Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics

Author(s): Sanjay Kumar, Anchal Singhal, Uma Narang, Sweta Mishra and Pratibha Kumari*

Volume 27, Issue 35, 2020

Page: [6015 - 6056] Pages: 42

DOI: 10.2174/0929867326666181224143734

Price: $65

conference banner
Abstract

Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as “Nano-bullets” for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.

Keywords: Cancer therapy, nanotechnology, organic-inorganic nanomaterials, cancer therapeutics, drug delivery, gene therapy, radiotherapy.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492 ] [PMID: 30207593]
[2]
Ware, M.J.; Krzykawska-Serda, M.; Chak-Shing Ho, J.; Newton, J.; Suki, S.; Law, J.; Nguyen, L.; Keshishian, V.; Serda, M.; Taylor, K.; Curley, S.A.; Corr, S.J. Optimizing non-invasive radiofrequency hyperthermia treatment for improving drug delivery in 4T1 mouse breast cancer model. Sci. Rep., 2017, 7, 43961.
[http://dx.doi.org/10.1038/srep43961 ] [PMID: 28287120]
[3]
Gutteridge, J.M.C. Biological origin of free radicals, and mechanisms of antioxidant protection. Chem. Biol. Interact., 1994, 91(2-3), 133-140.
[http://dx.doi.org/10.1016/0009-2797(94)90033-7 ] [PMID: 8194129]
[4]
Lin, W. Introduction: nanoparticles in medicine. Chem. Rev., 2015, 115(19), 10407-10409.
[http://dx.doi.org/10.1021/acs.chemrev.5b00534 ] [PMID: 26463639]
[5]
Yamada, M.; Foote, M.; Prow, T.W. Therapeutic gold, silver, and platinum nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 428-445.
[http://dx.doi.org/10.1002/wnan.1322 ] [PMID: 25521618]
[6]
Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E.K.; Park, H.; Suh, J.S.; Lee, K.; Yoo, K.H.; Kim, E.K.; Huh, Y.M.; Haam, S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(2), 441-444.
[http://dx.doi.org/10.1002/anie.201005075 ] [PMID: 21132823]
[7]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004 ] [PMID: 19837467]
[8]
Su, X-Y.; Liu, P.D.; Wu, H.; Gu, N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol. Med., 2014, 11(2), 86-91.
[PMID: 25009750]
[9]
Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(5), 544-568.
[http://dx.doi.org/10.1002/wnan.103 ] [PMID: 20681021]
[10]
Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566 ] [PMID: 15738981]
[11]
Hull, L.C.; Farrell, D.; Grodzinski, P. Highlights of recent developments and trends in cancer nanotechnology research--view from NCI alliance for nanotechnology in cancer. Biotechnol. Adv., 2014, 32(4), 666-678.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.003 ] [PMID: 23948249]
[12]
Torchilin, V.P. Passive and active drug targeting: drug delivery to tumors as an example. Handb. Exp. Pharmacol., 2010, 197(197), 3-53.
[http://dx.doi.org/10.1007/978-3-642-00477-3_1 ] [PMID: 20217525]
[13]
Byrne, J.D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev., 2008, 60(15), 1615-1626.
[http://dx.doi.org/10.1016/j.addr.2008.08.005 ] [PMID: 18840489]
[14]
Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci., 2013, 48(3), 416-427.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006 ] [PMID: 23262059]
[15]
Liu, R. CHAPTER 10 Peptide Therapeutics: Oncology.Peptide-based Drug Discovery: Challenges and New Therapeutics; The Royal Society of Chemistry, 2017, pp. 278-325.
[http://dx.doi.org/10.1039/9781788011532-00278]
[16]
Lammers, T.; Hennink, W.E.; Storm, G. Tumor-targeted nanomedicines: principles and practice. Br. J. Cancer, 2008, 99(3), 392-397.
[http://dx.doi.org/10.1038/sj.bjc.6604483 ] [PMID: 18648371]
[17]
Kirpotin, D.B.; Drummond, D.C.; Shao, Y.; Shalaby, M.R.; Hong, K.; Nielsen, U.B.; Marks, J.D.; Benz, C.C.; Park, J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res., 2006, 66(13), 6732-6740.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4199 ] [PMID: 16818648]
[18]
Farkhani, S.M.; Valizadeh, A.; Karami, H.; Mohammadi, S.; Sohrabi, N.; Badrzadeh, F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides, 2014, 57, 78-94.
[http://dx.doi.org/10.1016/j.peptides.2014.04.015 ] [PMID: 24795041]
[19]
Copolovici, D.M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano, 2014, 8(3), 1972-1994.
[http://dx.doi.org/10.1021/nn4057269 ] [PMID: 24559246]
[20]
Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M.R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D.S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 2006, 366(1), 2-16.
[http://dx.doi.org/10.1016/j.gene.2005.10.018 ] [PMID: 16377102]
[21]
Assaraf, Y.G.; Leamon, C.P.; Reddy, J.A. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist. Updat., 2014, 17(4-6), 89-95.
[http://dx.doi.org/10.1016/j.drup.2014.10.002 ] [PMID: 25457975]
[22]
Tortorella, S.; Karagiannis, T.C. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J. Membr. Biol., 2014, 247(4), 291-307.
[http://dx.doi.org/10.1007/s00232-014-9637-0 ] [PMID: 24573305]
[23]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009 ] [PMID: 24270007]
[24]
Huang, Y.; He, S.; Cao, W.; Cai, K.; Liang, X.J. Biomedical nanomaterials for imaging-guided cancer therapy. Nanoscale, 2012, 4(20), 6135-6149.
[http://dx.doi.org/10.1039/c2nr31715j ] [PMID: 22929990]
[25]
Duan, C.; Liang, L.; Li, L.; Zhang, R.; Xu, Z.P. Recent progress in upconversion luminescence nanomaterials for biomedical applications. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(2), 192-209.
[http://dx.doi.org/10.1039/C7TB02527K ] [PMID: 32254163]
[26]
Chien, Y.H. NIR‐responsive nanomaterials and their appli-cations; upconversion nanoparticles and carbon dots: a perspective. J. Chem. Technol. Biotechnol., 2018, 93(6), 1519-1528.
[http://dx.doi.org/10.1002/jctb.5581]
[27]
Lee, H.Y.; Li, Z.; Chen, K.; Hsu, A.R.; Xu, C.; Xie, J.; Sun, S.; Chen, X. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med., 2008, 49(8), 1371-1379.
[http://dx.doi.org/10.2967/jnumed.108.051243 ] [PMID: 18632815]
[28]
Rakovich, A.; Rakovich, T. Semiconductor versus graphene quantum dots as fluorescent probes for cancer diagnosis and therapy applications. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(18), 2690-2712.
[http://dx.doi.org/10.1039/C8TB00153G ] [PMID: 32254222]
[29]
Shin, T-H.; Choi, Y.; Kim, S.; Cheon, J. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev., 2015, 44(14), 4501-4516.
[http://dx.doi.org/10.1039/C4CS00345D ] [PMID: 25652670]
[30]
Hu, Y.; Mignani, S.; Majoral, J.P.; Shen, M.; Shi, X. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Chem. Soc. Rev., 2018, 47(5), 1874-1900.
[http://dx.doi.org/10.1039/C7CS00657H ] [PMID: 29376542]
[31]
Eyvazzadeh, N.; Shakeri-Zadeh, A.; Fekrazad, R.; Amini, E.; Ghaznavi, H.; Kamran Kamrava, S. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Lasers Med. Sci., 2017, 32(7), 1469-1477.
[http://dx.doi.org/10.1007/s10103-017-2267-x ] [PMID: 28674789]
[32]
Keshavarz, M.; Moloudi, K.; Paydar, R.; Abed, Z.; Beik, J.; Ghaznavi, H.; Shakeri-Zadeh, A. Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J. Biomater. Appl., 2018, 33(2), 161-169.
[http://dx.doi.org/10.1177/0885328218782355 ] [PMID: 29933708]
[33]
Khademi, S.; Sarkar, S.; Kharrazi, S.; Amini, S.M.; Shakeri-Zadeh, A.; Ay, M.R.; Ghadiri, H. Evaluation of size, morphology, concentration, and surface effect of gold nanoparticles on X-ray attenuation in computed tomography. Phys. Med., 2018, 45, 127-133.
[http://dx.doi.org/10.1016/j.ejmp.2017.12.001 ] [PMID: 29472077]
[34]
Khademi, S.; Sarkar, S.; Shakeri-Zadeh, A.; Attaran, N.; Kharrazi, S.; Ay, M.R.; Ghadiri, H. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. Mater. Sci. Eng. C, 2018, 89, 182-193.
[http://dx.doi.org/10.1016/j.msec.2018.03.015 ] [PMID: 29752088]
[35]
Beik, J.; Jafariyan, M.; Montazerabadi, A.; Ghadimi-Daresajini, A.; Tarighi, P.; Mahmoudabadi, A.; Ghaznavi, H.; Shakeri-Zadeh, A. The benefits of folic acid-modified gold nanoparticles in CT-based molecular imaging: radiation dose reduction and image contrast enhancement. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1993-2001.
[PMID: 29233015]
[36]
Beik, J.; Khademi, S.; Attaran, N.; Sarkar, S.; Shakeri-Zadeh, A.; Ghaznavi, H.; Ghadiri, H. A nanotechnology-based strategy to increase the efficiency of cancer diagnosis and thera-py: folate-conjugated gold nanoparticles. Curr. Med. Chem., 2017, 24(39), 4399-4416.
[http://dx.doi.org/10.2174/0929867324666170810154917 ] [PMID: 28799495]
[37]
Mansoori, G.A.; Brandenburg, K.S.; Shakeri-Zadeh, A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers (Basel), 2010, 2(4), 1911-1928.
[http://dx.doi.org/10.3390/cancers2041911 ] [PMID: 24281209]
[38]
Shakeri-Zadeh, A.; Kamrava, S.K.; Farhadi, M.; Hajikarimi, Z.; Maleki, S.; Ahmadi, A. A scientific paradigm for targeted nanophotothermolysis; the potential for nanosurgery of cancer. Lasers Med. Sci., 2014, 29(2), 847-853.
[http://dx.doi.org/10.1007/s10103-013-1399-x ] [PMID: 23917412]
[39]
Samadian, H.; Hosseini-Nami, S.; Kamrava, S.K.; Ghaznavi, H.; Shakeri-Zadeh, A. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol., 2016, 142(11), 2217-2229.
[http://dx.doi.org/10.1007/s00432-016-2179-3 ] [PMID: 27209529]
[40]
Jose, A.; Surendran, M.; Fazal, S.; Prasanth, B.P.; Menon, D. Multifunctional fluorescent iron quantum clusters for non-invasive radiofrequency ablationof cancer cells. Colloids Surf. B Biointerfaces, 2018, 165, 371-380.
[http://dx.doi.org/10.1016/j.colsurfb.2018.02.058 ] [PMID: 29525697]
[41]
Glazer, E.S.; Curley, S.A. Radiofrequency field-induced thermal cytotoxicity in cancer cells treated with fluorescent nanoparticles. Cancer, 2010, 116(13), 3285-3293.
[http://dx.doi.org/10.1002/cncr.25135 ] [PMID: 20564640]
[42]
Ahmed, M.; Moussa, M.; Goldberg, S.N. Synergy in cancer treatment between liposomal chemotherapeutics and thermal ablation. Chem. Phys. Lipids, 2012, 165(4), 424-437.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.12.002 ] [PMID: 22197685]
[43]
Xu, Y.; Mahmood, M.; Li, Z.; Dervishi, E.; Trigwell, S.; Zharov, V.P.; Ali, N.; Saini, V.; Biris, A.R.; Lupu, D.; Boldor, D.; Biris, A.S. Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy. Nanotechnology, 2008, 19(43) 435102
[http://dx.doi.org/10.1088/0957-4484/19/43/435102 ] [PMID: 21832683]
[44]
May, J.P.; Li, S.D. Hyperthermia-induced drug targeting. Expert Opin. Drug Deliv., 2013, 10(4), 511-527.
[http://dx.doi.org/10.1517/17425247.2013.758631 ] [PMID: 23289519]
[45]
Abrahamse, H.; Kruger, C.A.; Kadanyo, S.; Mishra, A. Nanoparticles for advanced photodynamic therapy of cancer. Photomed. Laser Surg., 2017, 35(11), 581-588.
[http://dx.doi.org/10.1089/pho.2017.4308 ] [PMID: 28937916]
[46]
Kumari, P.; Gautam, R.; Milhotra, A. Application of porphyrin nanomaterials in Photodynamic therapy., 2016. 3(2),6.
[47]
Kim, J.; Cho, H.R.; Jeon, H.; Kim, D.; Song, C.; Lee, N.; Choi, S.H.; Hyeon, T. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J. Am. Chem. Soc., 2017, 139(32), 10992-10995.
[http://dx.doi.org/10.1021/jacs.7b05559 ] [PMID: 28737393]
[48]
Hussein, E.A.; Zagho, M.M.; Nasrallah, G.K.; Elzatahry, A.A. Recent advances in functional nanostructures as cancer photothermal therapy. Int. J. Nanomedicine, 2018, 13, 2897-2906.
[http://dx.doi.org/10.2147/IJN.S161031 ] [PMID: 29844672]
[49]
Ou, H.; Li, J.; Chen, C. Organic/polymer photothermal nanoagents for photoacoustic imaging and photothermal therapy in vivo. Sci. China Mater., 2019, 62, 1740-1758.
[http://dx.doi.org/10.1007/s40843-019-9470-3]
[50]
Gong, P.; Guo, L.; Pang, M.; Wang, D.; Sun, L.; Tian, Z.; Li, J.; Zhang, Y.; Liu, Z. Nano-sized paramagnetic and fluorescent fluorinated carbon fiber with high NIR absorbance for cancer chemo-photothermal therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(19), 3068-3077.
[http://dx.doi.org/10.1039/C7TB03320F ] [PMID: 32254341]
[51]
Ahmad, R.; Fu, J.; He, N.; Li, S. Advanced gold nanomateri-als for photothermal therapy of cancer. J. Nanosci. Nanotechnol., 2016, 16(1), 67-80.
[http://dx.doi.org/10.1166/jnn.2016.10770 ] [PMID: 27398434]
[52]
Li, X.; Xing, L.; Zheng, K.; Wei, P.; Du, L.; Shen, M.; Shi, X. Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(7), 5817-5827.
[http://dx.doi.org/10.1021/acsami.6b15185 ] [PMID: 28118704]
[53]
Neshastehriz, A.; Tabei, M.; Maleki, S.; Eynali, S.; Shakeri-Zadeh, A. Photothermal therapy using folate conjugated gold nanoparticles enhances the effects of 6MV X-ray on mouth epidermal carcinoma cells. J. Photochem. Photobiol. B, 2017, 172, 52-60.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.05.012 ] [PMID: 28527427]
[54]
Mehdizadeh, A.; Pandesh, S.; Shakeri-Zadeh, A.; Kamrava, S.K.; Habib-Agahi, M.; Farhadi, M.; Pishghadam, M.; Ahmadi, A.; Arami, S.; Fedutik, Y. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med. Sci., 2014, 29(3), 939-948.
[http://dx.doi.org/10.1007/s10103-013-1414-2 ] [PMID: 24013622]
[55]
Zeinizade, E.; Tabei, M.; Shakeri-Zadeh, A.; Ghaznavi, H.; Attaran, N.; Komeili, A.; Ghalandari, B.; Maleki, S.; Kamrava, S.K. Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 1026-1038.
[http://dx.doi.org/10.1080/21691401.2018.1443116]
[56]
Mirrahimi, M. Modulation of cancer cells’ radiation response in the presence of folate conjugated Au@ Fe2O3 nano-complex as a targeted radiosensitizer. Clin. Transl. Oncol., 2018, 21(4), 1-10.
[http://dx.doi.org/10.1007/s12094-018-1947-8 ] [PMID: 30298468]
[57]
Mirrahimi, M. Selective heat generation in cancer cells using a combination of 808 nm laser irradiation and the folate-conjugated Fe2O3@ Au nanocomplex. Artif. Cells Nanomed. Biotechnol; 2018.46(sup1), 241-253.
[http://dx.doi.org/10.1080/21691401.2017.1420072] [PMID: 29291635]
[58]
Ghaznavi, H.; Hosseini-Nami, S.; Kamrava, S.K.; Irajirad, R.; Maleki, S.; Shakeri-Zadeh, A.; Montazerabadi, A. Folic acid conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1594-1604.
[http://dx.doi.org/10.1080/21691401.2017.1384384 ] [PMID: 28994325]
[59]
Ma, J.; Li, P.; Wang, W.; Wang, S.; Pan, X.; Zhang, F.; Li, S.; Liu, S.; Wang, H.; Gao, G.; Xu, B.; Yuan, Q.; Shen, H.; Liu, H. Biodegradable poly(amino acid)-gold-magnetic complex with efficient endocytosis for multimodal imaging-guided chemo-photothermal therapy. ACS Nano, 2018, 12(9), 9022-9032.
[http://dx.doi.org/10.1021/acsnano.8b02750 ] [PMID: 30059614]
[60]
Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 2014, 15(8), 541-555.
[http://dx.doi.org/10.1038/nrg3763 ] [PMID: 25022906]
[61]
Chen, Y.; Gao, D-Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 128-141.
[http://dx.doi.org/10.1016/j.addr.2014.05.009 ] [PMID: 24859533]
[62]
Xu, C-f.; Wang, J. Delivery systems for siRNA drug development in cancer therapy. Asian Journal of Pharmaceutical Sciences, 2015, 10(1), 1-12.
[http://dx.doi.org/10.1016/j.ajps.2014.08.011]
[63]
Shen, J.; Zhang, W.; Qi, R.; Mao, Z.W.; Shen, H. Engineering functional inorganic-organic hybrid systems: advances in siRNA therapeutics. Chem. Soc. Rev., 2018, 47(6), 1969-1995.
[http://dx.doi.org/10.1039/C7CS00479F ] [PMID: 29417968]
[64]
Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther., 2017, 24(3), 133-143.
[http://dx.doi.org/10.1038/gt.2017.5 ] [PMID: 28094775]
[65]
Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet., 2003, 4(5), 346-358.
[http://dx.doi.org/10.1038/nrg1066 ] [PMID: 12728277]
[66]
Vesely, M.D.; Kershaw, M.H.; Schreiber, R.D.; Smyth, M.J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol., 2011, 29, 235-271.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101324 ] [PMID: 21219185]
[67]
Min, Y.; Roche, K.C.; Tian, S.; Eblan, M.J.; McKinnon, K.P.; Caster, J.M.; Chai, S.; Herring, L.E.; Zhang, L.; Zhang, T.; DeSimone, J.M.; Tepper, J.E.; Vincent, B.G.; Serody, J.S.; Wang, A.Z. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol., 2017, 12(9), 877-882.
[http://dx.doi.org/10.1038/nnano.2017.113 ] [PMID: 28650437]
[68]
Zhu, G.; Zhang, F.; Ni, Q.; Niu, G.; Chen, X. Efficient nanovaccine delivery in cancer immunotherapy. ACS Nano, 2017, 11(3), 2387-2392.
[http://dx.doi.org/10.1021/acsnano.7b00978 ] [PMID: 28277646]
[69]
Fontana, F.; Liu, D.; Hirvonen, J.; Santos, H.A. Delivery of therapeutics with nanoparticles: what’s new in cancer immunotherapy? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1) e1421
[http://dx.doi.org/10.1002/wnan.1421 ] [PMID: 27470448]
[70]
Qian, H.; Liu, B.; Jiang, X. Application of nanomaterials in cancer immunotherapy. Materials Today Chemistry, 2018, 7, 53-64.
[http://dx.doi.org/10.1016/j.mtchem.2018.01.001]
[71]
Cho, N.H.; Cheong, T.C.; Min, J.H.; Wu, J.H.; Lee, S.J.; Kim, D.; Yang, J.S.; Kim, S.; Kim, Y.K.; Seong, S.Y. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol., 2011, 6(10), 675-682.
[http://dx.doi.org/10.1038/nnano.2011.149 ] [PMID: 21909083]
[72]
Jia, F.; Liu, X.; Li, L.; Mallapragada, S.; Narasimhan, B.; Wang, Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J. Control. Release, 2013, 172(3), 1020-1034.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.012 ] [PMID: 24140748]
[73]
Misra, R.; Acharya, S.; Sahoo, S.K. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today, 2010, 15(19-20), 842-850.
[http://dx.doi.org/10.1016/j.drudis.2010.08.006 ] [PMID: 20727417]
[74]
Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nat. Rev. Mater., 2017, 2, 17024.
[http://dx.doi.org/10.1038/natrevmats.2017.24 ] [PMID: 29075517]
[75]
Ryu, J-H.; Chacko, R.T.; Jiwpanich, S.; Bickerton, S.; Babu, R.P.; Thayumanavan, S. Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J. Am. Chem. Soc., 2010, 132(48), 17227-17235.
[http://dx.doi.org/10.1021/ja1069932 ] [PMID: 21077674]
[76]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108 ] [PMID: 27834398]
[77]
Zhang, X-Y.; Zhang, P-Y. Nanotechnology for multimodality treatment of cancer. Oncol. Lett., 2016, 12(6), 4883-4886.
[http://dx.doi.org/10.3892/ol.2016.5322 ] [PMID: 28105196]
[78]
Ju, R-J.; Cheng, L.; Qiu, X.; Liu, S.; Song, X.L.; Peng, X.M.; Wang, T.; Li, C.Q.; Li, X.T. Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J. Drug Target., 2018, 26(9), 793-805.
[http://dx.doi.org/10.1080/1061186X.2018.1428809 ] [PMID: 29334266]
[79]
Ramamoorth, M.; Narvekar, A. Non viral vectors in gene therapy- an overview. J. Clin. Diagn. Res., 2015, 9(1), GE01-GE06.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394 ] [PMID: 25738007]
[80]
Farhood, H.; Gao, X.; Son, K.; Yang, Y.Y.; Lazo, J.S.; Huang, L.; Barsoum, J.; Bottega, R.; Epand, R.M. Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann. N. Y. Acad. Sci., 1994, 716(1), 23-34.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb21701.x ] [PMID: 8024197]
[81]
Wonder, E.; Simón-Gracia, L.; Scodeller, P.; Majzoub, R.N.; Kotamraju, V.R.; Ewert, K.K.; Teesalu, T.; Safinya, C.R. Competition of charge-mediated and specific binding by peptide-tagged cationic liposome-DNA nanoparticles in vitro and in vivo. Biomaterials, 2018, 166, 52-63.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.052 ] [PMID: 29544111]
[82]
Shim, G. Application of cationic liposomes for delivery of nucleic acids. Asian Journal of Pharmaceutical Sciences, 2013, 8(2), 72-80.
[http://dx.doi.org/10.1016/j.ajps.2013.07.009]
[83]
Sato, H.; Nakhaei, E.; Kawano, T.; Murata, M.; Kishimura, A.; Mori, T.; Katayama, Y. Ligand-mediated coating of liposomes with human serum albumin. Langmuir, 2018, 34(6), 2324-2331.
[http://dx.doi.org/10.1021/acs.langmuir.7b04024 ] [PMID: 29357249]
[84]
Salkho, N.M.; Turki, R.Z.; Guessoum, O.; Martins, A.M.; Vitor, R.F.; Husseini, G.A. Liposomes as a promising ultrasound-triggered drug delivery system in cancer treatment. Curr. Mol. Med., 2017, 17(10), 668-688.
[http://dx.doi.org/10.2174/1566524018666180416100142 ] [PMID: 29663885]
[85]
Mével, M.; Kamaly, N.; Carmona, S.; Oliver, M.H.; Jorgensen, M.R.; Crowther, C.; Salazar, F.H.; Marion, P.L.; Fujino, M.; Natori, Y.; Thanou, M.; Arbuthnot, P.; Yaouanc, J.J.; Jaffrès, P.A.; Miller, A.D. DODAG; a versatile new cationic lipid that mediates efficient delivery of pDNA and siRNA. J. Control. Release, 2010, 143(2), 222-232.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.001 ] [PMID: 19969034]
[86]
Felgner, P.L.; Gadek, T.R.; Holm, M.; Roman, R.; Chan, H.W.; Wenz, M.; Northrop, J.P.; Ringold, G.M.; Danielsen, M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7413-7417.
[http://dx.doi.org/10.1073/pnas.84.21.7413 ] [PMID: 2823261]
[87]
Leventis, R.; Silvius, J.R. Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochim. Biophys. Acta, 1990, 1023(1), 124-132.
[http://dx.doi.org/10.1016/0005-2736(90)90017-I ] [PMID: 2317491]
[88]
Lin, Q.; Chen, J.; Zhang, Z.; Zheng, G. Lipid-based nanoparticles in the systemic delivery of siRNA. Nanomedicine (Lond.), 2014, 9(1), 105-120.
[http://dx.doi.org/10.2217/nnm.13.192 ] [PMID: 24354813]
[89]
Inoh, Y.; Nagai, M.; Matsushita, K.; Nakanishi, M.; Furuno, T. Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. Eur. J. Pharm. Sci., 2017, 102, 230-236.
[http://dx.doi.org/10.1016/j.ejps.2017.03.023 ] [PMID: 28323115]
[90]
Majzoub, R.N.; Chan, C.L.; Ewert, K.K.; Silva, B.F.; Liang, K.S.; Jacovetty, E.L.; Carragher, B.; Potter, C.S.; Safinya, C.R. Uptake and transfection efficiency of PEGylated cationic liposome-DNA complexes with and without RGD-tagging. Biomaterials, 2014, 35(18), 4996-5005.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.007 ] [PMID: 24661552]
[91]
Kawaura, C.; Noguchi, A.; Furuno, T.; Nakanishi, M. Atomic force microscopy for studying gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. FEBS Lett., 1998, 421(1), 69-72.
[http://dx.doi.org/10.1016/S0014-5793(97)01532-9 ] [PMID: 9462842]
[92]
Mishra, P.; Nayak, B.; Dey, R.K. PEGylation in anti-cancer therapy: an overview. Asian J. Pharm. Sci., 2016, 11(3), 337-348.
[http://dx.doi.org/10.1016/j.ajps.2015.08.011]]
[93]
Guo, F. Preparation of PEG-modified proanthocyanidin liposome and its application in cosmetics. Eur. Food Res. Technol., 2015, 240(5), 1013-1021.
[http://dx.doi.org/10.1007/s00217-014-2405-7]
[94]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007 ] [PMID: 24210498]
[95]
Vila-Caballer, M.; Codolo, G.; Munari, F.; Malfanti, A.; Fassan, M.; Rugge, M.; Balasso, A.; de Bernard, M.; Salmaso, S. A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: an application for bladder cancer treatment. J. Control. Release, 2016, 238, 31-42.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.024 ] [PMID: 27444816]
[96]
Dokka, S.; Toledo, D.; Shi, X.; Castranova, V.; Rojanasakul, Y. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes. Pharm. Res., 2000, 17(5), 521-525.
[http://dx.doi.org/10.1023/A:1007504613351 ] [PMID: 10888302]
[97]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037 ] [PMID: 23036225]
[98]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4 ] [PMID: 10840199]
[99]
Chakraborty, S.; Dhakshinamurthy, G.S.; Misra, S.K. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J. Biomed. Mater. Res. A, 2017, 105(10), 2906-2928.
[http://dx.doi.org/10.1002/jbm.a.36141 ] [PMID: 28643475]
[100]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001 ] [PMID: 23960751]
[101]
Reddy, T.L.; Garikapati, K.R.; Reddy, S.G.; Reddy, B.V.; Yadav, J.S.; Bhadra, U.; Bhadra, M.P. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nanocarrier for the synergistic treatment of melanoma. Sci. Rep., 2016, 6, 35223.
[http://dx.doi.org/10.1038/srep35223 ] [PMID: 27786239]
[102]
Bae, K.H.; Lee, J.Y.; Lee, S.H.; Park, T.G.; Nam, Y.S. Optically traceable solid lipid nanoparticles loaded with siRNA and paclitaxel for synergistic chemotherapy with in situ imaging. Adv. Healthc. Mater., 2013, 2(4), 576-584.
[http://dx.doi.org/10.1002/adhm.201200338 ] [PMID: 23184673]
[103]
Desai, P.; Thumma, N.J.; Wagh, P.R.; Zhan, S.; Ann, D.; Wang, J.; Prabhu, S. Cancer chemoprevention using nanotechnology-based approaches. Front. Pharmacol., 2020, 11, 323.
[http://dx.doi.org/10.3389/fphar.2020.00323 ] [PMID: 32317961]
[104]
Zoubari, G.; Staufenbiel, S.; Volz, P.; Alexiev, U.; Bodmeier, R. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur. J. Pharm. Biopharm., 2017, 110, 39-46.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.021 ] [PMID: 27810471]
[105]
Sutaria, D.; Grandhi, B.K.; Thakkar, A.; Wang, J.; Prabhu, S. Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int. J. Oncol., 2012, 41(6), 2260-2268.
[http://dx.doi.org/10.3892/ijo.2012.1636 ] [PMID: 23007664]
[106]
Zhang, P.; An, K.; Duan, X.; Xu, H.; Li, F.; Xu, F. Recent advances in siRNA delivery for cancer therapy using smart nanocarriers. Drug Discov. Today, 2018, 23(4), 900-911.
[http://dx.doi.org/10.1016/j.drudis.2018.01.042 ] [PMID: 29373841]
[107]
Olbrich, C.; Müller, R.H.; Tabatt, K.; Kayser, O.; Schulze, C.; Schade, R. Stable biocompatible adjuvants--a new type of adjuvant based on solid lipid nanoparticles: a study on cytotoxicity, compatibility and efficacy in chicken. Altern. Lab. Anim., 2002, 30(4), 443-458.
[http://dx.doi.org/10.1177/026119290203000407 ] [PMID: 12234249]
[108]
Wissing, S.A.; Kayser, O.; Müller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev., 2004, 56(9), 1257-1272.
[http://dx.doi.org/10.1016/j.addr.2003.12.002 ] [PMID: 15109768]
[109]
Palmerston Mendes, L.; Pan, J.; Torchilin, V.P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules, 2017, 22(9), 1401.
[http://dx.doi.org/10.3390/molecules22091401 ] [PMID: 28832535]
[110]
Kobayashi, H.; Kawamoto, S.; Sakai, Y.; Choyke, P.L.; Star, R.A.; Brechbiel, M.W.; Sato, N.; Tagaya, Y.; Morris, J.C.; Waldmann, T.A. Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J. Natl. Cancer Inst., 2004, 96(9), 703-708.
[http://dx.doi.org/10.1093/jnci/djh124 ] [PMID: 15126607]
[111]
Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3 ] [PMID: 15676297]
[112]
Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev., 2015, 115(4), 1990-2042.
[http://dx.doi.org/10.1021/cr5004198 ] [PMID: 25602130]
[113]
Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today, 2015, 20(5), 536-547.
[http://dx.doi.org/10.1016/j.drudis.2014.12.012 ] [PMID: 25555748]
[114]
Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci., 2014, 6(3), 139-150.
[http://dx.doi.org/10.4103/0975-7406.130965 ] [PMID: 25035633]
[115]
Wang, L.; Yang, L.; Pan, L.; Kadasala, N.R.; Xue, L.; Schuster, R.J.; Parker, L.L.; Wei, A.; Tao, W.A. Time-resolved proteomic visualization of dendrimer cellular entry and trafficking. J. Am. Chem. Soc., 2015, 137(40), 12772-12775.
[http://dx.doi.org/10.1021/jacs.5b07875 ] [PMID: 26425924]
[116]
Desmecht, A. Synthesis and catalytic applications of multi-walled carbon nanotube-polyamidoamine dendrimer hybrids. Chemistry, 2018, 24(49), 12992-13001.
[http://dx.doi.org/10.1002/chem.201802301 ]
[117]
Li, Y.; Wang, H.; Wang, K.; Hu, Q.; Yao, Q.; Shen, Y.; Yu, G.; Tang, G. Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small, 2017, 13(2) 1602697
[http://dx.doi.org/10.1002/smll.201602697 ] [PMID: 27762495]
[118]
Agashe, H.B.; Dutta, T.; Garg, M.; Jain, N.K. Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J. Pharm. Pharmacol., 2006, 58(11), 1491-1498.
[http://dx.doi.org/10.1211/jpp.58.11.0010 ] [PMID: 17132212]
[119]
Neerman, M.F.; Chen, H.T.; Parrish, A.R.; Simanek, E.E. Reduction of drug toxicity using dendrimers based on melamine. Mol. Pharm., 2004, 1(5), 390-393.
[http://dx.doi.org/10.1021/mp049957p ] [PMID: 16026011]
[120]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: let’s meet the challenge. Int. J. Pharm., 2010, 394(1-2), 122-142.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.027 ] [PMID: 20433913]
[121]
Almeida, M. Poloxamers, poloxamines and polymeric micelles: definition, structure and therapeutic applications in cancer. J. Polym. Res., 2017, 25(1), 31.
[http://dx.doi.org/10.1007/s10965-017-1426-x]
[122]
Nel, A.; Ruoslahti, E.; Meng, H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano, 2017, 11(10), 9567-9569.
[http://dx.doi.org/10.1021/acsnano.7b07214 ] [PMID: 29065443]
[123]
Mohan, A.; Nair, S.V.; Lakshmanan, V-K. Polymeric nanomicelles for cancer theragnostics. Int. J. Pol. Mat. Pol. Biom., 2018, 67(2), 119-130.
[http://dx.doi.org/10.1080/00914037.2017.1309540]
[124]
Torchilin, V.P.; Lukyanov, A.N.; Gao, Z.; Papahadjopoulos-Sternberg, B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6039-6044.
[http://dx.doi.org/10.1073/pnas.0931428100 ] [PMID: 12716967]
[125]
Mohanty, C.; Acharya, S.; Mohanty, A.K.; Dilnawaz, F.; Sahoo, S.K. Curcumin-encapsulated MePEG/PCL diblock copolymeric micelles: a novel controlled delivery vehicle for cancer therapy. Nanomedicine (Lond.), 2010, 5(3), 433-449.
[http://dx.doi.org/10.2217/nnm.10.9 ] [PMID: 20394536]
[126]
Shin, H-C.; Alani, A.W.; Cho, H.; Bae, Y.; Kolesar, J.M.; Kwon, G.S. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol. Pharm., 2011, 8(4), 1257-1265.
[http://dx.doi.org/10.1021/mp2000549 ] [PMID: 21630670]
[127]
Cho, H.; Lai, T.C.; Kwon, G.S. Poly(ethylene glycol)-block-poly(ε-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J. Control. Release, 2013, 166(1), 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.005 ] [PMID: 23246471]
[128]
Zhao, B.; Wang, X.Q.; Wang, X.Y.; Zhang, H.; Dai, W.B.; Wang, J.; Zhong, Z.L.; Wu, H.N.; Zhang, Q. Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure. Part. Fibre Toxicol., 2013, 10(1), 47.
[http://dx.doi.org/10.1186/1743-8977-10-47 ] [PMID: 24088372]
[129]
Saini, R.K. Responsive polymer nanoparticles for drug delivery applications In: Stimuli responsive polymeric nanocarriers for drug delivery applications. Makhlouf, A.S.H.; Abu-Thabit, N.Y., Eds; Woodhead Publishing, 2018. 1, pp. 289-230..
[130]
Prabhu, R.H.; Patravale, V.B.; Joshi, M.D. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int. J. Nanomedicine, 2015, 10, 1001-1018.
[http://dx.doi.org/10.2147/IJN.S56932 ] [PMID: 25678788]
[131]
Oh, J.K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci., 2008, 33(4), 448-477.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.01.002]
[132]
Huang, P.; Yang, C.; Liu, J.; Wang, W.; Guo, S.; Li, J.; Sun, Y.; Dong, H.; Deng, L.; Zhang, J.; Liu, J.; Dong, A. Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(25), 4021-4033.
[http://dx.doi.org/10.1039/C4TB00273C ] [PMID: 32261653]
[133]
Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev., 2016, 107, 163-175.
[http://dx.doi.org/10.1016/j.addr.2016.06.018 ] [PMID: 27426411]
[134]
Cosco, D.; Cilurzo, F.; Maiuolo, J.; Federico, C.; Di Martino, M.T.; Cristiano, M.C.; Tassone, P.; Fresta, M.; Paolino, D. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci. Rep., 2015, 5, 17579.
[http://dx.doi.org/10.1038/srep17579 ] [PMID: 26620594]
[135]
Wang, T.; Hou, J.; Su, C.; Zhao, L.; Shi, Y. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. J. Nanobiotechnology, 2017, 15(1), 7.
[http://dx.doi.org/10.1186/s12951-016-0245-2 ] [PMID: 28068992]
[136]
Yang, C.; Wu, T.; Qi, Y.; Zhang, Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics, 2018, 8(2), 464-485.
[http://dx.doi.org/10.7150/thno.22711 ] [PMID: 29290821]
[137]
Zhang, Z.; Tan, S.; Feng, S.S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials, 2012, 33(19), 4889-4906.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.046 ] [PMID: 22498300]
[138]
Shim, G.; Kim, D.; Le, Q.V.; Park, G.T.; Kwon, T.; Oh, Y.K. Nonviral delivery systems for cancer gene therapy: strategies and challenges. Curr. Gene Ther., 2018, 18(1), 3-20.
[http://dx.doi.org/10.2174/1566523218666180119121949 ] [PMID: 29357792]
[139]
Zhou, Z.; Liu, X.; Zhu, D.; Wang, Y.; Zhang, Z.; Zhou, X.; Qiu, N.; Chen, X.; Shen, Y. Nonviral cancer gene therapy: delivery cascade and vector nanoproperty integration. Adv. Drug Deliv. Rev., 2017, 115, 115-154.
[http://dx.doi.org/10.1016/j.addr.2017.07.021 ] [PMID: 28778715]
[140]
Xie, Y.; Murray-Stewart, T.; Wang, Y.; Yu, F.; Li, J.; Marton, L.J.; Casero, R.A., Jr; Oupický, D. Self-immolative nanoparticles for simultaneous delivery of microRNA and targeting of polyamine metabolism in combination cancer therapy. J. Control. Release, 2017, 246, 110-119.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.017 ] [PMID: 28017891]
[141]
Das, J.; Das, S.; Paul, A.; Samadder, A.; Bhattacharyya, S.S.; Khuda-Bukhsh, A.R. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo. Toxicol. Lett., 2014, 225(3), 454-466.
[http://dx.doi.org/10.1016/j.toxlet.2014.01.009 ] [PMID: 24440344]
[142]
Ragelle, H.; Riva, R.; Vandermeulen, G.; Naeye, B.; Pourcelle, V.; Le Duff, C.S.; D’Haese, C.; Nysten, B.; Braeckmans, K.; De Smedt, S.C.; Jérôme, C.; Préat, V. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J. Control. Release, 2014, 176, 54-63.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.026 ] [PMID: 24389132]
[143]
Li, T.S.; Yawata, T.; Honke, K. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid-poly(ethylene glycol)-chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Eur. J. Pharm. Sci., 2014, 52, 48-61.
[http://dx.doi.org/10.1016/j.ejps.2013.10.011 ] [PMID: 24178005]
[144]
Xie, Y.; Qiao, H.; Su, Z.; Chen, M.; Ping, Q.; Sun, M. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials, 2014, 35(27), 7978-7991.
[http://dx.doi.org/10.1016/j.biomaterials.2014.05.068 ] [PMID: 24939077]
[145]
Han, L.; Tang, C.; Yin, C. Oral delivery of shRNA and siRNA via multifunctional polymeric nanoparticles for synergistic cancer therapy. Biomaterials, 2014, 35(15), 4589-4600.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.027 ] [PMID: 24613049]
[146]
Sun, P.; Huang, W.; Jin, M.; Wang, Q.; Fan, B.; Kang, L.; Gao, Z. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int. J. Nanomedicine, 2016, 11, 4931-4945.
[http://dx.doi.org/10.2147/IJN.S105427 ] [PMID: 27729789]
[147]
Lee, J.Y. Prolonged gene silencing by siRNA/chitosan-g-deoxycholic acid polyplexes loaded within biodegradable polymer nanoparticles. J. Control. Release, 2012, 162(2), 407-413.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.006]]
[148]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumor depends on size. Nat. Nanotechnol., 2011, 6(12), 815-823.
[http://dx.doi.org/10.1038/nnano.2011.166 ] [PMID: 22020122]
[149]
Varela-Moreira, A. Clinical application of polymeric micelles for the treatment of cancer. Mater. Chem. Front., 2017, 1(8), 1485-1501.
[http://dx.doi.org/10.1039/C6QM00289G]
[150]
Amjad, M.W. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Prog. Polym. Sci., 2017, 64, 154-181.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.09.008]
[151]
Amreddy, N.; Babu, A.; Panneerselvam, J.; Srivastava, A.; Muralidharan, R.; Chen, A.; Zhao, Y.D.; Munshi, A.; Ramesh, R. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine (Lond.), 2018, 14(2), 373-384.
[http://dx.doi.org/10.1016/j.nano.2017.11.010 ] [PMID: 29155362]
[152]
Sharma, A.K.; Gothwal, A.; Kesharwani, P.; Alsaab, H.; Iyer, A.K.; Gupta, U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discov. Today, 2017, 22(2), 314-326.
[http://dx.doi.org/10.1016/j.drudis.2016.09.013 ] [PMID: 27671487]
[153]
Bishop, C.J.; Tzeng, S.Y.; Green, J.J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater., 2015, 11, 393-403.
[http://dx.doi.org/10.1016/j.actbio.2014.09.020 ] [PMID: 25246314]
[154]
Colombo, S.; Cun, D.; Remaut, K.; Bunker, M.; Zhang, J.; Martin-Bertelsen, B.; Yaghmur, A.; Braeckmans, K.; Nielsen, H.M.; Foged, C. Mechanistic profiling of the siRNA delivery dynamics of lipid-polymer hybrid nanoparticles. J. Control. Release, 2015, 201, 22-31.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.026 ] [PMID: 25540904]
[155]
Anselmo, A.C.; Mitragotri, S. A Review of clinical translation of inorganic nanoparticles. AAPS J., 2015, 17(5), 1041-1054.
[http://dx.doi.org/10.1208/s12248-015-9780-2 ] [PMID: 25956384]
[156]
Shabestari Khiabani, S.; Farshbaf, M.; Akbarzadeh, A.; Davaran, S. Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif. Cells Nanomed. Biotechnol., 2017, 45(1), 6-17.
[http://dx.doi.org/10.3109/21691401.2016.1167704 ] [PMID: 27050642]
[157]
Venkatesan, B.M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol., 2011, 6(10), 615-624.
[http://dx.doi.org/10.1038/nnano.2011.129 ] [PMID: 21926981]
[158]
Sha, J. Glass capillary nanopore for single molecule detection. Sci. China Technol. Sci., 2015, 58(5), 803-812.
[http://dx.doi.org/10.1007/s11431-015-5779-2]
[159]
Rao, C.N.R.; Ramakrishna Matte, H.S.; Voggu, R.; Govindaraj, A. Recent progress in the synthesis of inorganic nanoparticles. Dalton Trans., 2012, 41(17), 5089-5120.
[http://dx.doi.org/10.1039/c2dt12266a ] [PMID: 22430878]
[160]
Rengan, A.K.; Bukhari, A.B.; Pradhan, A.; Malhotra, R.; Banerjee, R.; Srivastava, R.; De, A. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett., 2015, 15(2), 842-848.
[http://dx.doi.org/10.1021/nl5045378 ] [PMID: 25554860]
[161]
Abadeer, N.S.; Murphy, C.J. Recent progress in cancer thermal therapy using gold nanoparticles. J. Phys. Chem. C, 2016, 120(9), 4691-4716.
[http://dx.doi.org/10.1021/acs.jpcc.5b11232]
[162]
Hosseini, V.; Mirrahimi, M.; Shakeri-Zadeh, A.; Koosha, F.; Ghalandari, B.; Maleki, S.; Komeili, A.; Kamrava, S.K. Multimodal cancer cell therapy using Au@Fe2O3 core-shell nanoparticles in combination with photo-thermo-radiotherapy. Photodiagn. Photodyn. Ther., 2018, 24, 129-135.
[http://dx.doi.org/10.1016/j.pdpdt.2018.08.003 ] [PMID: 30077650]
[163]
Neshastehriz, A.; Khosravi, Z.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold-coated iron oxide nanoparticles trigger apoptosis in the process of thermo-radiotherapy of U87-MG human glioma cells. Radiat. Environ. Biophys., 2018, 57(4), 405-418.
[http://dx.doi.org/10.1007/s00411-018-0754-5 ] [PMID: 30203233]
[164]
Beik, J.; Shiran, M.B.; Abed, Z.; Shiri, I.; Ghadimi-Daresajini, A.; Farkhondeh, F.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med. Phys., 2018, 45(9), 4306-4314.
[http://dx.doi.org/10.1002/mp.13100 ] [PMID: 30043986]
[165]
Beik, J.; Abed, Z.; Ghadimi-Daresajini, A.; Nourbakhsh, M.; Shakeri-Zadeh, A.; Ghasemi, M.S.; Shiran, M.B. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors. J. Therm. Biol., ; 2016.62(Pt A), 84-89..
[http://dx.doi.org/10.1016/j.jtherbio.2016.10.007] [PMID: 27839555]
[166]
Beik, J. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles. Physica E, 2016, 81, 308-314.
[http://dx.doi.org/10.1016/j.physe.2016.03.023]
[167]
Vankayala, R.; Lin, C.C.; Kalluru, P.; Chiang, C.S.; Hwang, K.C. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials, 2014, 35(21), 5527-5538.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.065 ] [PMID: 24731706]
[168]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833 ] [PMID: 22010024]
[169]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321 ] [PMID: 26313138]
[170]
Ma, N.; Wu, F.G.; Zhang, X.; Jiang, Y.W.; Jia, H.R.; Wang, H.Y.; Li, Y.H.; Liu, P.; Gu, N.; Chen, Z. Shape-dependent radiosensitization effect of gold nanostructures in cancer radiotherapy: comparison of gold nanoparticles, nanospikes, and nanorods. ACS Appl. Mater. Interfaces, 2017, 9(15), 13037-13048.
[http://dx.doi.org/10.1021/acsami.7b01112 ] [PMID: 28338323]
[171]
Dou, Y.; Guo, Y.; Li, X.; Li, X.; Wang, S.; Wang, L.; Lv, G.; Zhang, X.; Wang, H.; Gong, X.; Chang, J. Size-tuning ionization to optimize gold nanoparticles for simultaneous enhanced CT imaging and radiotherapy. ACS Nano, 2016, 10(2), 2536-2548.
[http://dx.doi.org/10.1021/acsnano.5b07473 ] [PMID: 26815933]
[172]
Zheng, Y.; Hunting, D.J.; Ayotte, P.; Sanche, L. Radiosensitization of DNA by gold nanoparticles irradiated with high-energy electrons. Radiat. Res., 2008, 169(1), 19-27.
[http://dx.doi.org/10.1667/RR1080.1 ] [PMID: 18159957]
[173]
Brun, E.; Sanche, L.; Sicard-Roselli, C. Parameters governing gold nanoparticle X-ray radiosensitization of DNA in solution. Colloids Surf. B Biointerfaces, 2009, 72(1), 128-134.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.025 ] [PMID: 19414242]
[174]
Huo, S.; Jin, S.; Ma, X.; Xue, X.; Yang, K.; Kumar, A.; Wang, P.C.; Zhang, J.; Hu, Z.; Liang, X.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano, 2014, 8(6), 5852-5862.
[http://dx.doi.org/10.1021/nn5008572 ] [PMID: 24824865]
[175]
Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B, 2005, 109(29), 13857-13870.
[http://dx.doi.org/10.1021/jp0516846 ] [PMID: 16852739]
[176]
Hu, M.; Chen, J.; Li, Z.Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev., 2006, 35(11), 1084-1094.
[http://dx.doi.org/10.1039/b517615h ] [PMID: 17057837]
[177]
Biju, V.; Itoh, T.; Anas, A.; Sujith, A.; Ishikawa, M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal. Bioanal. Chem., 2008, 391(7), 2469-2495.
[http://dx.doi.org/10.1007/s00216-008-2185-7 ] [PMID: 18548237]
[178]
Wang, C.; Hu, Y.; Lieber, C.M.; Sun, S. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc., 2008, 130(28), 8902-8903.
[http://dx.doi.org/10.1021/ja803408f ] [PMID: 18540579]
[179]
Chen, J.; Saeki, F.; Wiley, B.J.; Cang, H.; Cobb, M.J.; Li, Z.Y.; Au, L.; Zhang, H.; Kimmey, M.B.; Li, X.; Xia, Y. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett., 2005, 5(3), 473-477.
[http://dx.doi.org/10.1021/nl047950t ] [PMID: 15755097]
[180]
Kong, L.; Wu, Y.; Alves, C.S.; Shi, X. Efficient delivery of therapeutic siRNA into glioblastoma cells using multifunctional dendrimer-entrapped gold nanoparticles. Nanomedicine (Lond.), 2016, 11(23), 3103-3115.
[http://dx.doi.org/10.2217/nnm-2016-0240 ] [PMID: 27809656]
[181]
Kong, L.; Alves, C.S.; Hou, W.; Qiu, J.; Möhwald, H.; Tomás, H.; Shi, X. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells. ACS Appl. Mater. Interfaces, 2015, 7(8), 4833-4843.
[http://dx.doi.org/10.1021/am508760w ] [PMID: 25658033]
[182]
Sun, N.F.; Liu, Z.A.; Huang, W.B.; Tian, A.L.; Hu, S.Y. The research of nanoparticles as gene vector for tumor gene therapy. Crit. Rev. Oncol. Hematol., 2014, 89(3), 352-357.
[http://dx.doi.org/10.1016/j.critrevonc.2013.10.006 ] [PMID: 24210877]
[183]
Ding, Y.; Jiang, Z.; Saha, K.; Kim, C.S.; Kim, S.T.; Landis, R.F.; Rotello, V.M. Gold nanoparticles for nucleic acid delivery. Mol. Ther., 2014, 22(6), 1075-1083.
[http://dx.doi.org/10.1038/mt.2014.30 ] [PMID: 24599278]
[184]
Alkilany, A.M.; Boulos, S.P.; Lohse, S.E.; Thompson, L.B.; Murphy, C.J. Homing peptide-conjugated gold nanorods: the effect of amino acid sequence display on nanorod uptake and cellular proliferation. Bioconjug. Chem., 2014, 25(6), 1162-1171.
[http://dx.doi.org/10.1021/bc500174b ] [PMID: 24892190]
[185]
Ghosh, R.; Singh, L.C.; Shohet, J.M.; Gunaratne, P.H. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials, 2013, 34(3), 807-816.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.023 ] [PMID: 23111335]
[186]
Bonoiu, A.C.; Mahajan, S.D.; Ding, H.; Roy, I.; Yong, K.T.; Kumar, R.; Hu, R.; Bergey, E.J.; Schwartz, S.A.; Prasad, P.N. Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5546-5550.
[http://dx.doi.org/10.1073/pnas.0901715106 ] [PMID: 19307583]
[187]
Li, Y.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine (Lond.), 2010, 5(8), 1161-1171.
[http://dx.doi.org/10.2217/nnm.10.85 ] [PMID: 21039194]
[188]
Perlman, O.; Weitz, I.S.; Azhari, H. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys. Med. Biol., 2015, 60(15), 5767-5783.
[http://dx.doi.org/10.1088/0031-9155/60/15/5767 ] [PMID: 26159685]
[189]
Hessel, C.M.; Pattani, V.P.; Rasch, M.; Panthani, M.G.; Koo, B.; Tunnell, J.W.; Korgel, B.A. Copper selenide nanocrystals for photothermal therapy. Nano Lett., 2011, 11(6), 2560-2566.
[http://dx.doi.org/10.1021/nl201400z ] [PMID: 21553924]
[190]
Li, W.; Zamani, R.; Rivera Gil, P.; Pelaz, B.; Ibáñez, M.; Cadavid, D.; Shavel, A.; Alvarez-Puebla, R.A.; Parak, W.J.; Arbiol, J.; Cabot, A. CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc., 2013, 135(19), 7098-7101.
[http://dx.doi.org/10.1021/ja401428e ] [PMID: 23647089]
[191]
Sanghamitra, N.J.; Phatak, P.; Das, S.; Samuelson, A.G.; Somasundaram, K. Mechanism of cytotoxicity of copper(I) complexes of 1,2-bis(diphenylphosphino)ethane. J. Med. Chem., 2005, 48(4), 977-985.
[http://dx.doi.org/10.1021/jm049430g ] [PMID: 15715467]
[192]
Teyssot, M-L.; Jarrousse, A.S.; Chevry, A.; De Haze, A.; Beaudoin, C.; Manin, M.; Nolan, S.P.; Díez-González, S.; Morel, L.; Gautier, A. Toxicity of copper(I)-NHC complexes against human tumor cells: induction of cell cycle arrest, apoptosis, and DNA cleavage. Chemistry, 2009, 15(2), 314-318.
[http://dx.doi.org/10.1002/chem.200801992 ] [PMID: 19025730]
[193]
Santiesteban, D.Y.; Dumani, D.S.; Profili, D.; Emelianov, S.Y. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents. Nano Lett., 2017, 17(10), 5984-5989.
[http://dx.doi.org/10.1021/acs.nanolett.7b02105 ] [PMID: 28926263]
[194]
Yi, X. Biomimetic copper sulfide for chemo-radiotherapy: enhanced uptake and reduced efflux of nanoparticles for tumor cells under ionizing radiation. Adv. Funct. Mater., 2018, 28(9) 1705161
[http://dx.doi.org/10.1002/adfm.201705161]
[195]
Guo, L.; Yan, D.D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano, 2014, 8(6), 5670-5681.
[http://dx.doi.org/10.1021/nn5002112 ] [PMID: 24801008]
[196]
Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022 ] [PMID: 26271592]
[197]
Li, S.; Zou, Q.; Li, Y.; Yuan, C.; Xing, R.; Yan, X. Smart peptide-based supramolecular photodynamic metallo-nanodrugs designed by multicomponent coordination self-assembly. J. Am. Chem. Soc., 2018, 140(34), 10794-10802.
[http://dx.doi.org/10.1021/jacs.8b04912 ] [PMID: 30102029]
[198]
Scherer, F.; Anton, M.; Schillinger, U.; Henke, J.; Bergemann, C.; Krüger, A.; Gänsbacher, B.; Plank, C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther., 2002, 9(2), 102-109.
[http://dx.doi.org/10.1038/sj.gt.3301624 ] [PMID: 11857068]
[199]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330 ] [PMID: 26348965]
[200]
Huth, S.; Lausier, J.; Gersting, S.W.; Rudolph, C.; Plank, C.; Welsch, U.; Rosenecker, J. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med., 2004, 6(8), 923-936.
[http://dx.doi.org/10.1002/jgm.577 ] [PMID: 15293351]
[201]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Poly(ethylenimine) and its role in gene delivery. J. Control. Release, 1999, 60(2-3), 149-160.
[http://dx.doi.org/10.1016/S0168-3659(99)00090-5 ] [PMID: 10425321]
[202]
Chertok, B.; David, A.E.; Yang, V.C. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 2010, 31(24), 6317-6324.
[http://dx.doi.org/10.1016/j.biomaterials.2010.04.043 ] [PMID: 20494439]
[203]
He, Y.; Cheng, G.; Xie, L.; Nie, Y.; He, B.; Gu, Z. Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials, 2013, 34(4), 1235-1245.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.049 ] [PMID: 23127334]
[204]
Wang, C-F.; Mäkilä, E.M.; Kaasalainen, M.H.; Hagström, M.V.; Salonen, J.J.; Hirvonen, J.T.; Santos, H.A. Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. Acta Biomater., 2015, 16, 206-214.
[http://dx.doi.org/10.1016/j.actbio.2015.01.021 ] [PMID: 25637067]
[205]
Vivancos, J.; Deshmukh, R.; Grégoire, C.; Rémus-Borel, W.; Belzile, F.; Bélanger, R.R. Identification and characterization of silicon efflux transporters in horsetail (Equisetum arvense). J. Plant Physiol., 2016, 200, 82-89.
[http://dx.doi.org/10.1016/j.jplph.2016.06.011 ] [PMID: 27344403]
[206]
Song, S.; Faleo, G.; Yeung, R.; Kant, R.; Posselt, A.M.; Desai, T.A.; Tang, Q.; Roy, S. Silicon nanopore membrane (SNM) for islet encapsulation and immunoisolation under convective transport. Sci. Rep., 2016, 6, 23679.
[http://dx.doi.org/10.1038/srep23679 ] [PMID: 27009429]
[207]
Lee, E. Janus films with stretchable and waterproof proper-ties for wound care and drug delivery applications. RSC Advances, 2016, 6(83), 79900-79909.
[http://dx.doi.org/10.1039/C6RA16232K]
[208]
Wang, Z.; Chang, Z.; Lu, M.; Shao, D.; Yue, J.; Yang, D.; Zheng, X.; Li, M.; He, K.; Zhang, M.; Chen, L.; Dong, W.F. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018, 154, 147-157.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.047 ] [PMID: 29128843]
[209]
Ojea-Jiménez, I.; Urbán, P.; Barahona, F.; Pedroni, M.; Capomaccio, R.; Ceccone, G.; Kinsner-Ovaskainen, A.; Rossi, F.; Gilliland, D. Highly flexible platform for tuning surface properties of silica nanoparticles and monitoring their biological interaction. ACS Appl. Mater. Interfaces, 2016, 8(7), 4838-4850.
[http://dx.doi.org/10.1021/acsami.5b11216 ] [PMID: 26779668]
[210]
C., A review on porous silicon based electrochemical biosensors: beyond surface area enhancement factor. Sens. Actuators B Chem., 2015, 210, 310-323.
[http://dx.doi.org/10.1016/j.snb.2014.12.089]
[211]
Markides, H.; Rotherham, M.; Haj, A.J.E. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater., 2012, 2012, 13-13.
[http://dx.doi.org/10.1155/2012/614094]
[212]
Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol., 2011, 43(3), 246-253.
[http://dx.doi.org/10.4103/0253-7613.81505 ] [PMID: 21713085]
[213]
McDonald, R.J.; McDonald, J.S.; Kallmes, D.F.; Jentoft, M.E.; Murray, D.L.; Thielen, K.R.; Williamson, E.E.; Eckel, L.J. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology, 2015, 275(3), 772-782.
[http://dx.doi.org/10.1148/radiol.15150025 ] [PMID: 25742194]
[214]
Du, F.; Zhang, L.; Zhang, L.; Zhang, M.; Gong, A.; Tan, Y.; Miao, J.; Gong, Y.; Sun, M.; Ju, H.; Wu, C.; Zou, S. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials, 2017, 121, 109-120.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.008 ] [PMID: 28086179]
[215]
Xu, W.; Chang, Y.; Lee, G.H. Biomedical applications of lanthanide oxide nanoparticles. J. Biomater. Tissue Eng., 2017, 7(9), 757-769.
[http://dx.doi.org/10.1166/jbt.2017.1635]
[216]
Le Duc, G.; Miladi, I.; Alric, C.; Mowat, P.; Bräuer-Krisch, E.; Bouchet, A.; Khalil, E.; Billotey, C.; Janier, M.; Lux, F.; Epicier, T.; Perriat, P.; Roux, S.; Tillement, O. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano, 2011, 5(12), 9566-9574.
[http://dx.doi.org/10.1021/nn202797h ] [PMID: 22040385]
[217]
Schmid, G.; Kreyling, W.G.; Simon, U. Toxic effects and biodistribution of ultrasmall gold nanoparticles. Arch. Toxicol., 2017, 91(9), 3011-3037.
[http://dx.doi.org/10.1007/s00204-017-2016-8 ] [PMID: 28702691]
[218]
Lazarescu, G.R.; Battista, J.J. Analysis of the radiobiology of ytterbium-169 and iodine-125 permanent brachytherapy implants. Phys. Med. Biol., 1997, 42(9), 1727-1736.
[http://dx.doi.org/10.1088/0031-9155/42/9/005 ] [PMID: 9308079]
[219]
Khoo, A.M.; Cho, S.H.; Reynoso, F.J.; Aliru, M.; Aziz, K.; Bodd, M.; Yang, X.; Ahmed, M.F.; Yasar, S.; Manohar, N.; Cho, J.; Tailor, R.; Thames, H.D.; Krishnan, S. Radiosensitization of prostate cancers in vitro and in vivo to erbium-filtered orthovoltage x-rays using actively targeted gold nanoparticles. Sci. Rep., 2017, 7(1), 18044.
[http://dx.doi.org/10.1038/s41598-017-18304-y ] [PMID: 29273727]
[220]
Kwatra, D.; Venugopal, A.; Anant, S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res., 2013, 2(4), 330-342.
[221]
Wang, S.; Li, X.; Chen, Y.; Cai, X.; Yao, H.; Gao, W.; Zheng, Y.; An, X.; Shi, J.; Chen, H. A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy. Adv. Mater., 2015, 27(17), 2775-2782.
[http://dx.doi.org/10.1002/adma.201500870 ] [PMID: 25821185]
[222]
Yao, M.H.; Ma, M.; Chen, Y.; Jia, X.Q.; Xu, G.; Xu, H.X.; Chen, H.R.; Wu, R. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy. Biomaterials, 2014, 35(28), 8197-8205.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.010 ] [PMID: 24973300]
[223]
Ma, M.; Huang, Y.; Chen, H.; Jia, X.; Wang, S.; Wang, Z.; Shi, J. Bi2S3-embedded mesoporous silica nanoparticles for efficient drug delivery and interstitial radiotherapy sensitization. Biomaterials, 2015, 37, 447-455.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.001 ] [PMID: 25453972]
[224]
Brown, R. High-Z nanostructured ceramics in radiotherapy: first evidence of Ta2O5-induced dose enhancement on radioresistant cancer cells in an MV photon field. Particle & Particle Systems Characterization, 2014, 31(4), 500-505.
[http://dx.doi.org/10.1002/ppsc.201300276]
[225]
Chen, Y.; Song, G.; Dong, Z.; Yi, X.; Chao, Y.; Liang, C.; Yang, K.; Cheng, L.; Liu, Z. Drug-loaded mesoporous tantalum oxide nanoparticles for enhanced synergetic chemoradiotherapy with reduced systemic toxicity. Small, 2017, 13(8) 1602869
[http://dx.doi.org/10.1002/smll.201602869 ] [PMID: 27957802]
[226]
Xu, J.; Shi, H.; Ruth, M.; Yu, H.; Lazar, L.; Zou, B.; Yang, C.; Wu, A.; Zhao, J. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One, 2013, 8(8) e70618
[http://dx.doi.org/10.1371/journal.pone.0070618 ] [PMID: 23950972]
[227]
Zhao, M-X.; Zhu, B-J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett., 2016, 11(1), 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9 ] [PMID: 27090658]
[228]
Drbohlavova, J.; Adam, V.; Kizek, R.; Hubalek, J. Quantum dots - characterization, preparation and usage in biological systems. Int. J. Mol. Sci., 2009, 10(2), 656-673.
[http://dx.doi.org/10.3390/ijms10020656 ] [PMID: 19333427]
[229]
Zhou, J.; Yang, Y.; Zhang, C.Y. Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev., 2015, 115(21), 11669-11717.
[http://dx.doi.org/10.1021/acs.chemrev.5b00049 ] [PMID: 26446443]
[230]
Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 2015, 11(14), 1620-1636.
[http://dx.doi.org/10.1002/smll.201402648 ] [PMID: 25521301]
[231]
Li, C.; Zhang, Y.; Wang, M.; Zhang, Y.; Chen, G.; Li, L.; Wu, D.; Wang, Q. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials, 2014, 35(1), 393-400.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.010 ] [PMID: 24135267]
[232]
Sabharwal, N.; Holland, E.C.; Vazquez, M. Live cell labeling of glial progenitor cells using targeted quantum dots. Ann. Biomed. Eng., 2009, 37(10), 1967-1973.
[http://dx.doi.org/10.1007/s10439-009-9703-4 ] [PMID: 19415494]
[233]
Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.060 ] [PMID: 28057464]
[234]
Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4(1), 11-18.
[http://dx.doi.org/10.1021/nl0347334 ] [PMID: 28890669]
[235]
Hoshino, A. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett., 2004, 4(11), 2163-2169.
[http://dx.doi.org/10.1021/nl048715d]
[236]
Singh, R.; Torti, S.V. Carbon nanotubes in hyperthermia therapy. Adv. Drug Deliv. Rev., 2013, 65(15), 2045-2060.
[http://dx.doi.org/10.1016/j.addr.2013.08.001 ] [PMID: 23933617]
[237]
Robinson, J.T.; Welsher, K.; Tabakman, S.M.; Sherlock, S.P.; Wang, H.; Luong, R.; Dai, H. High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res., 2010, 3(11), 779-793.
[http://dx.doi.org/10.1007/s12274-010-0045-1 ] [PMID: 21804931]
[238]
Gong, H.; Peng, R.; Liu, Z. Carbon nanotubes for biomedical imaging: the recent advances. Adv. Drug Deliv. Rev., 2013, 65(15), 1951-1963.
[http://dx.doi.org/10.1016/j.addr.2013.10.002 ] [PMID: 24184130]
[239]
Dong, X.; Sun, Z.; Wang, X.; Leng, X. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Nanomedicine (Lond.), 2017, 13(7), 2271-2280.
[http://dx.doi.org/10.1016/j.nano.2017.07.002 ] [PMID: 28712919]
[240]
Zhang, M. Magnetic and fluorescent carbon nanotubes for dual modal imaging and photothermal and chemo-therapy of cancer cells in living mice. Carbon, 2017, 123, 70-83.
[http://dx.doi.org/10.1016/j.carbon.2017.07.032]
[241]
Ménard-Moyon, C. Applications of carbon nanotubes in the biomedical field.In Smart Nanoparticles for Biomedicine; Ciofani, G., Ed.; Elsevier, 2018, pp. 83-101.
[http://dx.doi.org/10.1016/B978-0-12-814156-4.00006-9]
[242]
Misra, S.K.; Srivastava, I.; Tripathi, I.; Daza, E.; Ostadhossein, F.; Pan, D. Macromolecularly “caged” carbon nanoparticles for intracellular trafficking via switchable photoluminescence. J. Am. Chem. Soc., 2017, 139(5), 1746-1749.
[http://dx.doi.org/10.1021/jacs.6b11595 ] [PMID: 28106386]
[243]
Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomedicine, 2016, 11, 5163-5185.
[http://dx.doi.org/10.2147/IJN.S112660 ] [PMID: 27785021]
[244]
Mo, Y.; Wang, H.; Liu, J.; Lan, Y.; Guo, R.; Zhang, Y.; Xue, W.; Zhang, Y. Controlled release and targeted delivery to cancer cells of doxorubicin from polysaccharide-functionalised single-walled carbon nanotubes. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1846-1855.
[http://dx.doi.org/10.1039/C4TB02123A ] [PMID: 32262257]
[245]
Crosera, M.; Bovenzi, M.; Maina, G.; Adami, G.; Zanette, C.; Florio, C.; Filon Larese, F. Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Health, 2009, 82(9), 1043-1055.
[http://dx.doi.org/10.1007/s00420-009-0458-x ] [PMID: 19705142]
[246]
Sargent, L.M.; Shvedova, A.A.; Hubbs, A.F.; Salisbury, J.L.; Benkovic, S.A.; Kashon, M.L.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Friend, S.; McKinstry, K.T.; Battelli, L.; Reynolds, S.H. Induction of aneuploidy by single-walled carbon nanotubes. Environ. Mol. Mutagen., 2009, 50(8), 708-717.
[http://dx.doi.org/10.1002/em.20529 ] [PMID: 19774611]
[247]
Sayes, C.M.; Liang, F.; Hudson, J.L.; Mendez, J.; Guo, W.; Beach, J.M.; Moore, V.C.; Doyle, C.D.; West, J.L.; Billups, W.E.; Ausman, K.D.; Colvin, V.L. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol. Lett., 2006, 161(2), 135-142.
[http://dx.doi.org/10.1016/j.toxlet.2005.08.011 ] [PMID: 16229976]
[248]
Morton, S.W.; Lee, M.J.; Deng, Z.J.; Dreaden, E.C.; Siouve, E.; Shopsowitz, K.E.; Shah, N.J.; Yaffe, M.B.; Hammond, P.T. A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci. Signal., 2014, 7(325), ra44.
[http://dx.doi.org/10.1126/scisignal.2005261 ] [PMID: 24825919]
[249]
Chan, H.; Král, P. Nanoparticles self-assembly within lipid bilayers. ACS Omega, 2018, 3(9), 10631-10637.
[http://dx.doi.org/10.1021/acsomega.8b01445 ] [PMID: 30320248]
[250]
Lei, M.; Ma, M.; Pang, X.; Tan, F.; Li, N. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods. Nanoscale, 2015, 7(38), 15999-16011.
[http://dx.doi.org/10.1039/C5NR04353K ] [PMID: 26370706]
[251]
Chauhan, D.S.; Prasad, R.; Devrukhkar, J.; Selvaraj, K.; Srivastava, R. Disintegrable NIR light triggered gold nanorods supported liposomal nanohybrids for cancer theranostics. Bioconjug. Chem., 2018, 29(5), 1510-1518.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00801 ] [PMID: 29281790]
[252]
Kavosi, B.; Salimi, A.; Hallaj, R.; Moradi, F. Ultrasensitive electrochemical immunosensor for PSA biomarker detection in prostate cancer cells using gold nanoparticles/PAMAM dendrimer loaded with enzyme linked aptamer as integrated triple signal amplification strategy. Biosens. Bioelectron., 2015, 74, 915-923.
[http://dx.doi.org/10.1016/j.bios.2015.07.064 ] [PMID: 26257183]
[253]
Wang, X.; Wang, H.; Wang, Y.; Yu, X.; Zhang, S.; Zhang, Q.; Cheng, Y. A facile strategy to prepare dendrimer-stabilized gold nanorods with sub-10-nm size for efficient photothermal cancer therapy. Sci. Rep., 2016, 6, 22764.
[http://dx.doi.org/10.1038/srep22764 ] [PMID: 26956895]
[254]
Mohammadi, S.; Salimi, A.; Hamd-Ghadareh, S.; Fathi, F.; Soleimani, F. A FRET immunosensor for sensitive detection of CA 15-3 tumor marker in human serum sample and breast cancer cells using antibody functionalized luminescent carbon-dots and AuNPs-dendrimer aptamer as donor-acceptor pair. Anal. Biochem., 2018, 557, 18-26.
[http://dx.doi.org/10.1016/j.ab.2018.06.008 ] [PMID: 29908158]
[255]
Kim, S.T.; Chompoosor, A.; Yeh, Y.C.; Agasti, S.S.; Solfiell, D.J.; Rotello, V.M. Dendronized gold nanoparticles for siRNA delivery. Small, 2012, 8(21), 3253-3256.
[http://dx.doi.org/10.1002/smll.201201141 ] [PMID: 22887809]
[256]
Figueroa, E.R.; Lin, A.Y.; Yan, J.; Luo, L.; Foster, A.E.; Drezek, R.A. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. Biomaterials, 2014, 35(5), 1725-1734.
[http://dx.doi.org/10.1016/j.biomaterials.2013.11.026 ] [PMID: 24286816]
[257]
Daza, E.A. Facile Chemical strategy to hydrophobically modify solid nanoparticles using inverted micelle-based multicapsule for efficient intracellular delivery. ACS Biomater. Sci. Eng., 2018, 4(4), 1357-1367.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00061]
[258]
Duan, S.; Yang, Y.; Zhang, C.; Zhao, N.; Xu, F.J. NIR-responsive polycationic gatekeeper-cloaked hetero-nano-particles for multimodal imaging-guided triple-combination therapy of cancer. Small, 2017, 13(9) 1603133
[http://dx.doi.org/10.1002/smll.201603133 ] [PMID: 27996205]
[259]
Li, Y. Coordination-responsive drug release inside gold na-norod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy. Nano Res., 2018, 11(6), 3294-3305.
[http://dx.doi.org/10.1007/s12274-017-1874-y]
[260]
Neshastehriz, A.; Khateri, M.; Ghaznavi, H.; Shakeri-Zadeh, A. Investigating the therapeutic effects of alginate nanogel co-loaded with gold nanoparticles and cisplatin on U87-MG human glioblastoma cells. Anticancer. Agents Med. Chem., 2018, 18(6), 882-890.
[http://dx.doi.org/10.2174/1871520618666180131112914 ] [PMID: 29384064]
[261]
Sanpui, P.; Chattopadhyay, A.; Ghosh, S.S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl. Mater. Interfaces, 2011, 3(2), 218-228.
[http://dx.doi.org/10.1021/am100840c ] [PMID: 21280584]
[262]
Su, F. Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microp. Mesop. Mater., 2019, 275, 152-162.
[http://dx.doi.org/10.1016/j.micromeso.2018.08.026]
[263]
Behnam, M.A.; Emami, F.; Sobhani, Z.; Koohi-Hosseinabadi, O.; Dehghanian, A.R.; Zebarjad, S.M.; Moghim, M.H.; Oryan, A. Novel combination of silver nanoparticles and carbon nanotubes for plasmonic photo thermal therapy in melanoma cancer model. Adv. Pharm. Bull., 2018, 8(1), 49-55.
[http://dx.doi.org/10.15171/apb.2018.006 ] [PMID: 29670838]
[264]
Tang, Z.; Zhang, L.; Wang, Y.; Li, D.; Zhong, Z.; Zhou, S. Redox-responsive star-shaped magnetic micelles with active-targeted and magnetic-guided functions for cancer therapy. Acta Biomater., 2016, 42, 232-246.
[http://dx.doi.org/10.1016/j.actbio.2016.06.038 ] [PMID: 27373437]
[265]
Li, W-S.; Wang, X.J.; Zhang, S.; Hu, J.B.; Du, Y.L.; Kang, X.Q.; Xu, X.L.; Ying, X.Y.; You, J.; Du, Y.Z. Mild microwave activated, chemo-thermal combinational tumor therapy based on a targeted, thermal-sensitive and magnetic micelle. Biomaterials, 2017, 131, 36-46.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.048 ] [PMID: 28376364]
[266]
Liu, T-Y.; Huang, T.C. A novel drug vehicle capable of ultrasound-triggered release with MRI functions. Acta Biomater., 2011, 7(11), 3927-3934.
[http://dx.doi.org/10.1016/j.actbio.2011.06.038 ] [PMID: 21745611]
[267]
Nguyen, V.D.; Zheng, S.; Han, J.; Le, V.H.; Park, J.O.; Park, S. Nanohybrid magnetic liposome functionalized with hyaluronic acid for enhanced cellular uptake and near-infrared-triggered drug release. Colloids Surf. B Biointerfaces, 2017, 154, 104-114.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.008 ] [PMID: 28329728]
[268]
Salvatore, A.; Montis, C.; Berti, D.; Baglioni, P. Multifunctional magnetoliposomes for sequential controlled release. ACS Nano, 2016, 10(8), 7749-7760.
[http://dx.doi.org/10.1021/acsnano.6b03194 ] [PMID: 27504891]
[269]
Shanavas, A.; Sasidharan, S.; Bahadur, D.; Srivastava, R. Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging. J. Colloid Interface Sci., 2017, 486, 112-120.
[http://dx.doi.org/10.1016/j.jcis.2016.09.060 ] [PMID: 27697648]
[270]
Zhong, S.; Zhang, H.; Liu, Y.; Wang, G.; Shi, C.; Li, Z.; Feng, Y.; Cui, X. Folic acid functionalized reduction-responsive magnetic chitosan nanocapsules for targeted delivery and triggered release of drugs. Carbohydr. Polym., 2017, 168, 282-289.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.083 ] [PMID: 28457451]
[271]
Arami, S.; Rashidi, M.R.; Mahdavi, M.; Fathi, M.; Entezami, A.A. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum. Exp. Toxicol., 2017, 36(3), 227-237.
[http://dx.doi.org/10.1177/0960327116646618 ] [PMID: 27162247]
[272]
Landarani-Isfahani, A.; Moghadam, M.; Mohammadi, S.; Royvaran, M.; Moshtael-Arani, N.; Rezaei, S.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I. Elegant pH-Responsive nanovehicle for drug delivery based on triazine dendrimer modified magnetic nanoparticles. Langmuir, 2017, 33(34), 8503-8515.
[http://dx.doi.org/10.1021/acs.langmuir.7b00742 ] [PMID: 28732161]
[273]
Taghavi Pourianazar, N.; Gunduz, U. CpG oligodeoxynucleotide-loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells. Biomed. Pharmacother., 2016, 78, 81-91.
[http://dx.doi.org/10.1016/j.biopha.2016.01.002 ] [PMID: 26898428]
[274]
Kong, F. Inhibition of multidrug resistance of cancer cells by co-delivery of DNA nanostructures and drugs using porous silicon nanoparticles@giant liposomes. Adv. Funct. Mater., 2015, 25(22), 3330-3340.
[http://dx.doi.org/10.1002/adfm.201500594]
[275]
Yang, H.; Chen, Y.; Chen, Z.; Geng, Y.; Xie, X.; Shen, X.; Li, T.; Li, S.; Wu, C.; Liu, Y. Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites. Biomater. Sci., 2017, 5(5), 1001-1013.
[http://dx.doi.org/10.1039/C7BM00043J ] [PMID: 28327716]
[276]
Zhao, D.; Chen, Q.; Song, H.; Luo, S.; Ge, P.; Wang, Y.; Ma, J.; Li, Z.; Gao, X.; Zhao, X.; Subinuer, X.; Yang, H.; Jiang, X.; Chen, Y.; Zhu, X. Theranostic micelles combined with multiple strategies to effectively overcome multidrug resistance. Nanomedicine (Lond.), 2018, 13(13), 1517-1533.
[http://dx.doi.org/10.2217/nnm-2017-0393 ] [PMID: 30028224]
[277]
Shirvalilou, S.; Khoei, S.; Khoee, S.; Raoufi, N.J.; Karimi, M.R.; Shakeri-Zadeh, A. Development of a magnetic nano-graphene oxide carrier for improved glioma-targeted drug delivery and imaging: in vitro and in vivo evaluations. Chem. Biol. Interact., 2018, 295, 97-108.
[http://dx.doi.org/10.1016/j.cbi.2018.08.027 ] [PMID: 30170108]
[278]
Shakeri-Zadeh, A.; Khoee, S.; Shiran, M.B.; Sharifi, A.M.; Khoei, S. Synergistic effects of magnetic drug targeting using a newly developed nanocapsule and tumor irradiation by ultrasound on CT26 tumors in BALB/c mice. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(9), 1879-1887.
[http://dx.doi.org/10.1039/C4TB01708K ] [PMID: 32262260]
[279]
Shakeri-Zadeh, A.; Shiran, M.B.; Khoee, S.; Sharifi, A.M.; Ghaznavi, H.; Khoei, S. A new magnetic nanocapsule containing 5-fluorouracil: in vivo drug release, anti-tumor, and pro-apoptotic effects on CT26 cells allograft model. J. Biomater. Appl., 2014, 29(4), 548-556.
[http://dx.doi.org/10.1177/0885328214536940 ] [PMID: 24913615]
[280]
Shakeri-Zadeh, A.; Khoei, S.; Khoee, S.; Sharifi, A.M.; Shi-ran, M.B. Combination of ultrasound and newly synthesized magnetic nanocapsules affects the temperature profile of CT26 tumors in BALB/c mice. J. Med. Ultrason., 2015, 42(1), 9-16.
[http://dx.doi.org/10.1007/s10396-014-0558-4 ] [PMID: 26578485]
[281]
Khoei, S.; Mahdavi, S.R.; Fakhimikabir, H.; Shakeri-Zadeh, A.; Hashemian, A. The role of iron oxide nanoparticles in the radiosensitization of human prostate carcinoma cell line DU145 at megavoltage radiation energies. Int. J. Radiat. Biol., 2014, 90(5), 351-356.
[http://dx.doi.org/10.3109/09553002.2014.888104 ] [PMID: 24475739]
[282]
Abed, Z. The measurement and mathematical analysis of 5-Fu release from magnetic polymeric nanocapsules, following the application of ultrasound. Anti-Cancer Agent. Med. Chem., 2018, 18(3), 438-449.
[http://dx.doi.org/10.2174/1871520617666170921124951 ] [PMID: 28933262]
[283]
Alibolandi, M.; Abnous, K.; Sadeghi, F.; Hosseinkhani, H.; Ramezani, M.; Hadizadeh, F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: in vitro and in vivo evaluation. Int. J. Pharm., 2016, 500(1-2), 162-178.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.040 ] [PMID: 26802496]
[284]
Wang, J.; Tan, X.; Pang, X.; Liu, L.; Tan, F.; Li, N. MoS2 quantum dot@polyaniline inorganic-organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl. Mater. Interfaces, 2016, 8(37), 24331-24338.
[http://dx.doi.org/10.1021/acsami.6b08391 ] [PMID: 27595856]
[285]
Akin, M. PAMAM-functionalized water soluble quantum dots for cancer cell targeting. J. Mater. Chem., 2012, 22(23), 11529-11536.
[http://dx.doi.org/10.1039/c2jm31030a]
[286]
Wang, S. Biocompatible polydopamine-encapsulated gado-linium-loaded carbon nanotubes for MRI and color mapping guided photothermal dissection of tumor metastasis. Carbon, 2017, 112, 53-62.
[http://dx.doi.org/10.1016/j.carbon.2016.10.096]
[287]
Han, Y.; An, Y.; Jia, G.; Wang, X.; He, C.; Ding, Y.; Tang, Q. Facile assembly of upconversion nanoparticle-based micelles for active targeted dual-mode imaging in pancreatic cancer. J. Nanobiotechnology, 2018, 16(1), 7.
[http://dx.doi.org/10.1186/s12951-018-0335-4 ] [PMID: 29378593]
[288]
Guo, C.; Sun, L.; Cai, H.; Duan, Z.; Zhang, S.; Gong, Q.; Luo, K.; Gu, Z. Gadolinium-labeled biodegradable dendron-hyaluronic acid hybrid and its subsequent application as a safe and efficient magnetic resonance imaging contrast agent. ACS Appl. Mater. Interfaces, 2017, 9(28), 23508-23519.
[http://dx.doi.org/10.1021/acsami.7b06496 ] [PMID: 28656751]
[289]
Kong, L.; Xing, L.; Zhou, B.; Du, L.; Shi, X. Dendrimer-modified MoS2 nanoflakes as a platform for combinational gene silencing and photothermal therapy of tumors. ACS Appl. Mater. Interfaces, 2017, 9(19), 15995-16005.
[http://dx.doi.org/10.1021/acsami.7b03371 ] [PMID: 28441474]
[290]
Shan, Y.; Luo, T.; Peng, C.; Sheng, R.; Cao, A.; Cao, X.; Shen, M.; Guo, R.; Tomás, H.; Shi, X. Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors. Biomaterials, 2012, 33(10), 3025-3035.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.045 ] [PMID: 22248990]
[291]
Ryou, S.M.; Kim, J.M.; Yeom, J.H.; Hyun, S.; Kim, S.; Han, M.S.; Kim, S.W.; Bae, J.; Rhee, S.; Lee, K. Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem. Biophys. Res. Commun., 2011, 416(1-2), 178-183.
[http://dx.doi.org/10.1016/j.bbrc.2011.11.020 ] [PMID: 22093830]
[292]
Bewersdorff, T.; Vonnemann, J.; Kanik, A.; Haag, R.; Haase, A. The influence of surface charge on serum protein interaction and cellular uptake: studies with dendritic polyglycerols and dendritic polyglycerol-coated gold nanoparticles. Int. J. Nanomedicine, 2017, 12, 2001-2019.
[http://dx.doi.org/10.2147/IJN.S124295 ] [PMID: 28352171]
[293]
Qiu, J.; Kong, L.; Cao, X.; Li, A.; Wei, P.; Wang, L.; Mignani, S.; Caminade, A.M.; Majoral, J.P.; Shi, X. Enhanced delivery of therapeutic siRNA into glioblastoma cells using dendrimer-entrapped gold nanoparticles conjugated with β-Cyclodextrin. Nanomaterials (Basel), 2018, 8(3), 131.
[http://dx.doi.org/10.3390/nano8030131 ] [PMID: 29495429]
[294]
Kang, S. Gold nanoparticle/graphene oxide hybrid sheets attached on mesenchymal stem cells for effective photo-thermal cancer therapy. Chem. Mater., 2017, 29(8), 3461-3476.
[http://dx.doi.org/10.1021/acs.chemmater.6b05164]
[295]
Aioub, M.; Panikkanvalappil, S.R.; El-Sayed, M.A. Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano, 2017, 11(1), 579-586.
[http://dx.doi.org/10.1021/acsnano.6b06651 ] [PMID: 28029783]
[296]
Hu, Y.; Wen, C.; Song, L.; Zhao, N.; Xu, F.J. Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. J. Control. Release, 2017, 255, 154-163.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.001 ] [PMID: 28385675]
[297]
Riley, R.S.; Day, E.S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(4) e1449
[http://dx.doi.org/10.1002/wnan.1449 ] [PMID: 28160445]
[298]
Doane, T.L.; Burda, C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem. Soc. Rev., 2012, 41(7), 2885-2911.
[http://dx.doi.org/10.1039/c2cs15260f ] [PMID: 22286540]
[299]
Llevot, A.; Astruc, D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev., 2012, 41(1), 242-257.
[http://dx.doi.org/10.1039/C1CS15080D ] [PMID: 21785769]
[300]
Kobayashi, A.; Yokoyama, Y.; Osawa, Y.; Miura, R.; Mizunuma, H. Gene therapy for ovarian cancer using carbonyl reductase 1 DNA with a polyamidoamine dendrimer in mouse models. Cancer Gene Ther., 2016, 23(1), 24-28.
[http://dx.doi.org/10.1038/cgt.2015.61 ] [PMID: 26584532]
[301]
Ohyama, A.; Higashi, T.; Motoyama, K.; Arima, H. In vitro and in vivo tumor-targeting siRNA delivery using folate-PEG-appended dendrimer (G4)/α-Cyclodextrin conjugates. Bioconjug. Chem., 2016, 27(3), 521-532.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00545 ] [PMID: 26715308]
[302]
Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release, 2000, 65(1-2), 133-148.
[http://dx.doi.org/10.1016/S0168-3659(99)00246-1 ] [PMID: 10699277]
[303]
Kesharwani, P.; Xie, L.; Banerjee, S.; Mao, G.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces, 2015, 136, 413-423.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043 ] [PMID: 26440757]
[304]
Chen, A.M.; Taratula, O.; Wei, D.; Yen, H.I.; Thomas, T.; Thomas, T.J.; Minko, T.; He, H. Labile catalytic packaging of DNA/siRNA: control of gold nanoparticles “out” of DNA/siRNA complexes. ACS Nano, 2010, 4(7), 3679-3688.
[http://dx.doi.org/10.1021/nn901796n ] [PMID: 20521827]
[305]
Lee, E.; Jeon, H.; Lee, M.; Ryu, J.; Kang, C.; Kim, S.; Jung, J.; Kwon, Y. Molecular origin of AuNPs-induced cytotoxicity and mechanistic study. Sci. Rep., 2019, 9(1), 2494.
[http://dx.doi.org/10.1038/s41598-019-39579-3 ] [PMID: 30792478]
[306]
Worden, J.G.; Dai, Q.; Huo, Q. A nanoparticle-dendrimer conjugate prepared from a one-step chemical coupling of monofunctional nanoparticles with a dendrimer. Chem. Commun. (Camb.), 2006, (14), 1536-1538.
[http://dx.doi.org/10.1039/b600641h ] [PMID: 16575452]
[307]
Shenoy, D.B.; Amiji, M.M. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 2005, 293(1-2), 261-270.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010 ] [PMID: 15778064]
[308]
Muddineti, O.S.; Ghosh, B.; Biswas, S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int. J. Pharm., 2015, 484(1-2), 252-267.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.038 ] [PMID: 25701627]
[309]
Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Heat-inducible TNF-α gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther., 2001, 8(9), 649-654.
[http://dx.doi.org/10.1038/sj.cgt.7700357 ] [PMID: 11593333]
[310]
Yallapu, M.M.; Foy, S.P.; Jain, T.K.; Labhasetwar, V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm. Res., 2010, 27(11), 2283-2295.
[http://dx.doi.org/10.1007/s11095-010-0260-1 ] [PMID: 20845067]
[311]
Seabra, A.B.; Pasquôto, T.; Ferrarini, A.C. Santos, Mda.C.; Haddad, P.S.; de Lima, R. Preparation, characterization, cyto-toxicity, and genotoxicity evaluations of thiolated- and s-nitrosated superparamagnetic iron oxide nanoparticles: implications for cancer treatment. Chem. Res. Toxicol., 2014, 27(7), 1207-1218.
[http://dx.doi.org/10.1021/tx500113u ] [PMID: 24949992]
[312]
Kievit, F.M.; Zhang, M. Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res., 2011, 44(10), 853-862.
[http://dx.doi.org/10.1021/ar2000277 ] [PMID: 21528865]
[313]
Bakhtiary, Z.; Saei, A.A.; Hajipour, M.J.; Raoufi, M.; Vermesh, O.; Mahmoudi, M. Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: Possibilities and challenges. Nanomedicine (Lond.), 2016, 12(2), 287-307.
[http://dx.doi.org/10.1016/j.nano.2015.10.019 ] [PMID: 26707817]
[314]
Akrami, M. Evaluation of multilayer coated magnetic nano-particles as biocompatible curcumin delivery platforms for breast cancer treatment. RSC Advances, 2015, 5(107), 88096-88107.
[http://dx.doi.org/10.1039/C5RA13838H]
[315]
Hu, J.; Qian, Y.; Wang, X.; Liu, T.; Liu, S. Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging. Langmuir, 2012, 28(4), 2073-2082.
[http://dx.doi.org/10.1021/la203992q ] [PMID: 22047551]
[316]
Chen, D. pH-responsive polymeric carrier encapsulated magnetic nanoparticles for cancer targeted imaging and delivery. J. Mater. Chem., 2011, 21(34), 12682-12690.
[http://dx.doi.org/10.1039/c1jm11195g]
[317]
Wang, C.; Xu, H.; Liang, C.; Liu, Y.; Li, Z.; Yang, G.; Cheng, L.; Li, Y.; Liu, Z. Iron oxide @ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano, 2013, 7(8), 6782-6795.
[http://dx.doi.org/10.1021/nn4017179 ] [PMID: 23822176]
[318]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond.), 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014 ] [PMID: 25461284]
[319]
Chen, Y.; Ai, K.; Liu, J.; Sun, G.; Yin, Q.; Lu, L. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials, 2015, 60, 111-120.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.003 ] [PMID: 25988726]
[320]
Yuan, Z.; Pan, Y.; Cheng, R.; Sheng, L.; Wu, W.; Pan, G.; Feng, Q.; Cui, W. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology, 2016, 27(24) 245101
[http://dx.doi.org/10.1088/0957-4484/27/24/245101 ] [PMID: 27172065]
[321]
Cheng, W.; Liang, C.; Xu, L.; Liu, G.; Gao, N.; Tao, W.; Luo, L.; Zuo, Y.; Wang, X.; Zhang, X.; Zeng, X.; Mei, L. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small, 2017, 13(29) 1700623
[http://dx.doi.org/10.1002/smll.201700623 ] [PMID: 28594473]
[322]
Guisasola, E.; Asín, L.; Beola, L.; de la Fuente, J.M.; Baeza, A.; Vallet-Regí, M. Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl. Mater. Interfaces, 2018, 10(15), 12518-12525.
[http://dx.doi.org/10.1021/acsami.8b02398 ] [PMID: 29561590]
[323]
Lin, M.; Gao, Y.; Diefenbach, T.J.; Shen, J.K.; Hornicek, F.J.; Park, Y.I.; Xu, F.; Lu, T.J.; Amiji, M.; Duan, Z. Facial layer-by-layer engineering of upconversion nanoparticles for gene delivery: near-infrared-initiated fluorescence resonance energy transfer tracking and overcoming drug resistance in ovarian cancer. ACS Appl. Mater. Interfaces, 2017, 9(9), 7941-7949.
[http://dx.doi.org/10.1021/acsami.6b15321 ] [PMID: 28177223]
[324]
Feng, C.L.; Zhong, X.H.; Steinhart, M.; Caminade, A.M.; Majoral, J.P.; Knoll, W. Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. Small, 2008, 4(5), 566-571.
[http://dx.doi.org/10.1002/smll.200700453 ] [PMID: 18384038]
[325]
Yin, H.; Zhou, Y.; Ai, S.; Chen, Q.; Zhu, X.; Liu, X.; Zhu, L. Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. J. Hazard. Mater., 2010, 174(1-3), 236-243.
[http://dx.doi.org/10.1016/j.jhazmat.2009.09.041 ] [PMID: 19782469]
[326]
Ye, L.; Yong, K.T.; Liu, L.; Roy, I.; Hu, R.; Zhu, J.; Cai, H.; Law, W.C.; Liu, J.; Wang, K.; Liu, J.; Liu, Y.; Hu, Y.; Zhang, X.; Swihart, M.T.; Prasad, P.N. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat. Nanotechnol., 2012, 7(7), 453-458.
[http://dx.doi.org/10.1038/nnano.2012.74 ] [PMID: 22609691]
[327]
Lin, G.; Chen, T.; Zou, J.; Wang, Y.; Wang, X.; Li, J.; Huang, Q.; Fu, Z.; Zhao, Y.; Lin, M.C.; Xu, G.; Yong, K.T. Quantum Dots-siRNA nanoplexes for gene silencing in central nervous system tumor cells. Front. Pharmacol., 2017, 8(182), 182.
[http://dx.doi.org/10.3389/fphar.2017.00182 ] [PMID: 28420995]
[328]
Cao, X.; Wang, J.; Deng, W.; Chen, J.; Wang, Y.; Zhou, J.; Du, P.; Xu, W.; Wang, Q.; Wang, Q.; Yu, Q.; Spector, M.; Yu, J.; Xu, X. Photoluminescent cationic carbon dots as efficient non-viral delivery of plasmid SOX9 and chondrogenesis of fibroblasts. Sci. Rep., 2018, 8(1), 7057.
[http://dx.doi.org/10.1038/s41598-018-25330-x ] [PMID: 29728593]
[329]
Chi, H.; Gu, Y.; Xu, T.; Cao, F. Multifunctional organic-inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery. Int. J. Nanomedicine, 2017, 12, 1607-1620.
[http://dx.doi.org/10.2147/IJN.S129311 ] [PMID: 28280329]
[330]
Prabaharan, M.; Grailer, J.J.; Pilla, S.; Steeber, D.A.; Gong, S. Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery. Biomaterials, 2009, 30(16), 3009-3019.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.011 ] [PMID: 19250665]
[331]
Guo, J.; Hong, H.; Chen, G.; Shi, S.; Zheng, Q.; Zhang, Y.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials, 2013, 34(33), 8323-8332.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.085 ] [PMID: 23932288]
[332]
Chen, G.; Jaskula-Sztul, R.; Esquibel, C.R.; Lou, I.; Zheng, Q.; Dammalapati, A.; Harrison, A.; Eliceiri, K.W.; Tang, W.; Chen, H.; Gong, S. Neuroendocrine tumor-targeted upconversion nanoparticle-based micelles for simultaneous NIR-controlled combination chemotherapy and photodynamic therapy, and fluorescence imaging. Adv. Funct. Mater., 2017, 27(8) 1604671
[http://dx.doi.org/10.1002/adfm.201604671 ] [PMID: 28989337]
[333]
Wang, Y.; Wang, Y.; Chen, G.; Li, Y.; Xu, W.; Gong, S. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(36), 30297-30305.
[http://dx.doi.org/10.1021/acsami.7b05654 ] [PMID: 28845963]
[334]
Joris, F.; Valdepérez, D.; Pelaz, B.; Soenen, S.J.; Manshian, B.B.; Parak, W.J.; De Smedt, S.C.; Raemdonck, K. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J. Nanobiotechnology, 2016, 14(1), 69-69.
[http://dx.doi.org/10.1186/s12951-016-0220-y ] [PMID: 27613519]
[335]
Beik, J.; Abed, Z.; Ghoreishi, F.S.; Hosseini-Nami, S.; Mehrzadi, S.; Shakeri-Zadeh, A.; Kamrava, S.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control. Release, 2016, 235, 205-221.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.062 ] [PMID: 27264551]
[336]
Cai, K.; Wang, A.Z.; Yin, L.; Cheng, J. Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. J. Control. Release, 2017, 263, 211-222.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.034 ] [PMID: 28062299]
[337]
Monopoli, M.P.; Aberg, C.; Salvati, A.; Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol., 2012, 7(12), 779-786.
[http://dx.doi.org/10.1038/nnano.2012.207 ] [PMID: 23212421]
[338]
Soenen, S.J.; Parak, W.J.; Rejman, J.; Manshian, B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem. Rev., 2015, 115(5), 2109-2135.
[http://dx.doi.org/10.1021/cr400714j ] [PMID: 25757742]
[339]
Feliu, N.; Docter, D.; Heine, M.; Del Pino, P.; Ashraf, S.; Kolosnjaj-Tabi, J.; Macchiarini, P.; Nielsen, P.; Alloyeau, D.; Gazeau, F.; Stauber, R.H.; Parak, W.J. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev., 2016, 45(9), 2440-2457.
[http://dx.doi.org/10.1039/C5CS00699F ] [PMID: 26862602]
[340]
Wu, C.; Chen, H.; Wu, X.; Cong, X.; Wang, L.; Wang, Y.; Yang, Y.; Li, W.; Sun, T. The influence of tumor-induced immune dysfunction on the immune cell distribution of gold nanoparticles in vivo. Biomater. Sci., 2017, 5(8), 1531-1536.
[http://dx.doi.org/10.1039/C7BM00335H ] [PMID: 28589972]
[341]
Kolosnjaj-Tabi, J. Biotransformations of magnetic nanoparticles in the body. Nano Today, 2016, 11(3), 280-284.
[http://dx.doi.org/10.1016/j.nantod.2015.10.001]
[342]
Laux, P. Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems. Environ. Sci. Nano, 2018, 5(1), 48-63.
[http://dx.doi.org/10.1039/C7EN00594F]
[343]
Ventola, C.L. Progress in nanomedicine: approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[344]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/10.1038/nature08956 ] [PMID: 20305636]
[345]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62(11), 1064-1079.
[http://dx.doi.org/10.1016/j.addr.2010.07.009 ] [PMID: 20691229]
[346]
Hussein, W.M.; Cheong, Y.S.; Liu, C.; Liu, G.; Begum, A.A.; Attallah, M.A.; Moyle, P.M.; Torchilin, V.P.; Smith, R.; Toth, I. Peptide-based targeted polymeric nanoparticles for siRNA delivery. Nanotechnology, 2019, 30(41) 415604
[http://dx.doi.org/10.1088/1361-6528/ab313d ] [PMID: 31295734]
[347]
El-Readi, M.Z.; Althubiti, M.A. Cancer nanomedicine: a new era of successful targeted therapy. J. Nanomater., 2019, 2019 4927312
[http://dx.doi.org/10.1155/2019/4927312]
[348]
Chang, Z.M.; Wang, Z.; Shao, D.; Yue, J.; Xing, H.; Li, L.; Ge, M.; Li, M.; Yan, H.; Hu, H.; Xu, Q.; Dong, W.F. Shape engineering boosts magnetic mesoporous silica nanoparticle-based isolation and detection of circulating tumor cells. ACS Appl. Mater. Interfaces, 2018, 10(13), 10656-10663.
[http://dx.doi.org/10.1021/acsami.7b19325 ] [PMID: 29468874]
[349]
Wierzbicki, A.S.; Viljoen, A. Alipogene tiparvovec: gene therapy for lipoprotein lipase deficiency. Expert Opin. Biol. Ther., 2013, 13(1), 7-10.
[http://dx.doi.org/10.1517/14712598.2013.738663 ] [PMID: 23126631]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy