Generic placeholder image

Anti-Infective Agents


ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Sonic Stimulation and Low Power Microwave Radiation Can Modulate Bacterial Virulence Towards Caenorhabditis elegans

Author(s): Priya Patel, Hiteshi Patel, Dhara Vekariya, Chinmayi Joshi, Pooja Patel, Steven Muskal and Vijay Kothari*

Volume 17, Issue 2, 2019

Page: [150 - 162] Pages: 13

DOI: 10.2174/2211352516666181102150049


Background: In view of the global threat of antimicrobial resistance, novel alternative approaches to deal with infectious bacteria are warranted, in addition to the conventional invasive therapeutic approaches.

Objective: This study aimed at investigating whether exposure to sonic stimulation or microwave radiation can affect virulence of pathogenic bacteria toward the model nematode host Caenorhabditis elegans.

Methods: Caenorhabditis elegans worms infected with different pathogenic bacteria were subjected to sonic treatment to investigate whether such sound treatment can exert any therapeutic effect on the infected worms. Virulence of microwave exposed bacteria was also assessed using this nematode host.

Results: Sound corresponding to 400 Hz, and the divine sound ‘Om’ conferred protective effect on C. elegans in face of bacterial infection, particularly that caused by Serratia marcescens or Staphylococcus aureus. The observed effect seemed to occur due to influence of sound on bacteria, and not on the worm. Additionally, effect of microwave exposure on bacterial virulence was also investigated, wherein microwave exposure could reduce virulence of S. aureus towards C. elegans.

Conclusion: Sonic stimulation/ microwave exposure was demonstrated to be capable of modulating bacterial virulence.

Keywords: Sonic stimulation, ‘Om’, microwave, athermal effect, virulence, antimicrobial resistance.

Graphical Abstract
Elsheakh, D.; Esmat, A.A.; Hala, A.E. Non-Invasive electromagnetic biological microwave testing. In: Microwave Systems and Applications, Open access peer-reviewed chapter.
Bandara, H.M.H.N.; Harb, A.; Kolacny, D.; Martins, P.; Smyth, H.D.C. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro. AAPS PharmSciTech, 2014, 15, 1644-1654.
Thiyagarajan, M. Portable plasma medical device for infection treatment and wound healing. In: ASME 2011 6th Frontiers in Biomedical Devices Conference, American Society of Mechanical Engineers, 30-32,. 2011.
Singh, S.; Kapoor, N. Health implications of electromagnetic fields, mechanisms of action, and research needs. Adv. Biol., 2014, •••, 1-24.
Leszczynski, D.; Joenväärä, S.; Reivinen, J.; Kuokka, R. Non-thermal activation of the hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and blood-brain barrier-related effects. Differentiation, 2002, 70, 120-129.
Regel, S.J.; Achermann, P. Cognitive performance measures in bioelectromagnetic research critical evaluation and recommendations. Environ. Health, 2011, 10(1), 10.
Kadam, V.V.; Nayak, R. Basics of acoustic science' in R Padhye, R Nayak (ed.) Acoustic Textiles, Springer, Singapore. , 2016; p. 33-42.
Ying, J.C.L.; Dayou, J.; Phin, C.K. Experimental investigation on the effects of audible sound to the growth of Escherichia coli. Mod. Appl. Sci., 2009, 3, 124.
Shaobin, G.; Wu, Y.; Li, K.; Li, S.; Ma, S.; Wang, Q.; Wang, R. A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids Surf. B Biointerfaces, 2010, 78, 367-371.
Aggio, R.B.M.; Obolonkin, V.; Villas-Bôas, S.G. Sonic vibration affects the metabolism of yeast cells growing in liquid culture: A metabolomic study. Metabolomics, 2012, 8, 670-678.
Kim, H.W. The effects of low frequency noise on the growth and resistance to antibiotics of soil bacteria and E. coli. APEC Youth Scientist J., 2016, 8, 1-10.
Liu, S.L.; Wu, W.J.; Yung, P.T. Effect of sonic stimulation on Bacillus endospore germination. FEMS Microbiol. Lett., 2016, 363(1)fnv217
Murphy, M.F.; Edwards, T.; Hobbs, G.; Shepherd, J.; Bezombes, F. Acoustic vibration can enhance bacterial biofilm formation. J. Biosci. Bioeng., 2016, 122, 765-770.
Kushwah, P.; Mishra, T.; Kothari, V. Effect of microwave radiation on growth, enzyme activity (amylase and pectinase), and/or exopolysaccharide production in Bacillus subtilis, Streptococcus mutans, Xanthomonas campestris and Pectobacterium carotovora. Br. Microbiol. Res. J., 2013, 3, 645-653.
Mishra, T.; Kushwah, P.; Kothari, V. Effect of low power microwave on bacterial growth, protein synthesis, and intracellular enzyme (glucose-6-phosphatase and β-galactosidase) activity. Biochem. Mol. Biol., 2013, 1, 27-33.
Dholiya, K.; Patel, D.; Kothari, V. Effect of low power microwave on microbial growth, enzyme activity, and aflatoxin production. Res. Biotechnol, 2012, 3(4), 28-34.
Ramanuj, K.; Bachani, P.; Kothari, V. In vitro antimicrobial activity of certain plant products/seed extracts against multidrug resistant Propionibacterium acnes, Malassezia furfur, and aflatoxin producing Aspergillus flavus. Res. Pharm., 2012, 2(3), 22-31.
Chaudhari, V.; Gosai, H.; Raval, S.; Kothari, V. Effect of certain natural products and organic solvents on quorum sensing in Chromobacterium violaceum. Asian Pac. J. Trop. Dis., 2014, 7, S204-S211.
Sarvaiya, N.; Kothari, V. Effect of audible sound in form of music on microbial growth and production of certain important metabolites. Microbiol., 2015, 84, 227-235.
Shah, A.; Raval, A.; Kothari, V. Sound stimulation can influence microbial growth and production of certain key metabolites. J. Microbiol. Biotechnol. Food Sci., 2016, 5, 330.
Sarvaiya, N.; Kothari, V. Audible sound in form of music can influence microbial growth, metabolism and antibiotic susceptibility. J. Appl. Biotechnol. Bioeng., 2017, 2, 00048.
Kothari, V.; Sharma, S.; Padia, D. Recent research advances on Chromobacterium violaceum. Asian Pac. J. Trop. Dis., 2017, 10, 744-752.
Kothari, V.; Joshi, C.; Patel, P.; Mehta, M.; Dubey, S.; Mishra, B.; Sarvaiya, N. Influence of a mono-frequency sound on bacteria can be a function of the sound-level. Indian J. Sci. Technol., 2018, 11(4)
Gosai, H.; Raval, S.; Chaudhari, V.; Kothari, V. Microwave mutagenesis for altered lactic acid production in Lactobacillus plantarum, and Streptococcus mutans. Curr. Trends Biotechnol. Pharm., 2014, 8, 402-412.
Kothari, V.; Mishra, T.; Kushwah, P. Mutagenic effect of microwave radiation on exopolysaccharide production in Xanthomonas campestris. Curr. Trends Biotechnol. Pharm., 2014, 8, 29-37.
Qiao, Y.; Wu, M.; Feng, Y.; Zhou, Z.; Chen, L.; Chen, F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci. Rep., 2018, 8, 1597.
Scheperjans, F.; Aho, V.; Pereira, P.A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Kinnunen, E. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov. Disord., 2015, 30, 350-358.
Petrov, V.A.; Saltykova, I.V.; Zhukova, I.A.; Alifirova, V.M.; Zhukova, N.G.; Dorofeeva, Y.B.; Mironova, Y.S. Analysis of gut microbiota in patients with parkinson’s disease. Bull. Exp. Biol. Med., 2017, 162, 734-737.
Picard, C.; Fioramonti, J.; Francois, A.; Robinson, T.; Neant, F.; Matuchansky, C. bifidobacteria as probiotic agents-physiological effects and clinical benefits. Aliment. Pharmacol. Ther., 2005, 22, 495-512.
Ku, S.; Park, M.S.; Ji, G.E.; You, H.J. Review on Bifidobacterium bifidum bgn4: Functionality and nutraceutical applications as a probiotic microorganism. Int. J. Mol. Sci., 2016, 17, 1544.
Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci., 2016, 39, 763-781.
Könönen, E. Pigmented Prevotella species in the periodontally healthy oral cavity. FEMS Immunol. Med. Microbiol., 1993, 6, 201-205.
Gurjar, A.A.; Ladhake, S.A. Analysis and dissection of sanskrit divine sound “om” using digital signal processing to study the science behind “OM” chanting. 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), 2016.
Kothari, V.; Patel, P.; Joshi, C.; Mishra, B.; Dubey, S.; Mehta, M. Quorum sensing modulatory effect of sound stimulation on Serratia marcescens and Pseudomonas aeruginosa. Curr. Trends Biotechnol. Pharm., 2016, 11, 121-128.
Liu, G.Y.; Nizet, V. Color me bad: Microbial pigments as virulence factors. Trends Microbiol., 2009, 17, 406-413.
Lapenda, J.C.; Silva, P.A.; Vicalvi, M.C.; Sena, K.X.F.R.; Nascimento, S.C. Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J. Microbiol. Biotechnol., 2015, 31, 399-406.
Hosokawa, K.; Soliev, A.B.; Kajihara, A.; Enomoto, K. Effects of a microbial pigment violacein on the activities of protein kinases. Cogent Biol., 2016, 21259863
Holm, A.; Vikstrom, E. Quorum sensing communication between bacteria and human cells: Signals, targets, and functions. Front. Plant Sci., 2014, 5, 309.
de Vasconcelos, A.T.R.; De Almeida, D.F.; Hungria, M.; Guimarães, C.T.; Antônio, R.V.; Almeida, F.C.; Araripe, J. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. USA, 2003, 100, 11660-11665.
Haddix, P.L.; Jones, S.; Patel, P.; Burnham, S.; Knights, K.; Powell, J.N.; LaForm, A. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens. J. Bacteriol., 2008, 190, 7453-7463.
Choi, S.Y.; Yoon, K.H.; Lee, J.I.; Mitchell, R.J. Violacein: Properties and production of a versatile bacterial pigment. BioMed Res. Int., 2015, 2015, 1-8.
Francisco, R.; Pérez-Tomás, R.; Gimènez-Bonafé, P.; Soto-Cerrato, V.; Giménez-Xavier, P.; Ambrosio, S. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur. J. Pharmacol., 2007, 572, 111-119.
Dalili, D.; Fouladdel, S.; Rastkari, N.; Samadi, N.; Ahmadkhaniha, R.; Ardavan, A.; Azizi, E. Prodigiosin, the red pigment of Serratia marcescens, shows cytotoxic effects and apoptosis induction in HT-29 and T47D cancer cell lines. Nat. Prod. Res., 2012, 26, 2078-2083.
Ibsen, S.; Tong, A.; Schutt, C.; Esener, S.; Chalasani, S.H. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun., 2015, 6, 1-12.
Matsuhashi, M.; Pankrushina, A.N.; Takeuchi, S.; Ohshima, H.; Miyoi, H.; Endoh, K.; Mano, Y. Production of sound waves by bacterial cells and the response of bacterial cells to sound. J. Gen. Appl. Microbiol., 1998, 44, 49-55.
Gu, S.B.; Yang, B.; Wu, Y.; Li, S.C.; Liu, W.; Duan, X.F.; Li, M.W. Growth and physiological characteristics of E. coli in response to the exposure of sound field. Pak. J. Biol. Sci., 2013, 16, 969-975.
Gu, S.; Qiao, S.; Wu, Y. The influence of metabolic network structures and energy metabolic pattern on E. coli K12 exposed to acoustic field: Based on Gene Ontology and KEGG pathway enrichment analysis.. PeerJPrePrints, 2017.
Natrah, F.M.I.; Ruwandeepika, H.D.; Pawar, S.; Karunasagar, I.; Sorgeloos, P.; Bossier, P.; Defoirdt, T. Regulation of virulence factors by quorum sensing in Vibrio harveyi. Vet. Microbiol., 2011, 154, 124-129.
Joshi, C.; Patel, P.; Singh, A.; Sukhadiya, J.; Shah, V.; Kothari, V. Frequency-dependent response of Chromobacterium violaceum to sonic stimulation and altered gene expression associated with enhanced violacein production at 300 Hz. Curr. Sci., 2018, 115, 83-90.
Song, Y.; Liu, C.; Lin, F.Y.; No, J.H.; Hensler, M.; Liu, Y.; Jeng, W.; Low, J.; Liu, G.Y.; Nizet, V.; Wang, H-J.; Oldfield, E. Inhibition of Staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: In vitro, in vivo, and crystallographic results. J. Med. Chem., 2009, 52, 3869-3880.
El-Fouly, M.Z.; Sharaf, A.M.; Shahin, A.M.; El-Bialy, H.A.; Omara, A.M.A. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J. Radiat. Res. Appl. Sci., 2015, 8, 36-48.
Unni, K.; Priji, P.; Geoffroy, V.; Doble, M.; Benjamin, S. Pseudomonas aeruginosa BUP2-A novel strain isolated from malabari goat produces Type 2 pyoverdine. Adv. Biosci. Biotechnol., 2014, 5, 874-885.
Dreyfuss, M.S.; Chipley, J.R. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl. Environ. Microbiol., 1980, 39, 13-16.
Copty, A.B.; Neve-Oz, Y.; Barak, I.; Golosovsky, M.; Davidov, D. Evidence for a specific microwave radiation effect on the green fluorescent protein. Biophys. J., 2006, 91, 1413-1423.
Carta, R.; Desogus, F. The effect of low-power microwaves on the growth of bacterial populations in a plug flow reactor. AIChE J., 2010, 56, 1270-1278.
Morent, R.; De Geyter, N. Inactivation of bacteria by non-thermal plasmas. In: Biomedical Engineering-Frontiers and Challenges, 2013, InTech.
Tipa, R.S.; Boekema, B.; Middelkoop, E.; Kroesen, G.M.W. (n.d.), “Cold Plasma for Bacterial Inactivation.” Retrieved from. .pdf [Accessed on 10 June 2015]
Raval, S.; Chaudhari, V.; Gosai, H.; Kothari, V. Effect of low power microwave radiation on pigment production in bacteria. Microbiol. Res., 2014, 5
Boyd-Brewer, C.; McCaffrey, R. Vibroacoustic sound therapy improves pain management and more. Holist. Nurs. Pract., 2004, 18, 111-118.
Negrete, B.J. Use of music therapy in the emergency room for pain and anxiety management, 2011.Retrieved from.
Lestard, N.R.; Valente, R.C.; Lopes, A.G.; Capella, M.A.M. Direct effects of music in non-auditory cells in culture. Noise Health, 2013, 15(66), 307-314.
Chisholm, A.D.; Xu, S. The Caenorhabditis elegans epidermis as a model skin. II: Differentiation and physiological roles. Wiley Interdiscip. Rev. Dev. Biol., 2012, 1, 879-902.

© 2022 Bentham Science Publishers | Privacy Policy