Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Hydroxyenone Derivatives: In vitro Anti-malarial and Docking Studies against P. falciparum

Author(s): Aarti Dalal, Parvin Kumar, Radhika Khanna, Dinesh Kumar, Deepika Paliwal and Ramesh C. Kamboj*

Volume 20, Issue 2, 2020

Page: [237 - 243] Pages: 7

DOI: 10.2174/1871526519666190116110108

Price: $65

Abstract

Methods: A series of 1-{2-(prop-2-ynyloxy)aryl}-3-hydroxy-3-(4'-trifluoromethylphenyl) prop-2-en-1-ones obtained by photo-irradiation of 2-{2-(prop-2-ynyloxy)benzoyl}-3-(4- trifluorome-thyl-phenyl)oxiranes (that were characterized by spectral studies: FT-IR, 1H NMR, 13C NMR and Mass analysis) was screened for the anti-malarial activity by evaluating against chloroquine-sensitive P. falciparum (CD7). The molecular docking studies using AutoDock Vina were also performed to further ascertain the efficacy of these compounds with PDB:4ORM.

Results: Among these, the hydroxyenone derivatives 2b, 2c and 2a exhibited very potent antimalarial activity that was clearly evinced by the results of molecular docking. Binding energies of hydroxyenone compounds were calculated and found in the range of -10.4 to -9.0 kcal/mol.

Conclusion: Compound 2b had the strongest binding affinity with docking score of -10.4 kcal/mol.

Keywords: Aroyloxiranes, photolysis, hydroxyenones, anti-malarial, molecular docking.

Graphical Abstract
[1]
Le Bras, J.; Durand, R. The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum. Fundam. Clin. Pharmacol., 2003, 17(2), 147-153.
[http://dx.doi.org/10.1046/j.1472-8206.2003.00164.x] [PMID: 12667224]
[2]
Carmargo, L.M.; de Oliveira, S.; Basano, S.; Garcia, C.R.S. Antimalarials and the fight against malaria in Brazil. Ther. Clin. Risk Manag., 2009, 5(4), 311-317.
[PMID: 19753125]
[3]
Muregi, F.W. Antimalarial drugs and their useful therapeutic lives: rational drug design lessons from pleiotropic action of quinolines and artemisinins. Curr. Drug Discov. Technol., 2010, 7(4), 280-316.
[http://dx.doi.org/10.2174/157016310793360693] [PMID: 21034413]
[4]
Ekland, E.H.; Fidock, D.A. In vitro evaluations of antimalarial drugs and their relevance to clinical outcomes. Int. J. Parasitol., 2008, 38(7), 743-747.
[http://dx.doi.org/10.1016/j.ijpara.2008.03.004] [PMID: 18406409]
[5]
Snounou, G.; Grüner, A.C.; Müller-Graf, C.D.; Mazier, D.; Rénia, L. The Plasmodium sporozoite survives RTS,S vaccination. Trends Parasitol., 2005, 21(10), 456-461.
[http://dx.doi.org/10.1016/j.pt.2005.08.002] [PMID: 16109504]
[6]
Global Report on Antimalarial Efficacy and Drug Resistance 2000–2010, 2010.
[7]
Diana, G.D.; Carabateas, P.M.; Johnson, R.E.; Williams, G.L.; Pancic, F.; Collins, J.C. Antiviral activity of some beta-diketones. 4. Benzyl diketones. In vitro activity against both RNA and DNA viruses. J. Med. Chem., 1978, 21(9), 889-894.
[http://dx.doi.org/10.1021/jm00207a010] [PMID: 722755]
[8]
Sheikh, J.I.; Ingle, V.N.; Juneja, H.D. Antibacterial Activity of Functionalized 1-(2′, 4′-Dihydroxy-5′-Substituted Phenyl)-3-Thienyl-Propane-1, 3-Diones Bearing Potential O, O, S-Pharmacophores. E-J. Chem., 2009, 6, 705-712.
[http://dx.doi.org/10.1155/2009/693495]
[9]
Crouse, G.D.; McGowan, M.J.; Boisvenue, R.J. Polyfluoro 1,3-diketones as systemic insecticides. J. Med. Chem., 1989, 32(9), 2148-2151.
[http://dx.doi.org/10.1021/jm00129a021] [PMID: 2769686]
[10]
Andrae, I.; Bringhen, A.; Böhm, F.; Gonzenbach, H.; Hill, T.; Mulroy, L.; Truscott, T.G. A UVA filter (4-tert-butyl-4′-methoxydibenzoylmethane): photoprotection reflects photophysical properties. J. Photochem. Photobiol. B, 1997, 37, 147-150.
[http://dx.doi.org/10.1016/S1011-1344(96)07330-7]
[11]
Nishiyama, T.; Shiotsu, S.; Tsujita, H. Antioxidative activity and active site of 1, 3-indandiones with the β-diketone moiety. Polym. Degrad. Stabil., 2002, 76, 435-439.
[http://dx.doi.org/10.1016/S0141-3910(02)00046-0]
[12]
Tchertanov, L.; Mouscadet, J.F. Target recognition by catechols and β-ketoenols: potential contribution of hydrogen bonding and Mn/Mg chelation to HIV-1 integrase inhibition. J. Med. Chem., 2007, 50(6), 1133-1145.
[http://dx.doi.org/10.1021/jm061375j] [PMID: 17302399]
[13]
Sheikh, J.; Juneja, H.; Ingle, V.; Ali, P.; Hadda, T.B. Synthesis and in vitro biology of Co (II), Ni (II), Cu (II) and Zinc (II) complexes of functionalized beta-diketone bearing energy buried potential antibacterial and antiviral O, O pharmacophore sites. J. Saudi Chem. Soc., 2013, 17, 269-276.
[http://dx.doi.org/10.1016/j.jscs.2011.04.004]
[14]
(a)Lee, S.H.; Van, H.T.M.; Yang, S.H.; Lee, K.T.; Kwon, Y.; Cho, W.J. Molecular design, synthesis and docking study of benz[b]oxepines and 12-oxobenzo[c]phenanthridinones as topoisomerase 1 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(9), 2444-2447.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.058] [PMID: 19345580]
(b)Yamazaki, H.; Rotinsulu, H.; Kaneko, T.; Murakami, K.; Fujiwara, H.; Ukai, K.; Namikoshi, M. A new dibenz[b,e]oxepine derivative, 1-hydroxy-10-methoxy-dibenz[b,e]oxepin-6,11-dione, from a marine-derived fungus, Beauveria bassiana TPU942. Mar. Drugs, 2012, 10(12), 2691-2697.
[http://dx.doi.org/10.3390/md10122691] [PMID: 23342391]
[15]
Dalal, A.; Kamboj, R.C.; Kumar, D.; Sharma, M.K.; Selvarajan, N. Crystal structure of (Z)-3-[5-chloro-2-(prop-2-yn-yloxy)phen-yl]-3-hy-droxy-1-[4-(tri-fluoro-meth-yl)phen-yl]-prop-2-en-1-one. Acta Crystallogr. E Crystallogr. Commun., 2015, 71(Pt 8), o556-o557.
[http://dx.doi.org/10.1107/S2056989015012748] [PMID: 26396794]
[16]
Dalal, A.; Khanna, R.; Berar, U.; Kamboj, R.C. Photochemistry of aroyloxiranes: Substituent effect on oxepinones and hydroxyalkenones formation. J. Photochem. Photobiol. Chem., 2016, 329, 238-245.
[http://dx.doi.org/10.1016/j.jphotochem.2016.07.008]
[17]
Trager, W.; Jensen, J.B. Human malaria parasites in continuous culture. Science, 1976, 193(4254), 673-675.
[http://dx.doi.org/10.1126/science.781840] [PMID: 781840]
[18]
WHO. WHO/CTD/MAL/97 20 Rev 2, Geneva; , 2001.
[19]
Marvin Sketch 15.12.7.0 ChemAxon Ltd. (1998–2015), http://www. chemaxon.com
[20]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[21]
Dunbrack, R.L., Jr Rotamer libraries in the 21st century. Curr. Opin. Struct. Biol., 2002, 12(4), 431-440.
[http://dx.doi.org/10.1016/S0959-440X(02)00344-5] [PMID: 12163064]
[22]
Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model., 2006, 25(2), 247-260.
[http://dx.doi.org/10.1016/j.jmgm.2005.12.005] [PMID: 16458552]
[23]
AutoDock Tools (version 1.5.6 rc2), Stefano Forte. Molecular Graphics Laboratory, Department of Molecular Biology, The Scripps Research Institute, (1999–2010), http://mgltools. scripps.edu
[24]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[25]
Visualizer, D.S. 16.1.0.15350, DassaultSystèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017; Dassault-Systèmes: San Diego 2016.http://www.rcsb.org/pdb/explore/explore.do?structureId=4ORM
[27]
Deng, X.; Kokkonda, S.; El Mazouni, F.; White, J.; Burrows, J.N.; Kaminsky, W.; Charman, S.A.; Matthews, D.; Rathod, P.K.; Phillips, M.A. Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J. Med. Chem., 2014, 57(12), 5381-5394.
[http://dx.doi.org/10.1021/jm500481t] [PMID: 24801997]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy