Generic placeholder image

Current Genomics


ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

A Nonmathematical Review of Optimal Operator and Experimental Design for Uncertain Scientific Models with Application to Genomics

Author(s): Edward R. Dougherty*

Volume 20, Issue 1, 2019

Page: [16 - 23] Pages: 8

DOI: 10.2174/1389202919666181213095743


Introduction: The most basic aspect of modern engineering is the design of operators to act on physical systems in an optimal manner relative to a desired objective – for instance, designing a control policy to autonomously direct a system or designing a classifier to make decisions regarding the system. These kinds of problems appear in biomedical science, where physical models are created with the intention of using them to design tools for diagnosis, prognosis, and therapy.

Methods: In the classical paradigm, our knowledge regarding the model is certain; however, in practice, especially with complex systems, our knowledge is uncertain and operators must be designed while taking this uncertainty into account. The related concepts of intrinsically Bayesian robust operators and optimal Bayesian operators treat operator design under uncertainty. An objective-based experimental design procedure is naturally related to operator design: We would like to perform an experiment that maximally reduces our uncertainty as it pertains to our objective.

Results & Discussion: This paper provides a nonmathematical review of optimal Bayesian operators directed at biomedical scientists. It considers two applications important to genomics, structural intervention in gene regulatory networks and classification.

Conclusion: The salient point regarding intrinsically Bayesian operators is that uncertainty is quantified relative to the scientific model, and the prior distribution is on the parameters of this model. Optimization has direct physical (biological) meaning. This is opposed to the common method of placing prior distributions on the parameters of the operator, in which case there is a scientific gap between operator design and the phenomena.

Keywords: Nonmathematical review, Uncertain scientific models, Applications, Genomics, Optimization, Regulatory regimes.

Graphical Abstract
Dougherty, E.R. Optimal Signal Processing Under Uncertainty; SPIE Press: Bellingham, 2018.
Kauffman, S. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 1969, 22(3), 437-467.
Qian, X.; Dougherty, E.R. Effect of function perturbation on the steady-state distribution of genetic regulatory networks: optimal structural intervention. IEEE Trans. Sig Process., 2008, 56(10), 4966-4975.
Faure, A.; Naldi, A.; Chaaouiya, A.; Thieffry, D. Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. Bioinformatics, 2006, 22(14), 124-131.
Yoon, B.J.; Qian, X.; Dougherty, E.R. Quantifying the objective cost of uncertainty in complex dynamical systems. IEEE Trans. Sig. Process., 2013, 61(9), 2256-2266.
Qian, X.; Dougherty, E.R. Intervention in gene regulatory networks via phenotypically constrained control policies based on long-run behavior. IEEE/ACM Trans. Comput. Biol. Bioinform, 2012, 9(1), 123-136.
Dalton, L.A.; Dougherty, E.R. Intrinsically optimal bayesian robust filtering. IEEE Trans. Signal Process., 2014, 62(3), 657-670.
Yeang, C.H.; Mak, H.C.; McCuine, S.; Workman, C.; Jaakkola, T.; Ideker, T. Validation and refinement of gene-regulatory pathways on a network of physical interactions. Genome Biol., 2005, 6(7), 1974-1979.
Dehghannasiri, R.; Yoon, B.J.; Dougherty, E.R. Optimal experimental design for gene regulatory networks in the presence of uncertainty. IEEE/ACM Trans. Comput. Biol. Bioinform, 2015, 14(4), 938-950.
Imani, M.; Dehghannasiri, R.; Braga-Neto, U.; Dougherty, E.R. Sequential experimental design for optimal structural intervention in gene regulatory networks based on the mean objective cost of uncertainty. Cancer Inform., 2018, 17(1176935118790247), 1-10.
Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri, M.A.; Bloomfield, C.D.; Lander, E.S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999, 286(5439), 531-537.
Dalton, L.A.; Dougherty, E.R. Optimal classifiers with minimum expected error within a bayesian framework – Part I: Discrete and gaussian models. Pattern Recognit., 2013, 46(5), 1288-1300.
Dalton, L.A.; Dougherty, E.R. Optimal classifiers with minimum expected error within a bayesian framework – Part II: Properties and performance analysis. Pattern Recognit., 2013, 46(5), 1301-1314.
Dougherty, E.R. Small sample issues for microarray-based classification. Comp. Funct. Genom, 2001, 2(1), 28-34.
Zollanvari, A.; Hua, J.; Dougherty, E.R. Analytic study of performance of linear discriminant analysis in stochastic settings. Pattern Recognit., 2013, 46(11), 3017-3029.
Broumand, A.; Yoon, B.J.; Esfahani, M.S.; Dougherty, E.R. Discrete optimal bayesian classification with error-conditioned sequential sampling. Pattern Recognit., 2015, 48(11), 3766-3782.
Knight, J.; Ivanov, I.; Dougherty, E.R. MCMC implementation of the optimal bayesian classifier for non-gaussian models: Model-based rna-seq classification. BMC Bioinform, 2014, 15(1), 401.
Knight, J.; Ivanov, I.; Chapkin, R.; Dougherty, E.R. Detecting multivariate gene interactions in rna-seq data using optimal bayesian classification. IEEE/ACM Trans. Comput. Biol. Bioinform, 2018, 15(2), 484-493.
Nagaraja, K.; Braga-Neto, U. Bayesian classification of proteomics biomarkers from selected reaction monitoring data using an approximate bayesian computation-markov chain monte carlo approach. Cancer Inform., 2018, 17(1), 1-7.
Banerjee, U.; Braga-Neto, U. ABC-MCMC classification of liquid chromatography—mass spectrometry data. Cancer Inform., 2015, 14(S5), 175-182.
Karbalayghareh, A.; Braga-Neto, U.M.; Dougherty, E.R. Intrinsically bayesian robust classifier for single-cell gene expression time series in gene regulatory networks. BMC Syst. Biol., 2018, 12(Suppl. 3), 23-37.
Dadaneh, S.Z.; Dougherty, E.R.; Qian, X. Optimal bayesian classification with missing values. IEEE Trans. Sig. Process., 2018, 66(15), 4182-4192.
Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17(6), 520-525.
Jaynes, E.T. Prior probabilities. IEEE. Trans. Sys. Sci. Cybernet., 1968, 4(3), 227-241.
Jaynes, E. What is the question? In: Bayesian Statistics; J.M., Bernardo, Ed.; Valencia University Press: Valencia, 1980; Vol. 31, pp. 143-166.
Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. A, Math. Astro. Phy. Sci, 1946, 186(1007), pp. 453-461.
Kashyap, R. Prior probability and uncertainty. IEEE Trans. Inf. Theory, 1971, 17(6), 641-650.
Zellner, A. Economics and econometrics; Department of Economics, University of Chicago Press: Chicago, 1995.
Esfahani, M.S.; Knight, J.; Zollanvari, A.; Yoon, B.J.; Dougherty, E.R. Classifier design given an uncertainty class of feature distributions via regularized maximum likelihood and the incorporation of biological pathway knowledge in steady-state phenotype classification. Pattern Recognit., 2013, 46(10), 2783-2797.
Esfahani, M.S.; Dougherty, E.R. An optimization-based framework for the transformation of incomplete biological knowledge into a probabilistic structure and its application to the utilization of gene/protein signaling pathways in discrete phenotype classification. IEEE/ACM Trans. Comput. Biol. Bioinform, 2015, 12(6), 1304-1321.
Boluki, S.; Esfahani, M.S.; Qian, X.; Dougherty, E.R. Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors. BMC Bioinform, 2017, 18(Suppl. 14), 552.
Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 2010, 22(10), 1345-1359.
Karbalayghareh, A.; Qian, X.; Dougherty, E.R. Optimal Bayesian transfer learning. IEEE Trans. Sig. Process., 2018, 66(14), 3724-3739.
Qian, X.; Dougherty, E.R. Bayesian regression with network prior: optimal bayesian filtering perspective. IEEE Trans. Sig. Process., 2016, 64(23), 6243-6253.
Gelman, A.; Carlin, J.; Stern, H.; Rubin, D. Bayesian Data Analysis; Chapman and Hall: Boca Raton, 1995.
Bernado, J.; Smith, A. Bayesian Theory; Wiley & Sons: Chichester, 2000.
Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, 2006.
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, 2009.
Murphy, K. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, 2012.
Silver, E.A. Markovian decision processes with uncertain transition probabilities or rewards. Technical Report; Defense Technical Information Center: Fort Belvoir, VA, 1963.
Gozzolino, J.M.; Gonzalez-Zubieta, R.; Miller, R.L. Markovian decision processes with uncertain transition probabilities. Technical Report; Defense Technical Information Center: Fort Bevoir, VA, 1965.
Martin, J.J. Bayesian Decision Problems and Markov Chains; John Wiley & Sons, Inc: New York, 1967.
Yousefi, M.; Dougherty, E.R. A comparison study of optimal and suboptimal intervention policies for gene regulatory networks in the presence of uncertainty. EURASIP J. Bioinfo. Sys. Biol., 2014, 1(6), 1-13.
Kuznetsov, V.P. Stable detection when the signal and spectrum of normal noise are inaccurately known. Telecommun. Radio. Eng., 1976, 30/31(9), 58-64.
Kassam, S.A.; Lim, T.I. Robust wiener filters. J. Franklin Inst., 1977, 304(1), 171-185.
Poor, H.V. On robust wiener filtering. IEEE Trans. Auto. Control., 1980, 25(3), 531-536.
Grigoryan, A.M.; Dougherty, E.R. Bayesian robust optimal linear filters. Sig Process, 2001, 81(12), 2503-2521.
Dehghannasiri, R.; Esfahani, M.S.; Dougherty, E.R. Intrinsically Bayesian robust kalman filter: an innovation process approach. IEEE Trans. Sig Process., 2017, 65(10), 2531-2546.
Dalton, L.A.; Benalcazar, M.E.; Dougherty, E.R. Optimal clustering under uncertainty. Plos One, 2018, 13(10), e0204627.

© 2024 Bentham Science Publishers | Privacy Policy