Generic placeholder image

Current Nanomedicine

Editor-in-Chief

ISSN (Print): 2468-1873
ISSN (Online): 2468-1881

Review Article

Role of Nanomedicine in Treatment of Brain Cancer

Author(s): Shivani Verma, Puneet Utreja and Lalit Kumar*

Volume 10, Issue 2, 2020

Page: [105 - 129] Pages: 25

DOI: 10.2174/2405461503666181119103142

Price: $65

conference banner
Abstract

Background: Drug delivery to cancerous brain is a challenging task as it is surrounded by an efficient protective barrier. The main hurdles for delivery of bioactive molecules to cancerous brain are blood brain barrier (BBB), the invasive nature of gliomas, drug resistance, and difficult brain interstitium transportation. Therefore, treatment of brain cancer with the available drug regimen is difficult and has shown little improvement in recent years.

Methods: We searched about recent advancements in the use of nanomedicine for effective treatment of the brain cancer. We focused on the use of liposomes, nanoparticles, polymeric micelles, and dendrimers to improve brain cancer therapy.

Results: Nanomedicines are well suited for the treatment of brain cancer owing to their highly acceptable biological, chemical, and physical properties. Smaller size of nanomedicines also enhances their anticancer potential and penetration into blood brain barrier (BBB).

Conclusion: Recently, nanomedicine based approaches have been developed and investigated for effective treatment of brain cancer. Some of these have been translated into clinical practice, in order to attain therapeutic needs of gliomas. Future advancements in nanomedicines will likely produce significant changes in methods and practice of brain cancer therapy.

Keywords: Blood Brain Barrier (BBB), gliomas, interstitium, nanomedicine, nanoparticles, brain cancer.

Next »
Graphical Abstract
[1]
Castro MG, Cowen R, Williamson IK, et al. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 2003; 98(1): 71-108.
[http://dx.doi.org/10.1016/S0163-7258(03)00014-7] [PMID: 12667889]
[2]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[3]
de Robles P, Fiest KM, Frolkis AD, et al. The worldwide incidence and prevalence of primary brain tumors: a systematic review and meta-analysis. Neuro-oncol 2015; 17(6): 776-83.
[http://dx.doi.org/10.1093/neuonc/nou283] [PMID: 25313193]
[4]
Dunn IF, Heese O, Black PM. Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 2000; 50(1-2): 121-37.
[http://dx.doi.org/10.1023/A:1006436624862] [PMID: 11245272]
[5]
Dix AR, Brooks WH, Roszman TL, Morford LA. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 1999; 100(1-2): 216-32.
[http://dx.doi.org/10.1016/S0165-5728(99)00203-9] [PMID: 10695732]
[6]
Brandsma D, van den Bent MJ. Molecular targeted therapies and chemotherapy in malignant gliomas. Curr Opin Oncol 2007; 19(6): 598-605.
[http://dx.doi.org/10.1097/CCO.0b013e3282f0313b] [PMID: 17906459]
[7]
Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv 2013; 4(6): 687-704.
[http://dx.doi.org/10.4155/tde.13.38] [PMID: 23738667]
[8]
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16(1): 1-13.
[http://dx.doi.org/10.1016/j.nbd.2003.12.016] [PMID: 15207256]
[9]
Lesniak MS, Brem H. Targeted therapy for brain tumours. Nat Rev Drug Discov 2004; 3(6): 499-508.
[http://dx.doi.org/10.1038/nrd1414] [PMID: 15173839]
[10]
Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci 2000; 89(11): 1371-88.
[http://dx.doi.org/10.1002/1520-6017(200011)89:11<1371:AID-JPS1>3.0.CO;2-D] [PMID: 11015683]
[11]
Deeksha MR, Sharma PK. Brain targeted drug delivery: Factors, approaches and patents. Recent Pat Nanomed 2014; 4: 2-14.
[http://dx.doi.org/10.2174/1877912304666140707184721]
[12]
Cecchelli R, Berezowski V, Lundquist S, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 2007; 6(8): 650-61.
[http://dx.doi.org/10.1038/nrd2368] [PMID: 17667956]
[13]
Ewend MG, Elbabaa S, Carey LA. Current treatment paradigms for the management of patients with brain metastases. Neurosurgery 2005; 57(5) (Suppl.): S66- S77, S1-S4.
[http://dx.doi.org/10.1227/01.NEU.0000182739.84734.6E] [PMID: 16237291]
[14]
Tanaka Y, Fujii M, Saito T, Kawamori J. Radiation therapy for brain tumors. Nippon Igaku Hoshasen Gakkai Zasshi 2004; 64(7): 387-93.
[PMID: 15688744]
[15]
Skowrońska-Gardas A. A literature review of the recent radiotherapy clinical trials in pediatric brain tumors. Rev Recent Clin Trials 2009; 4(1): 42-55.
[http://dx.doi.org/10.2174/157488709787047567] [PMID: 19149762]
[16]
Suh JH. Stereotactic radiosurgery for the management of brain metastases. N Engl J Med 2010; 362(12): 1119-27.
[http://dx.doi.org/10.1056/NEJMct0806951] [PMID: 20335588]
[17]
Kocher M, Wittig A, Piroth MD, et al. Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 2014; 190(6): 521-32.
[http://dx.doi.org/10.1007/s00066-014-0648-7] [PMID: 24715242]
[18]
Moss RL. Critical review, with an optimistic outlook, on Boron Neutron Capture Therapy (BNCT). Appl Radiat Isot 2014; 88: 2-11.
[http://dx.doi.org/10.1016/j.apradiso.2013.11.109] [PMID: 24355301]
[19]
Franceschi E, Tosoni A, Bartolini S, Mazzocchi V, Fioravanti A, Brandes AA. Treatment options for recurrent glioblastoma: pitfalls and future trends. Expert Rev Anticancer Ther 2009; 9(5): 613-9.
[http://dx.doi.org/10.1586/era.09.23] [PMID: 19445578]
[20]
Keles GE, Anderson B, Berger MS. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 1999; 52(4): 371-9.
[http://dx.doi.org/10.1016/S0090-3019(99)00103-2] [PMID: 10555843]
[21]
Ghodsi SM, Habibi Z, Hanaei S, Moradi E, Nejat F. Brain tumors in infants. J Pediatr Neurosci 2015; 10(4): 335-40.
[http://dx.doi.org/10.4103/1817-1745.174454] [PMID: 26962338]
[22]
Blakeley J. Drug delivery to brain tumors. Curr Neurol Neurosci Rep 2008; 8(3): 235-41.
[http://dx.doi.org/10.1007/s11910-008-0036-8] [PMID: 18541119]
[23]
Galanis E, Buckner JC. Chemotherapy of brain tumors. Curr Opin Neurol 2000; 13(6): 619-25.
[http://dx.doi.org/10.1097/00019052-200012000-00002] [PMID: 11148660]
[24]
Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv 2009; 6(10): 1017-32.
[http://dx.doi.org/10.1517/17425240903167942] [PMID: 19732031]
[25]
Mathieu D, Fortin D. Chemotherapy and delivery in the treatment of primary brain tumors. Curr Clin Pharmacol 2007; 2(3): 197-211.
[http://dx.doi.org/10.2174/157488407781668767] [PMID: 18690866]
[26]
Muldoon LL, Soussain C, Jahnke K, et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007; 25(16): 2295-305.
[http://dx.doi.org/10.1200/JCO.2006.09.9861] [PMID: 17538176]
[27]
Provenzale JM, Mukundan S, Dewhirst M. The role of blood-brain barrier permeability in brain tumor imaging and therapeutics. AJR Am J Roentgenol 2005; 185(3): 763-7.
[http://dx.doi.org/10.2214/ajr.185.3.01850763] [PMID: 16120931]
[28]
Huynh GH, Deen DF, Szoka FC Jr. Barriers to carrier mediated drug and gene delivery to brain tumors. J Control Release 2006; 110(2): 236-59.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.053] [PMID: 16318895]
[29]
Stupp R, Hegi ME, Gilbert MR, Chakravarti A. Chemoradiotherapy in malignant glioma: standard of care and future directions. J Clin Oncol 2007; 25(26): 4127-36.
[http://dx.doi.org/10.1200/JCO.2007.11.8554] [PMID: 17827463]
[30]
Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001; 47(1): 65-81.
[http://dx.doi.org/10.1016/S0169-409X(00)00122-8] [PMID: 11251246]
[31]
Sarin H, Kanevsky AS, Wu H, et al. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells. J Transl Med 2008; 6: 80-8.
[http://dx.doi.org/10.1186/1479-5876-6-80] [PMID: 19094226]
[32]
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005; 19(3): 311-30.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[33]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53(2): 283-318.
[PMID: 11356986]
[34]
Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 2006; 3(2): 219-32.
[http://dx.doi.org/10.2174/156720106776359230] [PMID: 16611008]
[35]
Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007; 28(33): 4947-67.
[http://dx.doi.org/10.1016/j.biomaterials.2007.06.011] [PMID: 17716726]
[36]
Afergan E, Epstein H, Dahan R, et al. Delivery of serotonin to the brain by monocytes following phagocytosis of liposomes. J Control Release 2008; 132(2): 84-90.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.017] [PMID: 18805446]
[37]
Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 2005; 298(2): 274-92.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.031] [PMID: 15896933]
[38]
Zhang Y, Jeong Lee H, Boado RJ, Pardridge WM. Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 2002; 4(2): 183-94.
[http://dx.doi.org/10.1002/jgm.255] [PMID: 11933219]
[39]
Zhang Y, Zhu C, Pardridge WM. Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 2002; 6(1): 67-72.
[http://dx.doi.org/10.1006/mthe.2002.0633] [PMID: 12095305]
[40]
Bohl Kullberg E, Carlsson J, Edwards K, Capala J, Sjöberg S, Gedda L. Introductory experiments on ligand liposomes as delivery agents for boron neutron capture therapy. Int J Oncol 2003; 23(2): 461-7.
[http://dx.doi.org/10.3892/ijo.23.2.461] [PMID: 12851696]
[41]
Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004; 10(11): 3667-77.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0740] [PMID: 15173073]
[42]
Mamot C, Nguyen JB, Pourdehnad M, et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol 2004; 68(1): 1-9.
[http://dx.doi.org/10.1023/B:NEON.0000024743.56415.4b] [PMID: 15174514]
[43]
Arnold RD, Mager DE, Slack JE, Straubinger RM. Effect of repetitive administration of Doxorubicin-containing liposomes on plasma pharmacokinetics and drug biodistribution in a rat brain tumor model. Clin Cancer Res 2005; 11(24 Pt 1): 8856-65.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1365] [PMID: 16361575]
[44]
Noble CO, Krauze MT, Drummond DC, et al. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: pharmacology and efficacy. Cancer Res 2006; 66(5): 2801-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3535] [PMID: 16510602]
[45]
Shao K, Hou Q, Duan W, Go ML, Wong KP, Li QT. Intracellular drug delivery by sulfatide-mediated liposomes to gliomas. J Control Release 2006; 115(2): 150-7.
[http://dx.doi.org/10.1016/j.jconrel.2006.07.024] [PMID: 16963144]
[46]
Madhankumar AB, Slagle-Webb B, Mintz A, Sheehan JM, Connor JR. Interleukin-13 receptor-targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol Cancer Ther 2006; 5(12): 3162-9.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0480] [PMID: 17172420]
[47]
Gupta B, Torchilin VP. Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 2007; 56(8): 1215-23.
[http://dx.doi.org/10.1007/s00262-006-0273-0] [PMID: 17219149]
[48]
Feng B, Tomizawa K, Michiue H, et al. Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-His. Biomaterials 2009; 30(9): 1746-55.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.010] [PMID: 19121537]
[49]
Madhankumar AB, Slagle-Webb B, Wang X, et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 2009; 8(3): 648-54.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0853] [PMID: 19276162]
[50]
Ying X, Wen H, Lu WL, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release 2010; 141(2): 183-92.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.020] [PMID: 19799948]
[51]
Mishra PK, Gulbake A, Jain A, Vyas SP, Jain SK. Targeted delivery of an anti-cancer agent via steroid coupled liposomes. Drug Deliv 2009; 16(8): 437-47.
[http://dx.doi.org/10.3109/10717540903271391] [PMID: 19839788]
[52]
Tian W, Ying X, Du J, et al. Enhanced efficacy of functionalized epirubicin liposomes in treating brain glioma-bearing rats. Eur J Pharm Sci 2010; 41(2): 232-43.
[http://dx.doi.org/10.1016/j.ejps.2010.06.008] [PMID: 20600880]
[53]
Qin Y, Chen H, Zhang Q, et al. Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 2011; 420(2): 304-12.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.008] [PMID: 21945185]
[54]
Orthmann A, Zeisig R, Süss R, Lorenz D, Lemm M, Fichtner I. Treatment of experimental brain metastasis with MTO-liposomes: impact of fluidity and LRP-targeting on the therapeutic result. Pharm Res 2012; 29(7): 1949-59.
[http://dx.doi.org/10.1007/s11095-012-0723-7] [PMID: 22399388]
[55]
Yang Y, Yan Z, Wei D, et al. Tumor-penetrating peptide functionalization enhances the anti-glioblastoma effect of doxorubicin liposomes. Nanotechnology 2013; 24(40)405101
[http://dx.doi.org/10.1088/0957-4484/24/40/405101] [PMID: 24029287]
[56]
Yue PJ, He L, Qiu SW, et al. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol Cancer 2014; 13: 191.
[http://dx.doi.org/10.1186/1476-4598-13-191] [PMID: 25128329]
[57]
Gao J, Wang Z, Liu H, Wang L, Huang G. Liposome encapsulated of temozolomide for the treatment of glioma tumor: preparation, characterization and evaluation. Drug Discov Ther 2015; 9(3): 205-12.
[http://dx.doi.org/10.5582/ddt.2015.01016] [PMID: 26193943]
[58]
Vijayakumar MR, Vajanthri KY, Balavigneswaran CK, et al. Pharmacokinetics, biodistribution, in vitro cytotoxicity and biocompatibility of Vitamin E TPGS coated trans resveratrol liposomes. Colloids Surf B Biointerfaces 2016; 145: 479-91.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.037] [PMID: 27236510]
[59]
Luciano R, Saracino R, Battafarano G, et al. New perspectives in glioblastoma: Nanoparticles-based approaches. Curr Cancer Drug Targets 2017; 17: 203-20.
[PMID: 27528362]
[60]
Gagliardi M. Novel biodegradable nanocarriers for enhanced drug delivery. Ther Deliv 2016; 7(12): 809-26.
[http://dx.doi.org/10.4155/tde-2016-0051] [PMID: 27834624]
[61]
Khan I, Gothwal A, Sharma AK, et al. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst 2016; 33(2): 159-93.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015273] [PMID: 27651101]
[62]
Ma DD, Yang WX. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget 2016; 7(26): 40882-903.
[http://dx.doi.org/10.18632/oncotarget.8553] [PMID: 27056889]
[63]
Gelperina SE, Khalansky AS, Skidan IN, et al. Toxicological studies of doxorubicin bound to polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma. Toxicol Lett 2002; 126(2): 131-41.
[http://dx.doi.org/10.1016/S0378-4274(01)00456-8] [PMID: 11751017]
[64]
Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 2004; 99(2): 259-69.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.006] [PMID: 15380635]
[65]
Wang B, Lv L, Wang Z, et al. Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel. Sci Rep 2015; 5: 16589.
[http://dx.doi.org/10.1038/srep16589] [PMID: 26567528]
[66]
Ambruosi A, Gelperina S, Khalansky A, Tanski S, Theisen A, Kreuter J. Influence of surfactants, polymer and doxorubicin loading on the anti-tumour effect of poly(butyl cyanoacrylate) nanoparticles in a rat glioma model. J Microencapsul 2006; 23(5): 582-92.
[http://dx.doi.org/10.1080/02652040600788080] [PMID: 16980278]
[67]
Pulkkinen M, Pikkarainen J, Wirth T, et al. Three-step tumor targeting of paclitaxel using biotinylated PLA-PEG nanoparticles and avidin-biotin technology: Formulation development and in vitro anticancer activity. Eur J Pharm Biopharm 2008; 70(1): 66-74.
[http://dx.doi.org/10.1016/j.ejpb.2008.04.018] [PMID: 18555675]
[68]
Wang CX, Huang LS, Hou LB, et al. Antitumor effects of polysorbate-80 coated gemcitabine polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma cells of a brain tumor model. Brain Res 2009; 1261: 91-9.
[http://dx.doi.org/10.1016/j.brainres.2009.01.011] [PMID: 19401168]
[69]
Jiang X, Xin H, Sha X, et al. PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Int J Pharm 2011; 420(2): 385-94.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.052] [PMID: 21920419]
[70]
Chang J, Paillard A, Passirani C, et al. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res 2012; 29(6): 1495-505.
[http://dx.doi.org/10.1007/s11095-011-0624-1] [PMID: 22167349]
[71]
Ling Y, Wei K, Zou F, Zhong S. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm 2012; 430(1-2): 266-75.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.047] [PMID: 22486964]
[72]
Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials 2012; 33(32): 8167-76.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.046] [PMID: 22889488]
[73]
Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells. Int J Pharm 2012; 437(1-2): 29-41.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.062] [PMID: 22890189]
[74]
Callewaert M, Dukic S, Van Gulick L, et al. Etoposide encapsulation in surface-modified poly(lactide-co-glycolide) nanoparticles strongly enhances glioma antitumor efficiency. J Biomed Mater Res A 2013; 101(5): 1319-27.
[http://dx.doi.org/10.1002/jbm.a.34442] [PMID: 23065812]
[75]
Nance E, Zhang C, Shih TY, Xu Q, Schuster BS, Hanes J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano 2014; 8(10): 10655-64.
[http://dx.doi.org/10.1021/nn504210g] [PMID: 25259648]
[76]
Householder KT, DiPerna DM, Chung EP, et al. Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 2015; 479(2): 374-80.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.002] [PMID: 25562639]
[77]
Ashour AE, Badran MM, Kumar A, Rishi AK, Yassin AE. Di-Block PLCL and tri-block plclg matrix polymeric nanoparticles enhanced the anticancer activity of loaded 5-fluorouracil. IEEE Trans Nanobioscience 2016; 15(7): 739-47.
[http://dx.doi.org/10.1109/TNB.2016.2612340] [PMID: 28029617]
[78]
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater Sci Eng C 2016; 68: 982-94.
[http://dx.doi.org/10.1016/j.msec.2016.05.119] [PMID: 27524099]
[79]
Rostami E, Kashanian S, Azandaryani AH, Faramarzi H, Dolatabadi JE, Omidfar K. Drug targeting using solid lipid nanoparticles. Chem Phys Lipids 2014; 181: 56-61.
[http://dx.doi.org/10.1016/j.chemphyslip.2014.03.006] [PMID: 24717692]
[80]
Qi J, Lu Y, Wu W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr Drug Metab 2012; 13(4): 418-28.
[http://dx.doi.org/10.2174/138920012800166526] [PMID: 22443536]
[81]
Brioschi A, Zenga F, Zara GP, Gasco MR, Ducati A, Mauro A. Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurol Res 2007; 29(3): 324-30.
[http://dx.doi.org/10.1179/016164107X187017] [PMID: 17509234]
[82]
Caruso G, Raudino G, Caffo M. Patented nanomedicines for the treatment of brain tumors. Pharm Pat Anal 2013; 2(6): 745-54.
[http://dx.doi.org/10.4155/ppa.13.56] [PMID: 24237240]
[83]
Kuo YC, Liang CT. Inhibition of human brain malignant glioblastoma cells using carmustine-loaded catanionic solid lipid nanoparticles with surface anti-epithelial growth factor receptor. Biomaterials 2011; 32(12): 3340-50.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.048] [PMID: 21296415]
[84]
Kuo YC, Liang CT. Catanionic solid lipid nanoparticles carrying doxorubicin for inhibiting the growth of U87MG cells. Colloids Surf B Biointerfaces 2011; 85(2): 131-7.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.011] [PMID: 21411296]
[85]
Martins SM, Sarmento B, Nunes C, Lúcio M, Reis S, Ferreira DC. Brain targeting effect of camptothecin-loaded solid lipid nanoparticles in rat after intravenous administration. Eur J Pharm Biopharm 2013; 85(3 Pt A): 488-502.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.011] [PMID: 23994244]
[86]
Battaglia L, Gallarate M, Peira E, et al. Solid lipid nanoparticles for potential doxorubicin delivery in glioblastoma treatment: preliminary in vitro studies. J Pharm Sci 2014; 103(7): 2157-65.
[http://dx.doi.org/10.1002/jps.24002] [PMID: 24824141]
[87]
Jose S, Anju SS, Cinu TA, Aleykutty NA, Thomas S, Souto EB. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm 2014; 474(1-2): 6-13.
[http://dx.doi.org/10.1016/j.ijpharm.2014.08.003] [PMID: 25102112]
[88]
Kuo YC, Lee CH. Inhibition against growth of glioblastoma multiforme in vitro using etoposide-loaded solid lipid nanoparticles with p-aminophenyl-α-D-manno-pyranoside and folic acid. J Pharm Sci 2015; 104(5): 1804-14.
[http://dx.doi.org/10.1002/jps.24388] [PMID: 25694089]
[89]
Garanti T, Stasik A, Burrow AJ, Alhnan MA, Wan KW. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int J Pharm 2016; 500(1-2): 305-15.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.018] [PMID: 26775062]
[90]
Patel TR. Nanocarrier-based therapies for CNS tumors. CNS Oncol 2014; 3(2): 115-22.
[http://dx.doi.org/10.2217/cns.14.2] [PMID: 25055017]
[91]
Costantino L, Boraschi D, Eaton M. Challenges in the design of clinically useful brain-targeted drug nanocarriers. Curr Med Chem 2014; 21(37): 4227-46.
[http://dx.doi.org/10.2174/0929867321666140716101921] [PMID: 25039774]
[92]
Dinda SC, Pattnaik G. Nanobiotechnology-based drug delivery in brain targeting. Curr Pharm Biotechnol 2013; 14(15): 1264-74.
[http://dx.doi.org/10.2174/1389201015666140608143719] [PMID: 24910011]
[93]
Zhan C, Gu B, Xie C, Li J, Liu Y, Lu W. Cyclic RGD conjugated poly(ethylene glycol)-co-poly(lactic acid) micelle enhances paclitaxel anti-glioblastoma effect. J Control Release 2010; 143(1): 136-42.
[http://dx.doi.org/10.1016/j.jconrel.2009.12.020] [PMID: 20056123]
[94]
Wang Z, Hu X, Yue J, Jing X. Experimental study on biodegradable polymer-paclitaxel conjugate micelles for chemotherapy of C6 glioma. J Control Release 2011; 152(Suppl. 1): e41-2.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.110] [PMID: 22195914]
[95]
Muthu MS, Kulkarni SA, Liu Y, Feng SS. Development of docetaxel-loaded vitamin E TPGS micelles: formulation optimization, effects on brain cancer cells and biodistribution in rats. Nanomedicine (Lond) 2012; 7(3): 353-64.
[http://dx.doi.org/10.2217/nnm.11.111] [PMID: 22329606]
[96]
Wang Y, Wang C, Gong C, et al. Polysorbate 80 coated poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (ɛ-caprolactone) micelles for paclitaxel delivery. Int J Pharm 2012; 434(1-2): 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2012.05.015] [PMID: 22609127]
[97]
Niu J, Wang A, Ke Z, Zheng Z. Glucose transporter and folic acid receptor-mediated Pluronic P105 polymeric micelles loaded with doxorubicin for brain tumor treating. J Drug Target 2014; 22(8): 712-23.
[http://dx.doi.org/10.3109/1061186X.2014.913052] [PMID: 24806516]
[98]
Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles. Mol Med Rep 2015; 11(4): 3078-86.
[http://dx.doi.org/10.3892/mmr.2014.3017] [PMID: 25434368]
[99]
Wang G, Wang JJ, Tang XJ, Du L, Li F. In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer. Nanomedicine (Lond) 2016; 12(5): 1263-78.
[http://dx.doi.org/10.1016/j.nano.2016.02.004] [PMID: 26970027]
[100]
Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today 2016; 21(5): 766-78.
[http://dx.doi.org/10.1016/j.drudis.2016.02.006] [PMID: 26891979]
[101]
Mishra V, Gupta U, Jain NK. Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes. Pharmazie 2010; 65(12): 891-5.
[PMID: 21284258]
[102]
Cheng Y, Wang J, Rao T, He X, Xu T. Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 2008; 13: 1447-71.
[http://dx.doi.org/10.2741/2774] [PMID: 17981642]
[103]
Dwivedi N, Shah J, Mishra V, et al. Dendrimer-mediated approaches for the treatment of brain tumor. J Biomater Sci Polym Ed 2016; 27(7): 557-80.
[http://dx.doi.org/10.1080/09205063.2015.1133155] [PMID: 26928261]
[104]
Zhang L, Zhu S, Qian L, Pei Y, Qiu Y, Jiang Y. RGD-modified PEG-PAMAM-DOX conjugates: in vitro and in vivo studies for glioma. Eur J Pharm Biopharm 2011; 79(2): 232-40.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.025] [PMID: 21496485]
[105]
He H, Li Y, Jia XR, et al. PEGylated Poly(amido-amine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials 2011; 32(2): 478-87.
[http://dx.doi.org/10.1016/j.biomaterials.2010.09.002] [PMID: 20934215]
[106]
Liu X, Li G, Su Z, et al. Poly(amido amine) is an ideal carrier of miR-7 for enhancing gene silencing effects on the EGFR pathway in U251 glioma cells. Oncol Rep 2013; 29(4): 1387-94.
[http://dx.doi.org/10.3892/or.2013.2283] [PMID: 23404538]
[107]
Wang K, Zhang X, Liu Y, Liu C, Jiang B, Jiang Y. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates. Biomaterials 2014; 35(30): 8735-47.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.042] [PMID: 25023394]
[108]
Somani S, Blatchford DR, Millington O, Stevenson ML, Dufès C. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J Control Release 2014; 188: 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.006] [PMID: 24933602]
[109]
Somani S, Robb G, Pickard BS, Dufès C. Enhanced gene expression in the brain following intravenous administration of lactoferrin-bearing polypropylenimine dendriplex. J Control Release 2015; 217: 235-42.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.003] [PMID: 26362697]
[110]
Zamboni W, Engbers C, Yu N, Tonda M, Stewart B. Method for treating brain cancer. US Patent 20070254019, 2007.
[111]
Chang EH, Kim S, Rait A. Targeted liposomes. US Patent 20140120157, 2014.
[112]
Jennifer M. Munson, Ravi V. Bellamkonda, Jack L. Arbiser. Nanocarriers for therapy of invasive tumors. WO Patent 2010124004A2, 2010.
[113]
Jain SD, Bajaj AN. Intranasal pharmaceutical compositions of polymeric nanoparticles. WO Patent 2015087083A1, 2015.
[114]
Miqin Z, Richard GE, Forrest K, John RS, Zachary S, Omid V. Nanoparticles for targeting brain tumors and delivery of O6- benzylguanine. US Patent 20140286872A1, 2014.
[115]
Ekaterina V, Evgeny V, Evgenij S, Victor G, Maxim M, Maksim I. WO Patent 2014091078A1, 2014.
[116]
Li Yaping, Chen Lingli, Gu Wangwen. Fotemustine solid lipid nanoparticles and prepration method thereof. CN Patent 101606907B, 2011.
[117]
Antonella M, Panagiotis M, Manoj KM, Kannan R, Betty MT, Fan Z. Selective dendrimer delivery to brain tumors. WO Patent 2016025741A1, 2016.
[118]
Ryuta S, Teiji T. Ced of sn-38-loaded micelles against brain tumor. WO Patent 2016030748A1, 2016.
[119]
Chulhee C, Kyuha C, Jiho P. Micelle structure of nanopreparation for diagnosis or treatment of cancer disease and preparation method thereof. US Patent 9393308B2, 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy