Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Phenotypic and Molecular Survey of Metallo-beta-lactamase-producing Pseudomonas aeruginosa Isolated from Patients with Nosocomial and Non- Nosocomial Infections

Author(s): Samaneh Rouhi and Rashid Ramazanzadeh*

Volume 20, Issue 1, 2020

Page: [56 - 64] Pages: 9

DOI: 10.2174/1871526519666190119113328

Price: $65

Abstract

Background: Resistance to antimicrobial agents in Pseudomonas aeruginosa (P. aeruginosa) including carbapenems is a prominent problem in patients. The aim of this study is surveying Metallo-beta-lactamase (MBL)-producing P. aeruginosa isolated from patient specimens with nosocomial and non-nosocomial infections in Kurdistan province, Iran.

Methods: In total, 146 Pseudomonas spp. were collected (December 2015 to August 2017). P. aeruginosa isolates were detected by phenotypic and polymerase chain reactions (PCR) of gyrB gene. Combination disk (CD) phenotypic test was used for the identification of MBL-producing strains and PCR was applied for identification of blaIMP and blaVIM genes in P. aeruginosa. Sensitivity and specificity of phenotypic tests were calculated as well. Fisher’s exact test and logistic regression were used for data analysis (p≤0.05).

Results: A total of 134 (91.78%) and 133 (91.09%) P. aeruginosa were detected using PCR and the phenotypic test, respectively. Fifty-six (41.79%) clinical isolates were isolated from patients with nosocomial infection. CD test proved that 67 out of 134 (50%) P. aeruginosa isolates were positive for MBL, of which 11 (8.20%) carried blaIMP gene. No significant relationship was found between MBL-producing P. aeruginosa and blaIMP genes; as well as between MBL-producing P. aeruginosa and blaIMP genes with age, sex, city of residence, inpatient/outpatient and specimen's type (p≥0.05).

Conclusion: Presence of MBL-producing P. aeruginosa strains and blaIMP genes were proved in this study; thus more precaution should be taken in the administration of carbapenem antibiotics to patients.

Keywords: Phenotypic, molecular survey, Pseudomonas aeruginosa, metallo-beta-lactamase, nosocomial infection, nonnosocomial infection.

Graphical Abstract
[1]
Verma, U.; Kulshreshtha, S.; Khatri, P.K. MDR Pseudomonas aeruginosa in nosocomial infection: burden in ICU and burn units of a tertiary care hospital. Int. J. Curr. Microbiol. Appl. Sci., 2018, 7(1), 1267-1274.
[http://dx.doi.org/10.20546/ijcmas.2018.701.154]
[2]
Kalantar, E.; Taherzadeh, S.; Ghadimi, T.; Soheili, F.; Salimizand, H.; Hedayatnejad, A. Pseudomonas aeruginosa, an emerging pathogen among burn patients in Kurdistan Province, Iran. Southeast Asian J. Trop. Med. Public Health, 2012, 43(3), 712-717.
[PMID: 23077851]
[3]
Hong, D.J.; Bae, I.K.; Jang, I.H.; Jeong, S.H.; Kang, H.K.; Lee, K. Epidemiology an characteristics of metallo-β- lactamase-producing Pseudomonas aeruginosa. Infect. Chemother., 2015, 47(2), 81-97.
[http://dx.doi.org/10.3947/ic.2015.47.2.81] [PMID: 26157586]
[4]
Kalantar, E.; Torabi, V.; Salimizand, H.; Soheili, F.; Beiranvand, S.; Soltan Dallal, M.M. First survey of metallo-β-lactamase producers in clinical isolates of Pseudomonas aeruginosa from a referral burn center in Kurdistan province. Jundishapur J. Nat. Pharm. Prod., 2012, 7(1), 23-26.
[http://dx.doi.org/10.17795/jjnpp-3546] [PMID: 24624147]
[5]
Wolska, K.; Kot, B.; Jakubczak, A.; Rymuza, K. BOX-PCR is an adequate tool for typing of clinical Pseudomonas aeruginosa isolates. Folia Histochem. Cytobiol., 2011, 49(4), 734-738.
[http://dx.doi.org/10.5603/FHC.2011.0098] [PMID: 22252771]
[6]
Miyoshi-Akiyama, T.; Tada, T.; Ohmagari, N.; Viet Hung, N.; Tharavichitkul, P.; Pokhrel, B.M.; Gniadkowski, M.; Shimojima, M.; Kirikae, T. Emergence and spread of epidemic multidrug-resistant Pseudomonas aeruginosa. Genome Biol. Evol., 2017, 9(12), 3238-3245.
[http://dx.doi.org/10.1093/gbe/evx243] [PMID: 29202180]
[7]
Zavascki, A.P.; Carvalhaes, C.G.; Picão, R.C.; Gales, A.C. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy. Expert Rev. Anti Infect. Ther., 2010, 8(1), 71-93.
[http://dx.doi.org/10.1586/eri.09.108] [PMID: 20014903]
[8]
Bassetti, M.; Vena, A.; Croxatto, A.; Righi, E.; Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context, 2018., 7212527
[http://dx.doi.org/10.7573/dic.212527] [PMID: 29872449]
[9]
Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: Epidemiology, genetic context, treatment options, and detection methods. Front. Microbiol., 2016, 7, 895.
[http://dx.doi.org/10.3389/fmicb.2016.00895] [PMID: 27379038]
[10]
Khan, A.U.; Maryam, L.; Zarrilli, R. Structure, genetics and worldwide spread of new delhi metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol., 2017, 17(1), 101.
[http://dx.doi.org/10.1186/s12866-017-1012-8] [PMID: 28449650]
[11]
Jabalameli, F.; Taki, E.; Emaneini, M.; Beigverdi, R. Prevalence of metallo-β-lactamase-encoding genes among carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Iran. Rev. Soc. Bras. Med. Trop., 2018, 51(3), 270-276.
[http://dx.doi.org/10.1590/0037-8682-0044-2018] [PMID: 29972555]
[12]
Kazeminezhad, B.; Bostanmanesh Rad, A.; Gharib, A.; Zahedifard, S. blaVIM and blaIMP genes detection in isolates of carbapenem resistant P. aeruginosa of hospitalized patients in two hospitals in Iran. Iran. J. Pathol., 2017, 12(4), 392-396.
[PMID: 29563936]
[13]
El-Domany, R.A.; Emara, M.; El-Magd, M.A.; Moustafa, W.H.; Abdeltwab, N.M. Emergence of imipenem-resistant Pseudomonas aeruginosa clinical isolates from Egypt coharboring VIM and IMP carbapenemases. Microb. Drug Resist., 2017, 23(6), 682-686.
[http://dx.doi.org/10.1089/mdr.2016.0234] [PMID: 28085553]
[14]
Valenza, G.; Joseph, B.; Elias, J.; Claus, H.; Oesterlein, A.; Engelhardt, K.; Turnwald, D.; Frosch, M.; Abele-Horn, M.; Schoen, C. First survey of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa in a German university hospital. Antimicrob. Agents Chemother., 2010, 54(8), 3493-3497.
[http://dx.doi.org/10.1128/AAC.00080-10] [PMID: 20498315]
[15]
Farajzadeh Sheikh, A.; Rostami, S.; Jolodar, A.; Tabatabaiefar, M.A.; Khorvash, F.; Saki, A.; Shoja, S.; Sheikhi, R. Detection of metallo-beta lactamases among carbapenem-resistant Pseudomonas aeruginosa. Jundishapur J. Microbiol., 2014, 7(11), e12289
[http://dx.doi.org/10.5812/jjm.12289] [PMID: 25774271]
[16]
Lavakhamseh, H.; Shakib, P.; Rouhi, S.; Mohammadi, B.; Ramazanzadeh, R. A survey on the prevalence and antibiotic sensitivity of nosocomial infections in the Besat hospital, Sanandaj, Iran. J. NI., 2014, 1(1), 1-8.
[17]
Emori, T.G.; Culver, D.H.; Horan, T.C.; Jarvis, W.R.; White, J.W.; Olson, D.R.; Banerjee, S.; Edwards, J.R.; Martone, W.J.; Gaynes, R.P. National nosocomial infections surveillance system (NNIS): description of surveillance methods. Am. J. Infect. Control, 1991, 19(1), 19-35.
[http://dx.doi.org/10.1016/0196-6553(91)90157-8] [PMID: 1850582]
[18]
Ramazanzadeh, R.; Rouhi, S.; Hosainzadegan, H.; Shakib, P.; Nouri, B. Co-occurrence of extended-spectrum beta-lactamases in isolated Enterobacter spp. from patients specimens. Arch. Clin. Infect. Dis., 2016, 11(3), e26837
[http://dx.doi.org/10.5812/archcid.26837]
[19]
Gomori, G. Preparation of buffers for use in enzyme studies. Methods Enzymol., 1955, 1, 138-146.
[http://dx.doi.org/10.1016/0076-6879(55)01020-3]
[20]
Yagi, N.; Satonaka, K.; Horio, M.; Shimogaki, H.; Tokuda, Y.; Maeda, S. The role of DNase and EDTA on DNA degradation in formaldehyde fixed tissues. Biotech. Histochem., 1996, 71(3), 123-129.
[http://dx.doi.org/10.3109/10520299609117148] [PMID: 8724437]
[21]
Mulamattathil, S.G.; Bezuidenhout, C.; Mbewe, M.; Ateba, C.N. Isolation of environmental bacteria from surface and drinking water in mafikeng, South Africa, and characterization using their antibiotic resistance profiles. J. Pathogens, 2014, 2014, 371208
[http://dx.doi.org/10.1155/2014/371208] [PMID: 25105027]
[22]
Qu, T.T.; Zhang, J.L.; Wang, J.; Tao, J.; Yu, Y.S.; Chen, Y.G.; Zhou, J.Y.; Li, L.J. Evaluation of phenotypic tests for detection of metallo-β-lactamase-producing Pseudomonas aeruginosa strains in China. J. Clin. Microbiol., 2009, 47(4), 1136-1142.
[http://dx.doi.org/10.1128/JCM.01592-08] [PMID: 19213696]
[23]
Czobor, I.; Chifiriuc, M.; Marutescu, L.; Cotar, A.I.; Banu, O.; Borcan, E.; Lazar, V. Phenotypic and genetic screening of B-lactamases mediated resistance amongst clinical isolates of Gram negative bacilli from Romanian hospitals, 22nd ed; ECCMID: London, United Kingdom, 2012.
[24]
Pakbaten Toupkanlou, S.; Najar Peerayeh, S.; Pirhajati Mahabadi, R. Class A and D Extended-Spectrum β-Lactamases in Imipenem Resistant Pseudomonas aeruginosa Isolated From Burn Patients in Iran. Jundishapur J. Microbiol., 2015, 8(8), e18352
[http://dx.doi.org/10.5812/jjm.18352v2] [PMID: 26468357]
[25]
Fan, X.; Wu, Y.; Xiao, M.; Xu, Z.P.; Kudinha, T.; Bazaj, A.; Kong, F.; Xu, Y.C. Diverse genetic background of multidrug-resistant Pseudomonas aeruginosa from Mainland China, and emergence of an extensively drug-resistant ST292 clone in Kunming. Sci. Rep., 2016, 6, 26522.
[http://dx.doi.org/10.1038/srep26522] [PMID: 27198004]
[26]
Saffari, M.; Firoozeh, F.; Pourbabaee, M.; Zibaei, M. Evaluation of metallo-beta-lactamase-production and carriage of bla-VIM genes in Pseudomonas aeruginosa isolated from burn wound infections in isfahan. Arch. Trauma Res., 2016, 5(4), e34343
[http://dx.doi.org/10.5812/atr.34343] [PMID: 28144604]
[27]
Cai, S.; Chen, Y.; Song, D.; Kong, J.; Wu, Y.; Lu, H. Study on the resistance mechanism via outer membrane protein OprD2 and metal β-lactamase expression in the cell wall of Pseudomonas aeruginosa. Exp. Ther. Med., 2016, 12(5), 2869-2872.
[http://dx.doi.org/10.3892/etm.2016.3690] [PMID: 27882088]
[28]
Guggenbichler, J.P.; Assadian, O.; Boeswald, M.; Kramer, A. Incidence and clinical implication of nosocomial infections associated with implantable biomaterials - catheters, ventilator-associated pneumonia, urinary tract infections. GMS Krankenhhyg. Interdiszip., 2011, 6(1), Doc18.
[PMID: 22242099]
[29]
Alp, E.; Voss, A. Ventilator associated pneumonia and infection control. Ann. Clin. Microbiol. Antimicrob., 2006, 5, 7.
[http://dx.doi.org/10.1186/1476-0711-5-7] [PMID: 16600048]
[30]
Ahmed Khan, H.; Ahmad, A.; Mehboob, R. Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed., 2015, 5(7), 509-514.
[http://dx.doi.org/10.1016/j.apjtb.2015.05.001]
[31]
Lucena, A.; Dalla Costa, L.M. Nogueira, Kda.S.; Matos, A.P.; Gales, A.C.; Raboni, S.M. Comparison of phenotypic tests for the detection of metallo-beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Enferm. Infecc. Microbiol. Clin., 2014, 32(10), 625-630.
[http://dx.doi.org/10.1016/j.eimc.2014.03.015] [PMID: 24908495]
[32]
Bagheri Bejestani, F.; Hakemi-Vala, M.; Momtaheni, R.; Bagheri Bejestani, O.; Gholami, M. The frequency of imp and vim genes among Pseudomonas aeruginosa isolates from children’s medical center of Tehran. Arch. Clin. Infect. Dis., 2015, 10(1), e20991
[http://dx.doi.org/10.5812/archcid.20991]
[33]
Mahmoudi, S.; Pourakbari, B.; Hosseini, M.; Alyari, A.E.; Ashtiani, M.T.H.; Mamishi, S. Molecular analysis of Pseudomonas aeruginosa metallo-beta-lactamase: a first report of an iranian referral pediatric hospital. Infect. Disord. Drug Targets, 2018, 18(1), 46-51.
[http://dx.doi.org/10.2174/1871526516666161202153806] [PMID: 27915986]
[34]
Kateete, D.P.; Nakanjako, R.; Namugenyi, J.; Erume, J.; Joloba, M.L.; Najjuka, C.F. Carbapenem resistant Pseudomonas aeruginosa and Acinetobacter baumannii at Mulago Hospital in Kampala, Uganda (2007-2009). Springerplus, 2016, 5(1), 1308.
[http://dx.doi.org/10.1186/s40064-016-2986-7] [PMID: 27547682]
[35]
Fallah, F.; Borhan, R.S.; Hashemi, A. Detection of bla(IMP) and bla(VIM) metallo-β-lactamases genes among Pseudomonas aeruginosa strains. Int. J. Burns Trauma, 2013, 3(2), 122-124.
[PMID: 23638331]
[36]
Hughes, D.; Andersson, D.I. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiol. Rev., 2017, 41(3), 374-391.
[http://dx.doi.org/10.1093/femsre/fux004] [PMID: 28333270]
[37]
Azami, M.; Sayehmiri, K. YektaKooshali, M.H.; HafeziAhmadi, M.R. The prevalence of tuberculosis among Iranian elderly patients admitted to the infectious ward of hospital: A systematic review and meta-analysis. Int. J. Mycobacteriol., 2016, 5(Suppl. 1), S199-S200.
[http://dx.doi.org/10.1016/j.ijmyco.2016.11.022] [PMID: 28043551]
[38]
Rouhi, S.; Rooshani, D.; Shakib, P. AhangarKani, F.; Ramazanzadeh, R. A 10 years survey on prevalence and occurrence rate of Mycobacterium tuberculosis Latin American and Mediterranean family multi-drug resistant: a systematic review and meta-analysis. JBRMS, 2018, 5(1), 51-61.
[http://dx.doi.org/10.29252/jbrms.5.1.51]
[39]
Abouelfetouh, A. The status of methicillin resistance among Egyptian Staphylococcus aureus isolates: an overview. Infect. Disord. Drug Targets, 2017, 17(1), 67-69.
[http://dx.doi.org/10.2174/1871526516666160802111200] [PMID: 27488498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy