Abstract
Hammerhead ribozymes that are subject to allosteric control by small molecule and oligonucleotide effectors have been reported recently. Rational design has been an effective strategy for the creation of these ribozymes, which incorporate structurally interdependent hammerhead motifs and effector-binding sequences. In this paper we report the rational design of the first protein-responsive allosteric ribozymes that are regulated by the HIV-1 Tat. The TAR-Tat interaction of HIV-1 has the interesting feature that both Tat and arginine are able to bind to and bring about comparable conformational changes in the TAR loop. Here we describe the construction of two classes of TAR-modified hammerhead ribozymes and their response to Tat protein and to its derivatives. Instances of both allosteric activation and inhibition were found. Interestingly, the activation response was stimulated by both Tat and argininamide while the inhibitory response was stimulated by Tat and by its derivative peptide, ADP1, but not by argininamide. Overall, the extent of allosteric response in our ribozymes was modest relative to those reported for ribozymes with small molecule effectors. Future work utilizing combinatorial approaches along with elements of rational design should reveal the means by which highly efficient, protein-mediated allostery of ribozymes may be achieved.
Combinatorial Chemistry & High Throughput Screening
Title: Rationally Designed Allosteric Variants of Hammerhead Ribozymes Responsive to the HIV-1 Tat Protein
Volume: 5 Issue: 4
Author(s): Dennis Y. Wang and Dipankar Sen
Affiliation:
Abstract: Hammerhead ribozymes that are subject to allosteric control by small molecule and oligonucleotide effectors have been reported recently. Rational design has been an effective strategy for the creation of these ribozymes, which incorporate structurally interdependent hammerhead motifs and effector-binding sequences. In this paper we report the rational design of the first protein-responsive allosteric ribozymes that are regulated by the HIV-1 Tat. The TAR-Tat interaction of HIV-1 has the interesting feature that both Tat and arginine are able to bind to and bring about comparable conformational changes in the TAR loop. Here we describe the construction of two classes of TAR-modified hammerhead ribozymes and their response to Tat protein and to its derivatives. Instances of both allosteric activation and inhibition were found. Interestingly, the activation response was stimulated by both Tat and argininamide while the inhibitory response was stimulated by Tat and by its derivative peptide, ADP1, but not by argininamide. Overall, the extent of allosteric response in our ribozymes was modest relative to those reported for ribozymes with small molecule effectors. Future work utilizing combinatorial approaches along with elements of rational design should reveal the means by which highly efficient, protein-mediated allostery of ribozymes may be achieved.
Export Options
About this article
Cite this article as:
Dennis Y. Wang and Dipankar Sen , Rationally Designed Allosteric Variants of Hammerhead Ribozymes Responsive to the HIV-1 Tat Protein, Combinatorial Chemistry & High Throughput Screening 2002; 5 (4) . https://dx.doi.org/10.2174/1386207023330273
DOI https://dx.doi.org/10.2174/1386207023330273 |
Print ISSN 1386-2073 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5402 |
Call for Papers in Thematic Issues
Advances in the design of antibody & protein with conformational dynamics and artificial intelligence approaches
“Antibodies & Protein Design” section focuses on the utilization of multiple strategies to engineer and optimize antibodies and proteins that serve diverse analytical strategies, such as combinatorial protein design, structure-based design, sequence-based design, and other techniques that incorporate principles of protein-protein interactions, allosteric regulation, and post-translational modifications. Example applications include ...read more
Artificial Intelligence Methods for Biomedical, Biochemical and Bioinformatics Problems
Recently, a large number of technologies based on artificial intelligence have been developed and applied to solve a diverse range of problems in the areas of biomedical, biochemical and bioinformatics problems. By utilizing powerful computing resources and massive amounts of data, methods based on artificial intelligence can significantly improve the ...read more
Emerging trends in diseases mechanisms, noble drug targets and therapeutic strategies: focus on immunological and inflammatory disorders
Recently infectious and inflammatory diseases have been a key concern worldwide due to tremendous morbidity and mortality world Wide. Recent, nCOVID-9 pandemic is a good example for the emerging infectious disease outbreak. The world is facing many emerging and re-emerging diseases out breaks at present however, there is huge lack ...read more
Exploring Spectral Graph Theory in Combinatorial Chemistry
Combinatorial chemistry involves the synthesis and analysis of a large number of diverse compounds simultaneously. Traditional methods rely on brute-force experimentation, which can be time-consuming and resource-intensive. Spectral graph theory, a branch of mathematics dealing with the properties of graphs in relation to the eigenvalues and eigenvectors of matrices associated ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers