparathyroidism. J. Surg. Oncol., 2016, 113(7), 771-774.
Cui, L.; Gao, Y.; Yu, H.P.; Li, M.; Wang, B.R.; Zhou, T.; Hu, Q.R. Intraoperative parathyroid localization with near-infrared fluorescence imaging using indocyanine green duringtotal par-athyroidectomy for secondary hyperparathyroidism. Sci. Rep., 2017, 15(7), 8193.
Jitpratoom, P.; Anuwong, A. The use of ICG enhanced fluo-rescence for the evaluation of parathyroid gland preservation. Gland Surg., 2017, 6(5), 579-586.
Kim, S.W.; Lee, H.S.; Lee, K.D. Intraoperative real-time local-ization of parathyroid gland with near infrared fluorescence imaging. Gland Surg., 2017, 6(5), 516-524.
Kahramangil, B.; Berber, E. Comparison of indocyanine green fluorescence and parathyroid autofluorescence imaging in the identification of parathyroid glands during thyroidectomy. Gland Surg., 2017, 6(6), 644-648.
DeLong, J.C.; Ward, E.P.; Lwin, T.M.; Brumund, K.T.; Kelly, K.J.; Horgan, S.; Bouvet, M. Indocyanine green fluorescence-guided parathyroidectomy for primary hyperparathyroidism. Surgery, 2018, 163(2), 388-392.
Hillary, S.L.; Guillermet, S.; Brown, N.J.; Balasubramanian, S.P. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbecks Arch. Surg., 2018, 403(1), 111-118.
Park, I.; Rhu, J.; Woo, J.W.; Choi, J.H.; Kim, J.S.; Kim, J.H. Preserving parathyroid gland vasculature to reduce post-thyroidectomy hypocalcemia. World J. Surg., 2016, 40(6), 1382-1389.
Sound, S.; Okoh, A.; Yigitbas, H.; Yazici, P.; Berber, E. Utility of indocyanine green fluorescence imaging for intraoperative localization in reoperative parathyroid surgery. Surg. Innov., 2015, 22(Suppl.), 1-6.
Lavazza, M.; Liu, X.L.; Wu, C.W.; Anuwong, A.; Kim, H.Y.; Liu, R.B.; Randolph, G.W.; Inversini, D.; Boni, L.; Rausei, S. In-docyanine green-enhanced fluorescence for assessing para-thyroid perfusion during thyroidectomy. Gland Surg., 2016, 5(5), 512-521.
Alesina, P.F.; Meier, B.; Hinrichs, J.; Mohmand, W.; Walz, M.K. Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbecks Arch. Surg., 2018, 403(3), 395-401.
Ioannis, K.; Giovanna, D.M.; Andreas, G.; Vytautas, S.; Alex-ander, L.; Kai, N. Intraoperative indocyanine green fluores-cence to assure vital parathyroids in thyroid resection. ZBL Chir., 2018, 143(4), 380-384.
Yu, H.W.; Chung, J.W.; Yi, J.W.; Song, R.Y.; Lee, J.H.; Kwon, H.J. Kim. S.J.; Chai, Y.J; Choi, J.Y.; Lee, K.E. Intraoperative localization of the parathyroid glands with indocyanine green and Firefly(R) technology during BABA robotic thyroidecto-my. Surg. Endosc., 2017, 31(7), 3020-3027.
Sadowski, S.M.; Vidal, F.J.; Triponez, F. A reappraisal of vascular anatomy of the parathyroid gland based on fluores-cence techniques. Gland Surg., 2017, 6(Suppl. 1), 30-37.
Mohsin, K.; Alzahrani, H.; Bu, A.D.; Kang, S.W.; Kandil, E. Robotic transaxillary parathyroidectomy. Gland Surg., 2017, 6(4), 410-411.
Lyadov, V.K.; Pashaeva, D.R.; Nekludova, M.V. Use of fluo-rescent angiography with indocyanine green for prediction of hypocalcemia development after thyroidectomy. Opuholi. Golovy i Šei, 2017, 7(4), 24-28.
Vilaa, J.; Graca, S.; Mendes, P. Trans-axillary endoscopic thyroidectomy. Endocr. Abstr., 2017, 49(1291), 1-2.
Jin, H.; Dong, Q.; He, Z.C.; Fan, J.R.; Liao, K.; Cui, M. Applica-tion of a fluorescence imaging system with indocyanine green to protect the parathyroid gland intraoperatively and to predict postoperative parathyroidism. Adv. Ther., 2018, 35(1), 2167-2175.
Suh, Y.J.; Choi, J.Y.; Chai, Y.J.; Kwon, H.; Woo, J.W.; Kim, S.J.; Kim, K.H.; Lee, K.E.; Lim, Y.T.; Youn, Y.K. Indocya-nine green as a near-infrared fluorescent agent for identifying parathyroid glands during thyroid surgery in dogs. Surg. Endosc., 2015, 29(9), 2811-2817.
Perry, D.; Bharara, M.; Armstrong, D.G.; Mills, J. Intraopera-tive fluorescence vascularangiography: during tibial bypass. J. Diabetes Sci. Technol., 2012, 6(1), 204-208.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy