Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Mitochondria in Systemic Lupus Erythematosus: A Glimpse of Various Pathogenetic Mechanisms

Author(s): Shi-Kun Yang, Hao-Ran Zhang, Shu-Peng Shi, Ying-Qiu Zhu, Na Song, Qing Dai, Wei Zhang, Ming Gui and Hao Zhang*

Volume 27, Issue 20, 2020

Page: [3346 - 3361] Pages: 16

DOI: 10.2174/0929867326666181126165139

Price: $65

conference banner
Abstract

Background: Systemic Lupus Erythematosus (SLE) is a polysystem autoimmune disease that adversely affects human health. Various organs can be affected, including the kidney or brain. Traditional treatment methods for SLE primarily rely on glucocorticoids and immunosuppressors. Unfortunately, these therapeutic agents cannot prevent a high recurrence rate after SLE remission. Therefore, novel therapeutic targets are urgently required.

Methods: A systematic search of the published literature regarding the abnormal structure and function of mitochondria in SLE and therapies targeting mitochondria was performed in several databases.

Results: Accumulating evidence indicates that mitochondrial dysfunction plays important roles in the pathogenesis of SLE, including influencing mitochondrial DNA damage, mitochondrial dynamics change, abnormal mitochondrial biogenesis and energy metabolism, mitophagy, oxidative stress, inflammatory reactions, apoptosis and NETosis. Further investigation of mitochondrial pathophysiological roles will result in further clarification of SLE. Specific lupus-induced organ damage also exhibits characteristic mitochondrial changes.

Conclusion: This review aimed to summarize the current research on the role of mitochondrial dysfunction in SLE, which will necessarily provide potential novel therapeutic targets for SLE.

Keywords: Mitochondria, systemic lupus erythematosus, ROS, apoptosis, pathogenetic mechanisms, oxidative stress.

[1]
Perl, A. Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat. Rev. Rheumatol., 2013, 9(11), 674-686.
[http://dx.doi.org/10.1038/nrrheum.2013.147] [PMID: 24100461]
[2]
Perl, A.; Gergely, P., Jr; Banki, K. Mitochondrial dysfunction in T cells of patients with systemic lupus erythematosus. Int. Rev. Immunol., 2004, 23(3-4), 293-313.
[http://dx.doi.org/10.1080/08830180490452576] [PMID: 15204090]
[3]
Perl, A. Pathogenic mechanisms in systemic lupus erythematosus. Autoimmunity, 2010, 43(1), 1-6.
[http://dx.doi.org/10.3109/08916930903374741] [PMID: 20014960]
[4]
Gergely, P., Jr; Grossman, C.; Niland, B.; Puskas, F.; Neupane, H.; Allam, F.; Banki, K.; Phillips, P.E.; Perl, A. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum., 2002, 46(1), 175-190.,
[http://dx.doi.org/10.1002/1529-0131(200201)46:1 <175:: AID-ART10015>3.0.CO;2-H ] [PMID: 11817589]
[5]
López-López, L.; Nieves-Plaza, M.; Castro, Mdel.R.; Font, Y.M.; Torres-Ramos, C.A.; Vilá, L.M.; Ayala-Peña, S. Mitochondrial DNA damage is associated with damage accrual and disease duration in patients with systemic lupus erythematosus. Lupus, 2014, 23(11), 1133-1141.
[http://dx.doi.org/10.1177/0961203314537697] [PMID: 24899636]
[6]
Chipuk, J.E.; Bouchier-Hayes, L.; Green, D.R. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ., 2006, 13(8), 1396-1402.
[http://dx.doi.org/10.1038/sj.cdd.4401963] [PMID: 16710362]
[7]
Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature, 2014, 505(7483), 335-343.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[8]
Ni, H.M.; Williams, J.A.; Ding, W.X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol., 2015, 4, 6-13.
[http://dx.doi.org/10.1016/j.redox.2014.11.006] [PMID: 25479550]
[9]
Li, H.; Kumar Sharma, L.; Li, Y.; Hu, P.; Idowu, A.; Liu, D.; Lu, J.; Bai, Y. Comparative bioenergetic study of neuronal and muscle mitochondria during aging. Free Radic. Biol. Med., 2013, 63, 30-40.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.030] [PMID: 23643721]
[10]
Mok, C.C.; Lau, C.S. Pathogenesis of systemic lupus erythematosus. J. Clin. Pathol., 2003, 56(7), 481-490.
[http://dx.doi.org/10.1136/jcp.56.7.481] [PMID: 12835292]
[11]
Mohty, M. Systemic lupus erythematosus. N. Engl. J. Med., 2008, 358(22), 2412-2413.
[http://dx.doi.org/10.1056/NEJMc080684] [PMID: 18512279]
[12]
Colburn, K.K.; Green, L.M. Serum antiguanosine antibodies as a marker for SLE disease activity and pathogen potential. Clin. Chim. Acta, 2006, 370(1-2), 9-16.
[http://dx.doi.org/10.1016/j.cca.2006.02.015] [PMID: 16554042]
[13]
Perl, A.; Gergely, P., Jr; Nagy, G.; Koncz, A.; Banki, K. Mitochondrial hyperpolarization: a checkpoint of T-cell life, death and autoimmunity. Trends Immunol., 2004, 25(7), 360-367.
[http://dx.doi.org/10.1016/j.it.2004.05.001] [PMID: 15207503]
[14]
Leishangthem, B.D.; Sharma, A.; Bhatnagar, A. Role of altered mitochondria functions in the pathogenesis of systemic lupus erythematosus. Lupus, 2016, 25(3), 272-281.
[http://dx.doi.org/10.1177/0961203315605370] [PMID: 26385216]
[15]
Perl, A.; Nagy, G.; Gergely, P.; Puskas, F.; Qian, Y.; Banki, K. Apoptosis and mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol. Med., 2004, 102, 87-114.
[http://dx.doi.org/10.1385/1-59259-805-6:087] [PMID: 15286382]
[16]
Crispín, J.C.; Liossis, S.N.; Kis-Toth, K.; Lieberman, L.A.; Kyttaris, V.C.; Juang, Y.T.; Tsokos, G.C. Pathogenesis of human systemic lupus erythematosus: recent advances. Trends Mol. Med., 2010, 16(2), 47-57.
[http://dx.doi.org/10.1016/j.molmed.2009.12.005] [PMID: 20138006]
[17]
Crispín, J.C.; Kyttaris, V.C.; Terhorst, C.; Tsokos, G.C. T cells as therapeutic targets in SLE. Nat. Rev. Rheumatol., 2010, 6(6), 317-325.
[http://dx.doi.org/10.1038/nrrheum.2010.60] [PMID: 20458333]
[18]
Nagy, G.; Koncz, A.; Perl, A. T- and B-cell abnormalities in systemic lupus erythematosus. Crit. Rev. Immunol., 2005, 25(2), 123-140.
[http://dx.doi.org/10.1615/CritRevImmunol.v25.i2.30] [PMID: 15952933]
[19]
Perl, A.; Fernandez, D.R.; Telarico, T.; Doherty, E.; Francis, L.; Phillips, P.E. T-cell and B-cell signaling biomarkers and treatment targets in lupus. Curr. Opin. Rheumatol., 2009, 21(5), 454-464.
[http://dx.doi.org/10.1097/BOR.0b013e32832e977c] [PMID: 19550330]
[20]
Krawczyk, C.M.; Holowka, T.; Sun, J.; Blagih, J.; Amiel, E.; DeBerardinis, R.J.; Cross, J.R.; Jung, E.; Thompson, C.B.; Jones, R.G.; Pearce, E.J. Toll-like receptor-induced changes in glycolytic metabolism regulate dendritic cell activation. Blood, 2010, 115(23), 4742-4749.
[http://dx.doi.org/10.1182/blood-2009-10-249540] [PMID: 20351312]
[21]
Jönsen, A.; Yu, X.; Truedsson, L.; Nived, O.; Sturfelt, G.; Ibrahim, S.; Bengtsson, A. Mitochondrial DNA polymorphisms are associated with susceptibility and phenotype of systemic lupus erythematosus. Lupus, 2009, 18(4), 309-312.
[http://dx.doi.org/10.1177/0961203308097477] [PMID: 19276298]
[22]
Lee, H.T.; Lin, C.S.; Chen, W.S.; Liao, H.T.; Tsai, C.Y.; Wei, Y.H. Leukocyte mitochondrial DNA alteration in systemic lupus erythematosus and its relevance to the susceptibility to lupus nephritis. Int. J. Mol. Sci., 2012, 13(7), 8853-8868.
[http://dx.doi.org/10.3390/ijms13078853] [PMID: 22942739]
[23]
Lee, H.T.; Lin, C.S.; Lee, C.S.; Tsai, C.Y.; Wei, Y.H. Increased 8-hydroxy-2′-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin. Exp. Immunol., 2014, 176(1), 66-77.
[http://dx.doi.org/10.1111/cei.12256] [PMID: 24345202]
[24]
Caldecott, K.W. Single-strand break repair and genetic disease. Nat. Rev. Genet., 2008, 9(8), 619-631.
[http://dx.doi.org/10.1038/nrg2380] [PMID: 18626472]
[25]
Tann, A.W.; Boldogh, I.; Meiss, G.; Qian, W.; Van Houten, B.; Mitra, S.; Szczesny, B. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5′-EXO/endonuclease) in their repair. J. Biol. Chem., 2011, 286(37), 31975-31983.
[http://dx.doi.org/10.1074/jbc.M110.215715] [PMID: 21768646]
[26]
Caielli, S.; Athale, S.; Domic, B.; Murat, E.; Chandra, M.; Banchereau, R.; Baisch, J.; Phelps, K.; Clayton, S.; Gong, M.; Wright, T.; Punaro, M.; Palucka, K.; Guiducci, C.; Banchereau, J.; Pascual, V. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med., 2016, 213(5), 697-713.
[http://dx.doi.org/10.1084/jem.20151876] [PMID: 27091841]
[27]
Richter, C.; Park, J.W.; Ames, B.N. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA, 1988, 85(17), 6465-6467.
[http://dx.doi.org/10.1073/pnas.85.17.6465] [PMID: 3413108]
[28]
Larsen, N.B.; Rasmussen, M.; Rasmussen, L.J. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion, 2005, 5(2), 89-108.
[http://dx.doi.org/10.1016/j.mito.2005.02.002] [PMID: 16050976]
[29]
Kukat, A.; Trifunovic, A. Somatic mtDNA mutations and aging--facts and fancies. Exp. Gerontol., 2009, 44(1-2), 101-105.
[http://dx.doi.org/10.1016/j.exger.2008.05.006] [PMID: 18585880]
[30]
Chen, L.; Duvvuri, B.; Grigull, J.; Jamnik, R.; Wither, J.E.; Wu, G.E. Experimental evidence that mutated-self peptides derived from mitochondrial DNA somatic mutations have the potential to trigger autoimmunity. Hum. Immunol., 2014, 75(8), 873-879.
[http://dx.doi.org/10.1016/j.humimm.2014.06.012] [PMID: 24979674]
[31]
Vyshkina, T.; Sylvester, A.; Sadiq, S.; Bonilla, E.; Canter, J.A.; Perl, A.; Kalman, B. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus. Clin. Immunol., 2008, 129(1), 31-35.
[http://dx.doi.org/10.1016/j.clim.2008.07.011] [PMID: 18708297]
[32]
Yu, X.; Wieczorek, S.; Franke, A.; Yin, H.; Pierer, M.; Sina, C.; Karlsen, T.H.; Boberg, K.M.; Bergquist, A.; Kunz, M.; Witte, T.; Gross, W.L.; Epplen, J.T.; Alarcón-Riquelme, M.E.; Schreiber, S.; Ibrahim, S.M. Association of UCP2 -866 G/A polymorphism with chronic inflammatory diseases. Genes Immun., 2009, 10(6), 601-605.
[http://dx.doi.org/10.1038/gene.2009.29] [PMID: 19387457]
[33]
Criswell, L.A.; Pfeiffer, K.A.; Lum, R.F.; Gonzales, B.; Novitzke, J.; Kern, M.; Moser, K.L.; Begovich, A.B.; Carlton, V.E.; Li, W.; Lee, A.T.; Ortmann, W.; Behrens, T.W.; Gregersen, P.K. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am. J. Hum. Genet., 2005, 76(4), 561-571.
[http://dx.doi.org/10.1086/429096] [PMID: 15719322]
[34]
Alam, K.; Moinuddin, ; Jabeen, S. Immunogenicity of mitochondrial DNA modified by hydroxyl radical. Cell. Immunol., 2007, 247(1), 12-17.
[http://dx.doi.org/10.1016/j.cellimm.2007.06.007] [PMID: 17716639]
[35]
Brown, G.C.; Borutaite, V. Nitric oxide, mitochondria, and cell death. IUBMB Life, 2001, 52(3-5), 189-195.
[http://dx.doi.org/10.1080/15216540152845993] [PMID: 11798032]
[36]
Al-Shobaili, H.A.; Rasheed, Z. Physicochemical and immunological studies on mitochondrial DNA modified by peroxynitrite: implications of neo-epitopes of mitochondrial DNA in the etiopathogenesis of systemic lupus erythematosus. Lupus, 2013, 22(10), 1024-1037.
[http://dx.doi.org/10.1177/0961203313498803] [PMID: 23884988]
[37]
Lee, H.M.; Sugino, H.; Aoki, C.; Nishimoto, N. Underexpression of mitochondrial-DNA encoded ATP synthesis-related genes and DNA repair genes in systemic lupus erythematosus. Arthritis Res. Ther., 2011, 13(2), R63.
[http://dx.doi.org/10.1186/ar3317] [PMID: 21496236]
[38]
Tang, Y.; Wang, L.; Zhu, M.; Yang, M.; Zhong, K.; Du, Q.; Zhang, H.; Gui, M. Association of mtDNA M/N haplogroups with systemic lupus erythematosus: a case-control study of Han Chinese women. Sci. Rep., 2015, 5, 10817.
[http://dx.doi.org/10.1038/srep10817] [PMID: 26039690]
[39]
Webb, R.; Kelly, J.A.; Somers, E.C.; Hughes, T.; Kaufman, K.M.; Sanchez, E.; Nath, S.K.; Bruner, G.; Alarcón-Riquelme, M.E.; Gilkeson, G.S.; Kamen, D.L.; Richardson, B.C.; Harley, J.B.; Sawalha, A.H. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann. Rheum. Dis., 2011, 70(1), 151-156.
[http://dx.doi.org/10.1136/ard.2010.141697] [PMID: 20881011]
[40]
Hurtado-Nedelec, M.; Makni-Maalej, K.; Gougerot-Pocidalo, M.A.; Dang, P.M.; El-Benna, J. Assessment of priming of the human neutrophil respiratory burst. Methods Mol. Biol., 2014, 1124, 405-412.
[http://dx.doi.org/10.1007/978-1-62703-845-4_23] [PMID: 24504964]
[41]
Delgado-Rizo, V.; Martínez-Guzmán, M.A.; Iñiguez-Gutierrez, L.; García-Orozco, A.; Alvarado-Navarro, A.; Fafutis-Morris, M. Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front. Immunol., 2017, 8, 81.
[http://dx.doi.org/10.3389/fimmu.2017.00081] [PMID: 28220120]
[42]
Muller, S.; Radic, M. Oxidation and mitochondrial origin of NET DNA in the pathogenesis of lupus. Nat. Med., 2016, 22(2), 126-127.
[http://dx.doi.org/10.1038/nm.4044] [PMID: 26845404]
[43]
Wang, H.; Li, T.; Chen, S.; Gu, Y.; Ye, S. Neutrophil Extracellular Trap Mitochondrial DNA and Its Autoantibody in Systemic Lupus Erythematosus and a Proof-of-Concept Trial of Metformin. Arthritis Rheumatol., 2015, 67(12), 3190-3200.
[http://dx.doi.org/10.1002/art.39296] [PMID: 26245802]
[44]
Lood, C.; Blanco, L.P.; Purmalek, M.M.; Carmona-Rivera, C.; De Ravin, S.S.; Smith, C.K.; Malech, H.L.; Ledbetter, J.A.; Elkon, K.B.; Kaplan, M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med., 2016, 22(2), 146-153.
[http://dx.doi.org/10.1038/nm.4027] [PMID: 26779811]
[45]
Ivanova, V.V.; Khaiboullina, S.F.; Cherenkova, E.E.; Martynova, E.V.; Nevzorova, T.A.; Kunst, M.A.; Sibgatullin, T.B.; Maksudova, A.N.; Oliveira, P.J.; Lombardi, V.C.; Palotás, A.; Rizvanov, A.A. Differential immuno-reactivity to genomic DNA, RNA and mitochondrial DNA is associated with auto-immunity. Cell. Physiol. Biochem., 2014, 34(6), 2200-2208.
[http://dx.doi.org/10.1159/000369663] [PMID: 25562166]
[46]
Whitaker, R.M.; Corum, D.; Beeson, C.C.; Schnellmann, R.G. Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Annu. Rev. Pharmacol. Toxicol., 2016, 56, 229-249.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103155] [PMID: 26566156]
[47]
Rambold, A.S.; Pearce, E.L. Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends Immunol., 2018, 39(1), 6-18.
[http://dx.doi.org/10.1016/j.it.2017.08.006] [PMID: 28923365]
[48]
Horbay, R.; Bilyy, R. Mitochondrial dynamics during cell cycling. Apoptosis, 2016, 21(12), 1327-1335.
[http://dx.doi.org/10.1007/s10495-016-1295-5] [PMID: 27658785]
[49]
Chang, C.R.; Blackstone, C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem., 2007, 282(30), 21583-21587.
[http://dx.doi.org/10.1074/jbc.C700083200] [PMID: 17553808]
[50]
Dominy, J.E.; Puigserver, P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb. Perspect. Biol., 2013, 5(7)pii: a015008
[http://dx.doi.org/10.1101/cshperspect.a015008] [PMID: 23818499]
[51]
Oaks, Z.; Winans, T.; Caza, T.; Fernandez, D.; Liu, Y.; Landas, S.K.; Banki, K.; Perl, A. Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus-Prone Mice. Arthritis Rheumatol., 2016, 68(11), 2728-2739.
[http://dx.doi.org/10.1002/art.39791] [PMID: 27332042]
[52]
Caza, T.N.; Fernandez, D.R.; Talaber, G.; Oaks, Z.; Haas, M.; Madaio, M.P.; Lai, Z.W.; Miklossy, G.; Singh, R.R.; Chudakov, D.M.; Malorni, W.; Middleton, F.; Banki, K.; Perl, A. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis., 2014, 73(10), 1888-1897.
[http://dx.doi.org/10.1136/annrheumdis-2013-203794] [PMID: 23897774]
[53]
Suen, D.F.; Norris, K.L.; Youle, R.J. Mitochondrial dynamics and apoptosis. Genes Dev., 2008, 22(12), 1577-1590.
[http://dx.doi.org/10.1101/gad.1658508] [PMID: 18559474]
[54]
Lee, H.C.; Wei, Y.H. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int. J. Biochem. Cell Biol., 2005, 37(4), 822-834.
[http://dx.doi.org/10.1016/j.biocel.2004.09.010] [PMID: 15694841]
[55]
Mambo, E.; Gao, X.; Cohen, Y.; Guo, Z.; Talalay, P.; Sidransky, D. Electrophile and oxidant damage of mitochondrial DNA leading to rapid evolution of homoplasmic mutations. Proc. Natl. Acad. Sci. USA, 2003, 100(4), 1838-1843.
[http://dx.doi.org/10.1073/pnas.0437910100] [PMID: 12578990]
[56]
Yoboue, E.D.; Mougeolle, A.; Kaiser, L.; Averet, N.; Rigoulet, M.; Devin, A. The role of mitochondrial biogenesis and ROS in the control of energy supply in proliferating cells. Biochim. Biophys. Acta, 2014, 1837(7), 1093-1098.
[http://dx.doi.org/10.1016/j.bbabio.2014.02.023] [PMID: 24602596]
[57]
Ruiz-Limon, P.; Barbarroja, N.; Perez-Sanchez, C.; Aguirre, M.A.; Bertolaccini, M.L.; Khamashta, M.A.; Rodriguez-Ariza, A.; Almadén, Y.; Segui, P.; Khraiwesh, H.; Gonzalez-Reyes, J.A.; Villalba, J.M.; Collantes-Estevez, E.; Cuadrado, M.J.; Lopez-Pedrera, C. Atherosclerosis and cardiovascular disease in systemic lupus erythematosus: effects of in vivo statin treatment. Ann. Rheum. Dis., 2015, 74(7), 1450-1458.
[http://dx.doi.org/10.1136/annrheumdis-2013-204351] [PMID: 24658835]
[58]
Nagy, G.; Koncz, A.; Perl, A. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. J. Immunol., 2003, 171(10), 5188-5197.
[http://dx.doi.org/10.4049/jimmunol.171.10.5188] [PMID: 14607919]
[59]
Nagy, G.; Barcza, M.; Gonchoroff, N.; Phillips, P.E.; Perl, A. Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J. Immunol., 2004, 173(6), 3676-3683.
[http://dx.doi.org/10.4049/jimmunol.173.6.3676] [PMID: 15356113]
[60]
Almeida, A.; Almeida, J.; Bolaños, J.P.; Moncada, S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA, 2001, 98(26), 15294-15299.
[http://dx.doi.org/10.1073/pnas.261560998] [PMID: 11742096]
[61]
Duchen, M.R. Mitochondria and calcium: from cell signalling to cell death. J. Physiol., 2000, 529(Pt 1), 57-68.
[http://dx.doi.org/10.1111/j.1469-7793.2000.00057.x] [PMID: 11080251]
[62]
MacIver, N.J.; Michalek, R.D.; Rathmell, J.C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol., 2013, 31, 259-283.
[http://dx.doi.org/10.1146/annurev-immunol-032712-095956] [PMID: 23298210]
[63]
Alexander, J.J.; Zwingmann, C.; Quigg, R. MRL/lpr mice have alterations in brain metabolism as shown with [1H-13C] NMR spectroscopy. Neurochem. Int., 2005, 47(1-2), 143-151.
[http://dx.doi.org/10.1016/j.neuint.2005.04.016] [PMID: 15893408]
[64]
Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol., 2018, 20(9), 1013-1022.
[http://dx.doi.org/10.1038/s41556-018-0176-2] [PMID: 30154567]
[65]
Chen, J.; Wang, Q.; Feng, X.; Zhang, Z.; Geng, L.; Xu, T.; Wang, D.; Sun, L. Umbilical Cord-Derived Mesenchymal Stem Cells Suppress Autophagy of T Cells in Patients with Systemic Lupus Erythematosus via Transfer of Mitochondria. Stem Cells Int., 2016, 20164062789
[http://dx.doi.org/10.1155/2016/4062789] [PMID: 28053607]
[66]
Lemasters, J.J. Variants of mitochondrial autophagy: Types 1 and 2 mitophagy and micromitophagy (Type 3). Redox Biol., 2014, 2, 749-754.
[http://dx.doi.org/10.1016/j.redox.2014.06.004] [PMID: 25009776]
[67]
Fernandez, D.R.; Telarico, T.; Bonilla, E.; Li, Q.; Banerjee, S.; Middleton, F.A.; Phillips, P.E.; Crow, M.K.; Oess, S.; Muller-Esterl, W.; Perl, A. Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J. Immunol., 2009, 182(4), 2063-2073.
[http://dx.doi.org/10.4049/jimmunol.0803600] [PMID: 19201859]
[68]
Perl, A. Systems biology of lupus: mapping the impact of genomic and environmental factors on gene expression signatures, cellular signaling, metabolic pathways, hormonal and cytokine imbalance, and selecting targets for treatment. Autoimmunity, 2010, 43(1), 32-47.
[http://dx.doi.org/10.3109/08916930903374774] [PMID: 20001421]
[69]
Pullmann, R., Jr; Bonilla, E.; Phillips, P.E.; Middleton, F.A.; Perl, A. Haplotypes of the HRES-1 endogenous retrovirus are associated with development and disease manifestations of systemic lupus erythematosus. Arthritis Rheum., 2008, 58(2), 532-540.
[http://dx.doi.org/10.1002/art.23161] [PMID: 18240231]
[70]
Tsao, B.P. Lupus susceptibility genes on human chromosome 1. Int. Rev. Immunol., 2000, 19(4-5), 319-334.
[http://dx.doi.org/10.3109/08830180009055502] [PMID: 11016422]
[71]
Oaks, Z.; Perl, A. Metabolic control of the epigenome in systemic Lupus erythematosus. Autoimmunity, 2014, 47(4), 256-264.
[http://dx.doi.org/10.3109/08916934.2013.834495] [PMID: 24128087]
[72]
Tran, Q.; Park, J.; Lee, H.; Hong, Y.; Hong, S.; Park, S.; Park, J.; Kim, S.H. TMEM39A and Human Diseases: A Brief Review. Toxicol. Res., 2017, 33(3), 205-209.
[http://dx.doi.org/10.5487/TR.2017.33.3.205] [PMID: 28744351]
[73]
Bertero, E.; Maack, C. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Circ. Res., 2018, 122(10), 1460-1478.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.310082] [PMID: 29748369]
[74]
Lee, H.T.; Wu, T.H.; Lin, C.S.; Lee, C.S.; Wei, Y.H.; Tsai, C.Y.; Chang, D.M. The pathogenesis of systemic lupus erythematosus - From the viewpoint of oxidative stress and mitochondrial dysfunction. Mitochondrion, 2016, 30, 1-7.
[http://dx.doi.org/10.1016/j.mito.2016.05.007] [PMID: 27235747]
[75]
Zhang, H.; Fu, R.; Guo, C.; Huang, Y.; Wang, H.; Wang, S.; Zhao, J.; Yang, N. Anti-dsDNA antibodies bind to TLR4 and activate NLRP3 inflammasome in lupus monocytes/macrophages. J. Transl. Med., 2016, 14(1), 156.
[http://dx.doi.org/10.1186/s12967-016-0911-z] [PMID: 27250627]
[76]
West, A.P.; Brodsky, I.E.; Rahner, C.; Woo, D.K.; Erdjument-Bromage, H.; Tempst, P.; Walsh, M.C.; Choi, Y.; Shadel, G.S.; Ghosh, S. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, 472(7344), 476-480.
[http://dx.doi.org/10.1038/nature09973] [PMID: 21525932]
[77]
Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[78]
Buskiewicz, I.A.; Montgomery, T.; Yasewicz, E.C.; Huber, S.A.; Murphy, M.P.; Hartley, R.C.; Kelly, R.; Crow, M.K.; Perl, A.; Budd, R.C.; Koenig, A. Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci. Signal., 2016, 9(456), ra115.
[http://dx.doi.org/10.1126/scisignal.aaf1933] [PMID: 27899525]
[79]
Lee, H.C.; Wei, Y.H. Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp. Biol. Med. (Maywood), 2007, 232(5), 592-606.
[PMID: 17463155]
[80]
Hu, Q.; Wood, C.R.; Cimen, S.; Venkatachalam, A.B.; Alwayn, I.P. Mitochondrial Damage-Associated Molecular Patterns (MTDs) Are Released during Hepatic Ischemia Reperfusion and Induce Inflammatory Responses. PLoS One, 2015, 10(10)e0140105
[http://dx.doi.org/10.1371/journal.pone.0140105] [PMID: 26451593]
[81]
Gan, L.; Chen, X.; Sun, T.; Li, Q.; Zhang, R.; Zhang, J.; Zhong, J. Significance of Serum mtDNA Concentration in Lung Injury Induced by Hip Fracture. Shock, 2015, 44(1), 52-57.
[http://dx.doi.org/10.1097/SHK.0000000000000366] [PMID: 25705859]
[82]
Shrivastav, M.; Niewold, T.B. Nucleic Acid sensors and type I interferon production in systemic lupus erythematosus. Front. Immunol., 2013, 4, 319.
[http://dx.doi.org/10.3389/fimmu.2013.00319] [PMID: 24109483]
[83]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[84]
Kontaki, E.; Boumpas, D.T. Innate immunity in systemic lupus erythematosus: sensing endogenous nucleic acids. J. Autoimmun., 2010, 35(3), 206-211.
[http://dx.doi.org/10.1016/j.jaut.2010.06.009] [PMID: 20638241]
[85]
Boyapati, R.K.; Tamborska, A.; Dorward, D.A.; Ho, G.T. Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000 Res., 2017, 6, 169.
[http://dx.doi.org/10.12688/f1000research.10397.1] [PMID: 28299196]
[86]
Gergely, P., Jr; Niland, B.; Gonchoroff, N.; Pullmann, R., Jr; Phillips, P.E.; Perl, A. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol., 2002, 169(2), 1092-1101.
[http://dx.doi.org/10.4049/jimmunol.169.2.1092] [PMID: 12097418]
[87]
Bouts, Y.M.; Wolthuis, D.F.; Dirkx, M.F.; Pieterse, E.; Simons, E.M.; van Boekel, A.M.; Dieker, J.W.; van der Vlag, J. Apoptosis and NET formation in the pathogenesis of SLE. Autoimmunity, 2012, 45(8), 597-601.
[http://dx.doi.org/10.3109/08916934.2012.719953] [PMID: 22913420]
[88]
Bengtsson, A.A.; Gullstrand, B.; Truedsson, L.; Sturfelt, G. SLE serum induces classical caspase-dependent apoptosis independent of death receptors. Clin. Immunol., 2008, 126(1), 57-66.
[http://dx.doi.org/10.1016/j.clim.2007.10.003] [PMID: 18036993]
[89]
Rozzo, S.J.; Allard, J.D.; Choubey, D.; Vyse, T.J.; Izui, S.; Peltz, G.; Kotzin, B.L. Evidence for an interferon-inducible gene, Ifi202, in the susceptibility to systemic lupus. Immunity, 2001, 15(3), 435-443.
[http://dx.doi.org/10.1016/S1074-7613(01)00196-0] [PMID: 11567633]
[90]
Choubey, D.; Pramanik, R.; Xin, H. Subcellular localization and mechanisms of nucleocytoplasmic distribution of p202, an interferon-inducible candidate for lupus susceptibility. FEBS Lett., 2003, 553(3), 245-249.
[http://dx.doi.org/10.1016/S0014-5793(03)01006-8] [PMID: 14572632]
[91]
Mihara, M.; Erster, S.; Zaika, A.; Petrenko, O.; Chittenden, T.; Pancoska, P.; Moll, U.M. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell, 2003, 11(3), 577-590.
[http://dx.doi.org/10.1016/S1097-2765(03)00050-9] [PMID: 12667443]
[92]
Kammer, G.M.; Perl, A.; Richardson, B.C.; Tsokos, G.C. Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum., 2002, 46(5), 1139-1154.
[http://dx.doi.org/10.1002/art.10192] [PMID: 12115215]
[93]
Leist, M.; Single, B.; Castoldi, A.F.; Kühnle, S.; Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med., 1997, 185(8), 1481-1486.
[http://dx.doi.org/10.1084/jem.185.8.1481] [PMID: 9126928]
[94]
Lorand-Metze, I.; Carvalho, M.A.; Costallat, L.T. [Morphology of bone marrow in systemic lupus erythematosus]. Pathologe, 1994, 15(5), 292-296.
[http://dx.doi.org/10.1007/s002920050057] [PMID: 7824439]
[95]
Villanueva, E.; Yalavarthi, S.; Berthier, C.C.; Hodgin, J.B.; Khandpur, R.; Lin, A.M.; Rubin, C.J.; Zhao, W.; Olsen, S.H.; Klinker, M.; Shealy, D.; Denny, M.F.; Plumas, J.; Chaperot, L.; Kretzler, M.; Bruce, A.T.; Kaplan, M.J. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol., 2011, 187(1), 538-552.
[http://dx.doi.org/10.4049/jimmunol.1100450] [PMID: 21613614]
[96]
Khandpur, R.; Carmona-Rivera, C.; Vivekanandan-Giri, A.; Gizinski, A.; Yalavarthi, S.; Knight, J.S.; Friday, S.; Li, S.; Patel, R.M.; Subramanian, V.; Thompson, P.; Chen, P.; Fox, D.A.; Pennathur, S.; Kaplan, M.J. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med., 2013, 5(178)178ra40
[http://dx.doi.org/10.1126/scitranslmed.3005580] [PMID: 23536012]
[97]
Lande, R.; Ganguly, D.; Facchinetti, V.; Frasca, L.; Conrad, C.; Gregorio, J.; Meller, S.; Chamilos, G.; Sebasigari, R.; Riccieri, V.; Bassett, R.; Amuro, H.; Fukuhara, S.; Ito, T.; Liu, Y.J.; Gilliet, M. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl. Med., 2011, 3(73)73ra19
[http://dx.doi.org/10.1126/scitranslmed.3001180] [PMID: 21389263]
[98]
Boilard, E.; Fortin, P.R. Connective tissue diseases: Mitochondria drive NETosis and inflammation in SLE. Nat. Rev. Rheumatol., 2016, 12(4), 195-196.
[http://dx.doi.org/10.1038/nrrheum.2016.24] [PMID: 26935279]
[99]
Skiljevic, D.; Jeremic, I.; Nikolic, M.; Andrejevic, S.; Sefik-Bukilica, M.; Stojimirovic, B.; Bonaci-Nikolic, B. Serum DNase I activity in systemic lupus erythematosus: correlation with immunoserological markers, the disease activity and organ involvement. Clin. Chem. Lab. Med., 2013, 51(5), 1083-1091.
[http://dx.doi.org/10.1515/cclm-2012-0521] [PMID: 23183758]
[100]
Konig, M.F.; Andrade, F. A Critical Reappraisal of Neutrophil Extracellular Traps and NETosis Mimics Based on Differential Requirements for Protein Citrullination. Front. Immunol., 2016, 7, 461.
[http://dx.doi.org/10.3389/fimmu.2016.00461] [PMID: 27867381]
[101]
Yang, S.; Han, Y.; Liu, J.; Song, P.; Xu, X.; Zhao, L.; Hu, C.; Xiao, L.; Liu, F.; Zhang, H.; Sun, L. Mitochondria: A Novel Therapeutic Target in Diabetic Nephropathy. Curr. Med. Chem., 2017, 24(29), 3185-3202.
[http://dx.doi.org/10.2174/0929867324666170509121003] [PMID: 28486920]
[102]
Martin, J.L.; Gruszczyk, A.V.; Beach, T.E.; Murphy, M.P.; Saeb-Parsy, K. Mitochondrial mechanisms and therapeutics in ischaemia reperfusion injury. Pediatr. Nephrol., 2018.
[PMID: 29860579]
[103]
Flemming, N.B.; Gallo, L.A.; Forbes, J.M. Mitochondrial Dysfunction and Signaling in Diabetic Kidney Disease: Oxidative Stress and Beyond. Semin. Nephrol., 2018, 38(2), 101-110.
[http://dx.doi.org/10.1016/j.semnephrol.2018.01.001] [PMID: 29602393]
[104]
Gilkeson, G.S.; Mashmoushi, A.K.; Ruiz, P.; Caza, T.N.; Perl, A.; Oates, J.C. Endothelial nitric oxide synthase reduces crescentic and necrotic glomerular lesions, reactive oxygen production, and MCP1 production in murine lupus nephritis. PLoS One, 2013, 8(5)e64650
[http://dx.doi.org/10.1371/journal.pone.0064650] [PMID: 23741359]
[105]
Wang, Y.; Coughlin, J.M.; Ma, S.; Endres, C.J.; Kassiou, M.; Sawa, A.; Dannals, R.F.; Petri, M.; Pomper, M.G. Neuroimaging of translocator protein in patients with systemic lupus erythematosus: a pilot study using [11C]DPA-713 positron emission tomography. Lupus, 2017, 26(2), 170-178.
[http://dx.doi.org/10.1177/0961203316657432] [PMID: 27387599]
[106]
Hsu, T.C.; Chen, Y.C.; Lai, W.X.; Chiang, S.Y.; Huang, C.Y.; Tzang, B.S. Beneficial effects of treatment with cystamine on brain in NZB/W F1 mice. Eur. J. Pharmacol., 2008, 591(1-3), 307-314.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.078] [PMID: 18621044]
[107]
Ndhlovu, M.; Preuss, B.E.; Dengjel, J.; Stevanovic, S.; Weiner, S.M.; Klein, R. Identification of α-tubulin as an autoantigen recognized by sera from patients with neuropsychiatric systemic lupus erythematosus. Brain Behav. Immun., 2011, 25(2), 279-285.
[http://dx.doi.org/10.1016/j.bbi.2010.09.019] [PMID: 20884345]
[108]
Liang, J.; Zhang, H.; Hua, B.; Wang, H.; Lu, L.; Shi, S.; Hou, Y.; Zeng, X.; Gilkeson, G.S.; Sun, L. Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Ann. Rheum. Dis., 2010, 69(8), 1423-1429.
[http://dx.doi.org/10.1136/ard.2009.123463] [PMID: 20650877]
[109]
Li, X.; Liu, L.; Meng, D.; Wang, D.; Zhang, J.; Shi, D.; Liu, H.; Xu, H.; Lu, L.; Sun, L. Enhanced apoptosis and senescence of bone-marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Stem Cells Dev., 2012, 21(13), 2387-2394.
[http://dx.doi.org/10.1089/scd.2011.0447] [PMID: 22375903]
[110]
Gao, L.; Bird, A.K.; Meednu, N.; Dauenhauer, K.; Liesveld, J.; Anolik, J.; Looney, R.J. Bone Marrow-Derived Mesenchymal Stem Cells From Patients With Systemic Lupus Erythematosus Have a Senescence-Associated Secretory Phenotype Mediated by a Mitochondrial Antiviral Signaling Protein-Interferon-β Feedback Loop. Arthritis Rheumatol., 2017, 69(8), 1623-1635.
[http://dx.doi.org/10.1002/art.40142] [PMID: 28471483]
[111]
Perez-Sanchez, C.; Barbarroja, N.; Messineo, S.; Ruiz-Limon, P.; Rodriguez-Ariza, A.; Jimenez-Gomez, Y.; Khamashta, M.A.; Collantes-Estevez, E.; Cuadrado, M.J.; Aguirre, M.A.; Lopez-Pedrera, C. Gene profiling reveals specific molecular pathways in the pathogenesis of atherosclerosis and cardiovascular disease in antiphospholipid syndrome, systemic lupus erythematosus and antiphospholipid syndrome with lupus. Ann. Rheum. Dis., 2015, 74(7), 1441-1449.
[http://dx.doi.org/10.1136/annrheumdis-2013-204600] [PMID: 24618261]
[112]
Palikaras, K.; Tavernarakis, N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol., 2014, 56, 182-188.
[http://dx.doi.org/10.1016/j.exger.2014.01.021] [PMID: 24486129]
[113]
Doherty, E.; Oaks, Z.; Perl, A. Increased mitochondrial electron transport chain activity at complex I is regulated by N-acetylcysteine in lymphocytes of patients with systemic lupus erythematosus. Antioxid. Redox Signal., 2014, 21(1), 56-65.
[http://dx.doi.org/10.1089/ars.2013.5702] [PMID: 24673154]
[114]
Garcia, R.J.; Francis, L.; Dawood, M.; Lai, Z.W.; Faraone, S.V.; Perl, A. Attention deficit and hyperactivity disorder scores are elevated and respond to N-acetylcysteine treatment in patients with systemic lupus erythematosus. Arthritis Rheum., 2013, 65(5), 1313-1318.
[http://dx.doi.org/10.1002/art.37893] [PMID: 23400548]
[115]
Lai, Z.W.; Hanczko, R.; Bonilla, E.; Caza, T.N.; Clair, B.; Bartos, A.; Miklossy, G.; Jimah, J.; Doherty, E.; Tily, H.; Francis, L.; Garcia, R.; Dawood, M.; Yu, J.; Ramos, I.; Coman, I.; Faraone, S.V.; Phillips, P.E.; Perl, A. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum., 2012, 64(9), 2937-2946.
[http://dx.doi.org/10.1002/art.34502] [PMID: 22549432]
[116]
Oaks, Z.; Winans, T.; Huang, N.; Banki, K.; Perl, A. Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years. Curr. Rheumatol. Rep., 2016, 18(12), 73.
[http://dx.doi.org/10.1007/s11926-016-0622-8] [PMID: 27812954]
[117]
Lai, Z.W.; Kelly, R.; Winans, T.; Marchena, I.; Shadakshari, A.; Yu, J.; Dawood, M.; Garcia, R.; Tily, H.; Francis, L.; Faraone, S.V.; Phillips, P.E.; Perl, A. Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet, 2018, 391(10126), 1186-1196.
[http://dx.doi.org/10.1016/S0140-6736(18)30485-9] [PMID: 29551338]
[118]
Weiner, G.J. Rituximab: mechanism of action. Semin. Hematol., 2010, 47(2), 115-123.
[http://dx.doi.org/10.1053/j.seminhematol.2010.01.011] [PMID: 20350658]
[119]
McGrath, H., Jr Ultraviolet-A1 irradiation therapy for systemic lupus erythematosus. Lupus, 2017, 26(12), 1239-1251.
[http://dx.doi.org/10.1177/0961203317707064] [PMID: 28480786]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy