Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

A Short Analysis on the Morphological Characterization of Colloidal Quantum Dots for Photovoltaic Applications

Author(s): Mansoor Ani Najeeb*, Zubair Ahmad*, Sarkarainadar Balamurugan, Khaulah Sulaiman and R.A. Shakoor

Volume 16, Issue 4, 2020

Page: [544 - 555] Pages: 12

DOI: 10.2174/1573413715666190206150619

Price: $65

Abstract

Due to its various advantages, colloidal quantum dots (CQDs) carry a prodigious deal of interest in low-cost photovoltaics. The possibility of tailored band gaps via quantum confinement effect facilitates photovoltaic devices to be tuned to allow their optical absorption bandwidths to match with the solar spectrum. Size, shape, and material composition are some of the significant factors which affect the optical and electronic properties of QDs. Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) are some of the most resourceful methods available for the microstructural characteristics of solid materials. These techniques can provide useful information about the structural, morphological and compositional properties of the specimen. In this focused review, we analyze the several types of QDs, their synthesis and characterization, exclusively morphological studies carried out on quantum dots for solar cell applications. Despite various advantages and techniques used for morphological characterization of QDs, very few reviews are reported in the past years. In this review, we have compiled the important and latest findings published on morphological analysis of QDs for photovoltaic applications which can provide the guideline for the research for the future work in the field.

Keywords: Quantum Dots (QDs), SEM, TEM, AFM, photovoltaics, solar cell.

Graphical Abstract
[1]
Kalyuzhnova, Y. Resource-rich countries, clean energy and volatility of oil prices. In: Kalyuzhnova, Y.; Pomfret, R. (eds.). Sustainable Energy in Kazakhstan: Taylor and Francis: New York, 2018; pp. 7-17.
[2]
Nicolai, M.; Zanuccoli, M.; Feldmann, F.; Hermle, M.; Fiegna, C. Analysis of silicon solar cells with Poly-Si/SiOxcarrier-selective base and emitter contacts. IEEE J.Photovolt., 2018, 8(1), 103-109.
[http://dx.doi.org/10.1109/JPHOTOV.2017.2775142]
[3]
Krebs, F.C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells, 2009, 93(4), 394-412.
[http://dx.doi.org/10.1016/j.solmat.2008.10.004]
[4]
Kannan, M.; Ali, A.; Matoo, M.; Jacob, P. Toxicological Impacts of Quantum Dots.In: Sridharan, K. Emerging Trends of Nanotechnology in Environment and Sustainability; Springer: Switzerland, 2018, pp. 61-65.
[http://dx.doi.org/10.1007/978-3-319-71327-4_8]
[5]
Malik, H.A.; Aziz, F.; Asif, M.; Raza, E.; Najeeb, M.A.; Ahmad, Z.; Swelm, W.; Zafar, Q.; Touati, F.; Kamboh, A.H. Enhancement of optical features and sensitivity of MEH-PPV/VOPcPhO photodetector using CdSe quantum dots. J. Lumin., 2016, 180, 209-213.
[http://dx.doi.org/10.1016/j.jlumin.2016.08.038]
[6]
Klimov, V.I.; Mikhailovsky, A.A.; Xu, S.; Malko, A.; Hollingsworth, J.A.; Leatherdale, C.A.; Eisler, H.; Bawendi, M.G. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 2000, 290(5490), 314-317.
[http://dx.doi.org/10.1126/science.290.5490.314] [PMID: 11030645]
[7]
Sun, Y-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; Luo, P.G.; Yang, H.; Kose, M.E.; Chen, B.; Veca, L.M.; Xie, S-Y. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc., 2006, 128(24), 7756-7757.
[http://dx.doi.org/10.1021/ja062677d] [PMID: 16771487]
[8]
Sun, S-S.; Sariciftci, N.S. Organic Photovoltaics: Mechanisms, Materials, and Devices; CRC press, 2017.
[9]
Kroupa, D.M.; Arias, D.H.; Blackburn, J.L.; Carroll, G.M.; Granger, D.B.; Anthony, J.E.; Beard, M.C.; Johnson, J.C. Control of energy flow dynamics between tetracene ligands and pbs quantum dots by size tuning and ligand coverage. Nano Lett., 2018, 18(2), 865-873.
[http://dx.doi.org/10.1021/acs.nanolett.7b04144] [PMID: 29364676]
[10]
Hu, L.; Zhang, Z.; Patterson, R.J.; Hu, Y.; Chen, W.; Chen, C.; Li, D.; Hu, C.; Ge, C.; Chen, Z. Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy, 2018, 46, 212-219.
[http://dx.doi.org/10.1016/j.nanoen.2018.01.047]
[11]
Bi, Y.; Pradhan, S.; Gupta, S.; Akgul, M.Z.; Stavrinadis, A.; Konstantatos, G. Infrared solution‐processed quantum dot solar cells reaching external quantum efficiency of 80% at 1.35 μm and Jsc in excess of 34 mA cm-2. Adv. Mater., 2018, 30, 1704928
[http://dx.doi.org/10.1002/adma.201704928]
[12]
Jeong, Y.J.; Song, J.H.; Jeong, S.; Baik, S.J. PbS colloidal quantum dot solar cells with organic hole transport layers for enhanced carrier separation and ambient stability. IEEE J.Photovolt., 2018, 8, 493-498.
[http://dx.doi.org/10.1109/JPHOTOV.2017.2784766]
[13]
Semonin, O.E.; Luther, J.M.; Choi, S.; Chen, H-Y.; Gao, J.; Nozik, A.J.; Beard, M.C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334(6062), 1530-1533.
[http://dx.doi.org/10.1126/science.1209845] [PMID: 22174246]
[14]
Chuang, C-H.M.; Brown, P.R.; Bulović, V.; Bawendi, M.G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater., 2014, 13(8), 796-801.
[http://dx.doi.org/10.1038/nmat3984] [PMID: 24859641]
[15]
Qi, J.; Xiong, H.; Wang, G.; Xie, H.; Jia, W.; Zhang, Q.; Li, Y.; Wang, H. High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seedmediated underlayer. J. Power Sources, 2018, 376, 46-54.
[http://dx.doi.org/10.1016/j.jpowsour.2017.11.062]
[16]
Song, X.; Liu, X.; Yan, Y.; Deng, J.; Wang, Y.; Dong, X.; Mo, Z.; Xia, C. One-pot hydrothermal synthesis of thioglycolic acid-capped CdSe quantum dots-sensitized mesoscopic TiO2 photoanodes for sensitized solar cells. Sol. Energy Mater. Sol. Cells, 2018, 176, 418-426.
[http://dx.doi.org/10.1016/j.solmat.2017.10.032]
[17]
Rezaee, G.; Mortazavi, S.Z.; Mirershadi, S.; Reyhani, A. Efficiency enhancement of CdSe quantum dots assisted Si-solar cell. J. Mater. Sci. Mater. Electron., 2018, 29(1), 500-508.
[http://dx.doi.org/10.1007/s10854-017-7939-6]
[18]
Kim, J-Y.; Jang, Y.J.; Park, J.; Kim, J.; Kang, J.S.; Chung, D.Y.; Sung, Y-E.; Lee, C.; Lee, J.S.; Ko, M.J. Highly loaded PbS/Mn-Doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion. Appl. Catal. B, 2018, 227, 409-417.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.041]
[19]
Jabeen, U.; Adhikari, T.; Pathak, D.; Shah, S.M.; Nunzi, J-M. Structural, optical and photovoltaic properties of P3HT and Mndoped CdS quantum dots based bulk hetrojunction hybrid layers. Opt. Mater., 2018, 78, 132-141.
[http://dx.doi.org/10.1016/j.optmat.2018.02.019]
[20]
Xu, T.; Wei, P.; Ren, X.; Liu, H.; Chen, L.; Tian, W.; Liu, S.F.; Guo, Z. Superior Cu2S/brass-mesh electrode in CdS quantum dot sensitized solar cells for dual-side illumination. Mater. Lett., 2017, 195, 100-103.
[http://dx.doi.org/10.1016/j.matlet.2017.02.083]
[21]
Mousavi-Kamazani, M.; Salehi, Z.; Motevalli, K. Enhancement of quantum dot-sensitized solar cells performance using CuInS2–Cu2S nanocomposite synthesized by a green method. Appl. Phys., A Mater. Sci. Process., 2017, 123(11), 691.
[http://dx.doi.org/10.1007/s00339-017-1325-3]
[22]
Han, J.; Yin, X.; Nan, H.; Zhou, Y.; Yao, Z.; Li, J.; Oron, D.; Lin, H. Enhancing the performance of perovskite solar cells by hybridizing sns quantum dots with CH3NH3PbI3. Small, 2017, 13(32) 1700953
[http://dx.doi.org/10.1002/smll.201700953] [PMID: 28692769]
[23]
Rahaman, S.; Jagannatha, K.; Sriram, A. Synthesis and characterization of SnS quantum dots materialfor solar cell. Mater. Today, 2018, 5(1), 3117-3120.
[24]
Fu, X.; Ilanchezhiyan, P.; Mohan Kumar, G.; Cho, H.D.; Zhang, L.; Chan, A.S.; Lee, D.J.; Panin, G.N.; Kang, T.W. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation. Nanoscale, 2017, 9(5), 1820-1826.
[http://dx.doi.org/10.1039/C6NR09022B] [PMID: 28106213]
[25]
Franzman, M.A.; Schlenker, C.W.; Thompson, M.E.; Brutchey, R.L. Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc., 2010, 132(12), 4060-4061.
[http://dx.doi.org/10.1021/ja100249m] [PMID: 20201510]
[26]
Yu, X.; Zhu, J.; Zhang, Y.; Weng, J.; Hu, L.; Dai, S. SnSe2 quantum dot sensitized solar cells prepared employing molecular metal chalcogenide as precursors. Chem. Commun. (Camb.), 2012, 48(27), 3324-3326.
[http://dx.doi.org/10.1039/c2cc17081g] [PMID: 22363940]
[27]
Weiner, E.; Jakomin, R.; Micha, D.; Xie, H.; Su, P-Y.; Pinto, L.; Pires, M.; Ponce, F.; Souza, P. Effect of capping procedure on quantum dot morphology: Implications on optical properties and efficiency of InAs/GaAs quantum dot solar cells. Sol. Energy Mater. Sol. Cells, 2018, 178, 240-248.
[http://dx.doi.org/10.1016/j.solmat.2018.01.028]
[28]
Tamaki, R.; Shoji, Y.; Lombez, L.; Guillemoles, J-F.; Okada, Y. Quantitative Analysis of InAs Quantum Dot Solar Cells by Photoluminescence Spectroscopy In: Freundlich, A.; Lombez, L.; Sugiyama, M. (eds.) Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VII, International Society for Optics and Photonics. SPIE Proceedings. , 2018; Vol. 10527, .
[29]
Najeeb, M.A.; Abdullah, S.M.; Aziz, F.; Azmer, M.I.; Swelm, W.; Al-Ghamdi, A.A.; Ahmad, Z.; Supangat, A.; Sulaiman, K. Improvement in the photovoltaic properties of hybrid solar cells by incorporating a QD-composite in the hole transport layer. RSC Advances, 2016, 6(27), 23048-23057.
[http://dx.doi.org/10.1039/C6RA01052K]
[30]
Najeeb, M.A.; Abdullah, S.M.; Aziz, F.; Ahmad, Z.; Rafique, S.; Wageh, S.; Al-Ghamdi, A.A.; Sulaiman, K.; Touati, F.; Shakoor, R. Structural, morphological and optical properties of PEDOT: PSS/QDs nano-composite films prepared by spin-casting. Physica E, 2016, 83, 64-68.
[http://dx.doi.org/10.1016/j.physe.2016.04.014]
[31]
Radychev, N.; Lokteva, I.; Witt, F.; Kolny-Olesiak, J.; Borchert, H.; Parisi, J. Physical origin of the impact of different nanocrystal surface modifications on the performance of CdSe/P3HT hybrid solar cells. J. Phys. Chem. C, 2011, 115(29), 14111-14122.
[http://dx.doi.org/10.1021/jp2040604]
[32]
Hossain, M.A.; Jennings, J.R.; Shen, C.; Pan, J.H.; Koh, Z.Y.; Mathews, N.; Wang, Q. CdSe-sensitized mesoscopic TiO2 solar cells exhibiting> 5% efficiency: Redundancy of CdS buffer layer. J. Mater. Chem., 2012, 22(32), 16235-16242.
[http://dx.doi.org/10.1039/c2jm33211f]
[33]
Reiss, P.; Carayon, S.; Bleuse, J.; Pron, A. Low polydispersity core/shell nanocrystals of CdSe/ZnSe and CdSe/ZnSe/ZnS type: Preparation and optical studies. Synth. Met., 2003, 139(3), 649-652.
[http://dx.doi.org/10.1016/S0379-6779(03)00335-7]
[34]
Jung, J-Y.; Zhou, K.; Bang, J.H.; Lee, J-H. Improved photovoltaic performance of Si nanowire solar cells integrated with ZnSe quantum dots. J. Phys. Chem. C, 2012, 116(23), 12409-12414.
[http://dx.doi.org/10.1021/jp301683q]
[35]
Ahmed, R.; Zhao, L.; Mozer, A.J.; Will, G.; Bell, J.; Wang, H. Enhanced electron lifetime of CdSe/CdS quantum dot (QD) sensitized solar cells using ZnSe core-shell structure with efficient regeneration of quantum dots. J. Phys. Chem. C, 2015, 119(5), 2297-2307.
[http://dx.doi.org/10.1021/jp510339z]
[36]
Gashin, P.; Focsha, A.; Potlog, T.; Simashkevich, A.; Leondar, V. n-ZnSe/p-ZnTe/n-CdSe tandem solar cells. Sol. Energy Mater. Sol. Cells, 1997, 46(4), 323-331.
[http://dx.doi.org/10.1016/S0927-0248(97)80005-0]
[37]
Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.P. Shape control of CdSe nanocrystals. Nature, 2000, 404(6773), 59-61.
[http://dx.doi.org/10.1038/35003535] [PMID: 10716439]
[38]
Najeeb, M.A.; Abdullah, S.M.; Aziz, F.; Ahmad, Z.; Shakoor, R.; Mohamed, A.; Khalil, U.; Swelm, W.; Al-Ghamdi, A.A.; Sulaiman, K. A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer. J. Nanopart. Res., 2016, 18(12), 384.
[http://dx.doi.org/10.1007/s11051-016-3694-5]
[39]
Farrow, B.; Kamat, P.V. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups. J. Am. Chem. Soc., 2009, 131(31), 11124-11131.
[http://dx.doi.org/10.1021/ja903337c] [PMID: 19603793]
[40]
Lee, Y-L.; Huang, B-M.; Chien, H-T. Highly efficient CdSesensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater., 2008, 20(22), 6903-6905.
[http://dx.doi.org/10.1021/cm802254u]
[41]
Dabbousi, B.O.; Rodriguez-Viejo, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe) ZnS core− shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B, 1997, 101(46), 9463-9475.
[http://dx.doi.org/10.1021/jp971091y]
[42]
Leschkies, K.S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J.E.; Carter, C.B.; Kortshagen, U.R.; Norris, D.J.; Aydil, E.S. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett., 2007, 7(6), 1793-1798.
[http://dx.doi.org/10.1021/nl070430o] [PMID: 17503867]
[43]
Ning, Z.; Tian, H.; Yuan, C.; Fu, Y.; Qin, H.; Sun, L.; Ågren, H. Solar cells sensitized with type-II ZnSe-CdS core/shell colloidal quantum dots. Chem. Commun. (Camb.), 2011, 47(5), 1536-1538.
[http://dx.doi.org/10.1039/C0CC03401K] [PMID: 21103496]
[44]
Nejdl, L.; Hynek, D.; Adam, V.; Vaculovicova, M. Capillary electrophoresis-driven synthesis of water-soluble CdTe quantum dots in nanoliter scale. Nanotechnology, 2018, 29(16) 165602
[http://dx.doi.org/10.1088/1361-6528/aaabd4] [PMID: 29384137]
[45]
Kunstman, P.; Coulon, J.; Kolmykov, O.; Moussa, H.; Balan, L.; Medjahdi, G.; Lulek, J.; Schneider, R. One step synthesis of bright luminescent core/shell CdTexS1-x/ZnS quantum dots emitting from the visible to the near infrared. J. Lumin., 2018, 194, 760-767.
[http://dx.doi.org/10.1016/j.jlumin.2017.09.047]
[46]
Zhu, J.; Yan, X.; Cheng, J. Synthesis of water-soluble antimony sulfide quantum dots and their photoelectric properties. Nanoscale Res. Lett., 2018, 13(1), 19.
[http://dx.doi.org/10.1186/s11671-017-2421-1] [PMID: 29335787]
[47]
Gnanasekaran, L.; Hemamalini, R.; Ravichandran, K. Synthesis and characterization of TiO2 quantum dots for photocatalytic application. J. Saudi Chem. Soc., 2015, 19(5), 589-594.
[http://dx.doi.org/10.1016/j.jscs.2015.05.002]
[48]
Li, J.G.; Tang, C.; Li, D.; Haneda, H.; Ishigaki, T. Monodispersed spherical particles of Brookite‐type TiO2: Synthesis, characterization, and photocatalytic property. J. Am. Ceram. Soc., 2004, 87(7), 1358-1361.
[http://dx.doi.org/10.1111/j.1151-2916.2004.tb07735.x]
[49]
Kumar, N.; Kumbhat, S. Essentials in Nanoscience and Nanotechnology; John Wiley & Sons, 2016.
[http://dx.doi.org/10.1002/9781119096122]
[50]
Mehmood, U.; Al-Ahmed, A.; Afzaal, M.; Hakeem, A.S.; Haladu, S.A.; Al-Sulaiman, F.A. Enhancement of the photovoltaic performance of a dye-sensitized solar cell by cosensitizing TiO2 photoanode with spray-coated uncapped PbS nanocrystals and ruthenizer. IEEE J. Photovolt., 2018, 8, 512-516.
[http://dx.doi.org/10.1109/JPHOTOV.2018.2790699]
[51]
Raissi, M.; Sajjad, M.T.; Farré, Y.; Roland, T.J.; Ruseckas, A.; Samuel, I.D.; Odobel, F. Improved efficiency of PbS quantum dot sensitized NiO photocathodes with naphthalene diimide electron acceptor bound to the surface of the nanocrystals. Sol. Energy Mater. Sol. Cells, 2018, 181, 71-76.
[http://dx.doi.org/10.1016/j.solmat.2017.12.029]
[52]
Wei, Y.; Ren, Z.; Zhang, A.; Mao, P.; Li, H.; Zhong, X.; Li, W.; Yang, S.; Wang, J. Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Adv. Funct. Mater., 2018, 28, 1706690
[http://dx.doi.org/10.1002/adfm.201706690]
[53]
Xiong, Q.; Chowdhury, F.I.; Wang, X. Filter-free narrowband photodetectors employing colloidal quantum dots. IEEE J. Sel. Top. Quantum Electron., 2018, 24(2), 1-6.
[http://dx.doi.org/10.1109/JSTQE.2017.2776522]
[54]
Huang, J.A.; Luo, L.B. Low‐dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6, 1701282
[http://dx.doi.org/10.1002/adom.201701282]
[55]
Giraud, P.; Hou, B.; Pak, S.; Sohn, J.I.; Morris, S.; Cha, S.; Kim, J.M. Field effect transistors and phototransistors based upon p-type solution-processed PbS nanowires. Nanotechnology, 2018, 29(7) 075202
[http://dx.doi.org/10.1088/1361-6528/aaa2e6] [PMID: 29324436]
[56]
Hu, C.; Dong, D.; Yang, X.; Qiao, K.; Yang, D.; Deng, H.; Yuan, S.; Khan, J.; Lan, Y.; Song, H. Synergistic effect of hybrid PbS quantum Dots/2D‐WSe2toward high performance and broadband phototransistors. Adv. Funct. Mater., 2017, 27(2) 1800319
[http://dx.doi.org/10.1002/adfm.201603605]
[57]
Song, X.; Zhang, Y.; Zhang, H.; Yu, Y.; Cao, M.; Che, Y.; Dai, H.; Yang, J.; Ding, X.; Yao, J. Graphene and PbS quantum dot hybrid vertical phototransistor. Nanotechnology, 2017, 28(14) 145201
[http://dx.doi.org/10.1088/1361-6528/aa5faf] [PMID: 28184032]
[58]
Lee, J.W.; Kim, D.Y.; So, F. Unraveling the gain mechanism in high performance solution‐processed PbS infrared PIN photodiodes. Adv. Funct. Mater., 2015, 25(8), 1233-1238.
[http://dx.doi.org/10.1002/adfm.201403673]
[59]
Klem, E.J.; Gregory, C.; Temple, D.; Lewis, J. PbS Colloidal Quantum Dot Photodiodes for Low-Cost SWIR Sensing, In: Infrared Technology and Applications XLI. Proc. SPIE., 9451 2015, 945104
[http://dx.doi.org/10.1117/12.2178532]
[60]
Zhou, R.; Niu, H.; Ji, F.; Wan, L.; Mao, X.; Guo, H.; Xu, J.; Cao, G. Band-structure tailoring and surface passivation for highly efficient near-infrared responsive PbS quantum dot photovoltaics. J. Power Sources., 2016, 333, 107-117.
[http://dx.doi.org/10.1016/j.jpowsour.2016.09.160]
[61]
Xu, F.; Benavides, J.; Ma, X.; Cloutier, S.G. Interconnected TiO2 nanowire networks for PbS quantum dot solar cell applications. J. Nanotechnol., 2012, 2012, 709031
[http://dx.doi.org/10.1155/2012/709031]
[62]
Dharmadasa, I.; Bingham, P.; Echendu, O.; Salim, H.; Druffel, T.; Dharmadasa, R.; Sumanasekera, G.; Dharmasena, R.; Dergacheva, M.; Mit, K. Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique. Coatings, 2014, 4(3), 380-415.
[http://dx.doi.org/10.3390/coatings4030380]
[63]
Dou, Q.Q.; Rengaramchandran, A.; Selvan, S.T.; Paulmurugan, R.; Zhang, Y. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy. Sci. Rep., 2015, 5, 8252.
[http://dx.doi.org/10.1038/srep08252] [PMID: 25652742]
[64]
Ledentsov, N.; Ustinov, V.; Egorov, A.Y.; Zhukov, A.; Maksimov, M.; Tabatadze, I.; Kop’ev, P. Optical properties of heterostructures with InGaAs-GaAs quantum clusters. Semiconductors, 1994, 28(8), 832-834.
[65]
Grundmann, M.; Ledentsov, N.N.; Stier, O.; Bimberg, D.; Ustinov, V.M.; Kop’ev, P.S.; Alferov, Z.I. Excited states in self‐organized InAs/GaAs quantum dots: Theory and experiment. Appl. Phys. Lett., 1996, 68(7), 979-981.
[http://dx.doi.org/10.1063/1.116118]
[66]
Zhong, D.; Liu, W.; Tan, P.; Zhu, A.; Liu, Y.; Xiong, X.; Pan, J. Insights into the synergy effect of anisotropic 001 and 230 facets of BaTiO3 nanocubes sensitized with CdSe quantum dots for photocatalytic water reduction. Appl. Catal. B, 2018, 227, 1-12.
[http://dx.doi.org/10.1016/j.apcatb.2018.01.009]
[67]
Mongin, C.; Moroz, P.; Zamkov, M.; Castellano, F.N. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem., 2018, 10(2), 225-230.
[http://dx.doi.org/10.1038/nchem.2906] [PMID: 29359748]
[68]
Chinnusamy, S.; Kaur, R.; Bokare, A.; Erogbogbo, F. Incorporation of graphene quantum dots to enhance photocatalytic properties of anatase TiO2. MRS Commun., 2018, 8, 137-144.
[http://dx.doi.org/10.1557/mrc.2018.7]
[69]
Gupta, V.K.; Fakhri, A.; Azad, M.; Agarwal, S. Synthesis and characterization of Ag doped ZnS quantum dots for enhanced photocatalysis of Strychnine asa poison: Charge transfer behavior study by electrochemical impedance and time-resolved photoluminescence spectroscopy. J. Colloid Interface Sci., 2018, 510, 95-102.
[http://dx.doi.org/10.1016/j.jcis.2017.09.043] [PMID: 28942069]
[70]
Wang, J.; Tang, L.; Zeng, G.; Deng, Y.; Dong, H.; Liu, Y.; Wang, L.; Peng, B.; Zhang, C.; Chen, F. 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight. Appl. Catal. B, 2018, 222, 115-123.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.014]
[71]
Devi, S.; Kaur, A.; Sarkar, S.; Vohra, S.; Tyagi, S. Synthesis and characterization of highly luminescent N-doped carbon quantum dots for metal ion sensing. Integr. Ferroelectr., 2018, 186(1), 32-39.
[http://dx.doi.org/10.1080/10584587.2017.1369322]
[72]
Kumar, S.; Aziz, T.; Girshevitz, O.; Nessim, G.D. One-step synthesis of N-doped graphene quantum dots from chitosan as a sole precursor using chemical vapor deposition. J. Phys. Chem. C, 2018, 122(4), 2343-2349.
[http://dx.doi.org/10.1021/acs.jpcc.7b05494]
[73]
Heyn, C.; Zocher, M.; Küster, A.; Hansen, W. Droplet etching during semiconductor epitaxy for single and coupled quantum structures, In: Quantum Dots and Nanostructures: Growth, Characterization, and Modeling XV. Proc. SPIE., 10543 2018, 105430K
[http://dx.doi.org/10.1117/12.2295829]
[74]
Walkup, D.; Ghahari, F.; Gutierrez, C.; Lewandowski, C.; Rodriguez Nieva, J.; Watanabe, K.; Taniguchi, T.; Levitov, L.; Zhitenev, N.; Stroscio, J. Visualizing the Coulomb blockade in graphene quantum dots; Part II. APS March Meeting 2018.abstract id.A01.007..
[75]
Liu, D.; Chen, X.; Hu, Y.; Sun, T.; Song, Z.; Zheng, Y.; Cao, Y.; Cai, Z.; Cao, M.; Peng, L.; Huang, Y.; Du, L.; Yang, W.; Chen, G.; Wei, D.; Wee, A.T.S.; Wei, D. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat. Commun., 2018, 9(1), 193.
[http://dx.doi.org/10.1038/s41467-017-02627-5] [PMID: 29335471]
[76]
He, Y.; Lu, H.T.; Sai, L.M.; Su, Y.Y.; Hu, M.; Fan, C.H.; Huang, W.; Wang, L.H. Microwave synthesis of water‐dispersed CdTe/CdS/ZnS core‐shell‐shell quantum dots with excellent photostability and biocompatibility. Adv. Mater., 2008, 20(18), 3416-3421.
[http://dx.doi.org/10.1002/adma.200701166]
[77]
Steckel, J.S.; Zimmer, J.P.; Coe-Sullivan, S.; Stott, N.E.; Bulović, V.; Bawendi, M.G. Blue luminescence from (CdS)ZnS coreshell nanocrystals. Angew. Chem. Int. Ed., 2004, 43(16), 2154-2158.
[http://dx.doi.org/10.1002/anie.200453728] [PMID: 15083471]
[78]
Yang, Y.; Chen, O.; Angerhofer, A.; Cao, Y.C. Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc., 2006, 128(38), 12428-12429.
[http://dx.doi.org/10.1021/ja064818h] [PMID: 16984188]
[79]
Sun, Q.; Wang, Y.A.; Li, L.S.; Wang, D.; Zhu, T.; Xu, J.; Yang, C.; Li, Y. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics, 2007, 1(12), 717.
[http://dx.doi.org/10.1038/nphoton.2007.226]
[80]
Peng, X.; Schlamp, M.C.; Kadavanich, A.V.; Alivisatos, A.P. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc., 1997, 119(30), 7019-7029.
[http://dx.doi.org/10.1021/ja970754m]
[81]
Greytak, A.B.; Allen, P.M.; Liu, W.; Zhao, J.; Young, E.R.; Popović, Z.; Walker, B.; Nocera, D.G.; Bawendi, M.G. Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high ontime fractions. Chem. Sci. (Camb.), 2012, 3(6), 2028-2034.
[http://dx.doi.org/10.1039/c2sc00561a] [PMID: 24932403]
[82]
Chen, O.; Zhao, J.; Chauhan, V.P.; Cui, J.; Wong, C.; Harris, D.K.; Wei, H.; Han, H-S.; Fukumura, D.; Jain, R.K.; Bawendi, M.G. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater., 2013, 12(5), 445-451.
[http://dx.doi.org/10.1038/nmat3539] [PMID: 23377294]
[83]
Zhang, Y-h.; Zhang, H-s.; Guo, X-f.; Wang, H. L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper (II) determination. Microchem. J., 2008, 89(2), 142-147.
[http://dx.doi.org/10.1016/j.microc.2008.01.008]
[84]
Cao, Y.W.; Banin, U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem. Int. Ed. Engl., 1999, 38(24), 3692-3694.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24< 3692:AID-ANIE3692>3.0.CO;2-W] [PMID: 10649327]
[85]
Wang, D.; He, J.; Rosenzweig, N.; Rosenzweig, Z. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett., 2004, 4(3), 409-413.
[http://dx.doi.org/10.1021/nl035010n] [PMID: 25427146]
[86]
Anni, M.; Manna, L.; Cingolani, R.; Valerini, D.; Creti, A.; Lomascolo, M. Förster energy transfer from blue-emitting polymers to colloidal CdSe/ZnS core shell quantum dots. Appl. Phys. Lett., 2004, 85(18), 4169-4171.
[http://dx.doi.org/10.1063/1.1814795]
[87]
Huang, C-P.; Li, Y-K.; Chen, T-M. A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots. Biosens. Bioelectron., 2007, 22(8), 1835-1838.
[http://dx.doi.org/10.1016/j.bios.2006.09.003] [PMID: 17055240]
[88]
Zhu, H.; Song, N.; Lian, T. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc., 2010, 132(42), 15038-15045.
[http://dx.doi.org/10.1021/ja106710m] [PMID: 20925344]
[89]
Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi, M.A.; Vecchio, G.; Cingolani, R.; Nadeau, J.L.; Pompa, P.P. InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment. Nanoscale, 2013, 5(1), 307-317.
[http://dx.doi.org/10.1039/C2NR33024E] [PMID: 23165345]
[90]
Gerdova, I.; Haché, A. Third-order non-linear spectroscopy of CdSe and CdSe/ZnS core shell quantum dots. Opt. Commun., 2005, 246(1-3), 205-212.
[http://dx.doi.org/10.1016/j.optcom.2004.10.068]
[91]
Yola, M.L.; Atar, N.; Phenylethanolamine, A. PEA) imprinted polymer on carbon nitride nanotubes/graphene quantum dots/core-shell nanoparticle composite for electrochemical PEA detection in urine sample. J. Electrochem. Soc., 2018, 165(2), H1-H9.
[http://dx.doi.org/10.1149/2.0651802jes]
[92]
Belache, B.; Khelfaoui, Y.; Bououdina, M.; Souier, T.; Cai, W. Structural and optical properties of silica single-layer films doped with ZnS quantum dots: Photoluminescence monitoring of annealing-induced defects. Mater. Sci. Semicond. Process., 2018, 76, 42-49.
[http://dx.doi.org/10.1016/j.mssp.2017.12.013]
[93]
Zong, S.; Zong, J.; Chen, C.; Jiang, X.; Zhang, Y.; Wang, Z.; Cui, Y. Single molecule localization imaging of exosomes using blinking silicon quantum dots. Nanotechnology, 2018, 29(6) 065705
[http://dx.doi.org/10.1088/1361-6528/aaa375] [PMID: 29265007]
[94]
Ensafi, A.A.; Nasr-Esfahani, P.; Rezaei, B. Synthesis of molecularly imprinted polymer on carbon quantum dots as an optical sensor for selective fluorescent determination of promethazine hydrochloride. Sens. Actuators B Chem., 2018, 257, 889-896.
[http://dx.doi.org/10.1016/j.snb.2017.11.050]
[95]
Samavati, A.; Othaman, Z.; Ghoshal, S.K.; Dousti, M.R.; Kadir, M.R.A. Substrate temperature dependent surface morphology and photoluminescence of germanium quantum dots grown by radio frequency magnetron sputtering. Int. J. Mol. Sci., 2012, 13(10), 12880-12889.
[http://dx.doi.org/10.3390/ijms131012880] [PMID: 23202927]
[96]
Norris, D.J.; Bawendi, M.G. Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B Condens. Matter, 1996, 53(24), 16338-16346.
[http://dx.doi.org/10.1103/PhysRevB.53.16338] [PMID: 9983472]
[97]
Danek, M.; Jensen, K.F.; Murray, C.B.; Bawendi, M.G. Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem. Mater., 1996, 8(1), 173-180.
[http://dx.doi.org/10.1021/cm9503137]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy