Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Autophagy Modulators and Neuroinflammation

Author(s): Kyoung Sang Cho, Jang Ho Lee, Jeiwon Cho, Guang-Ho Cha* and Gyun Jee Song*

Volume 27, Issue 6, 2020

Page: [955 - 982] Pages: 28

DOI: 10.2174/0929867325666181031144605

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders.

Objective: The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation.

Methods: We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions.

Results: Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders.

Conclusion: Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.

Keywords: Autophagy, autophagy modulators, neuroinflammation, neurological disorders, M2 microglia, neurodegeneration.

[1]
Glick, D.; Barth, S.; Macleod, K.F. Autophagy: cellular and molecular mechanisms. J. Pathol., 2010, 221(1), 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[2]
Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; Cuervo, A.M.; Debnath, J.; Deretic, V.; Dikic, I.; Eskelinen, E.L.; Fimia, G.M.; Fulda, S.; Gewirtz, D.A.; Green, D.R.; Hansen, M.; Harper, J.W.; Jäättelä, M.; Johansen, T.; Juhasz, G.; Kimmelman, A.C.; Kraft, C.; Ktistakis, N.T.; Kumar, S.; Levine, B.; Lopez-Otin, C.; Madeo, F.; Martens, S.; Martinez, J.; Melendez, A.; Mizushima, N.; Münz, C.; Murphy, L.O.; Penninger, J.M.; Piacentini, M.; Reggiori, F.; Rubinsztein, D.C.; Ryan, K.M.; Santambrogio, L.; Scorrano, L.; Simon, A.K.; Simon, H.U.; Simonsen, A.; Tavernarakis, N.; Tooze, S.A.; Yoshimori, T.; Yuan, J.; Yue, Z.; Zhong, Q.; Kroemer, G. Molecular definitions of autophagy and related processes. EMBO J., 2017, 36(13), 1811-1836.
[http://dx.doi.org/10.15252/embj.201796697] [PMID: 28596378]
[3]
Mizushima, N. Autophagy: process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[4]
Kroemer, G.; Mariño, G.; Levine, B. Autophagy and the integrated stress response. Mol. Cell, 2010, 40(2), 280-293.
[http://dx.doi.org/10.1016/j.molcel.2010.09.023] [PMID: 20965422]
[5]
Narendra, D.; Tanaka, A.; Suen, D.F.; Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol., 2008, 183(5), 795-803.
[http://dx.doi.org/10.1083/jcb.200809125] [PMID: 19029340]
[6]
Maejima, I.; Takahashi, A.; Omori, H.; Kimura, T.; Takabatake, Y.; Saitoh, T.; Yamamoto, A.; Hamasaki, M.; Noda, T.; Isaka, Y.; Yoshimori, T. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J., 2013, 32(17), 2336-2347.
[http://dx.doi.org/10.1038/emboj.2013.171] [PMID: 23921551]
[7]
Czarny, P.; Pawlowska, E.; Bialkowska-Warzecha, J.; Kaarniranta, K.; Blasiak, J. Autophagy in DNA damage response. Int. J. Mol. Sci., 2015, 16(2), 2641-2662.
[http://dx.doi.org/10.3390/ijms16022641] [PMID: 25625517]
[8]
Mazure, N.M.; Pouysségur, J. Hypoxia-induced autophagy: cell death or cell survival? Curr. Opin. Cell Biol., 2010, 22(2), 177-180.
[http://dx.doi.org/10.1016/j.ceb.2009.11.015] [PMID: 20022734]
[9]
Lee, H.K.; Lund, J.M.; Ramanathan, B.; Mizushima, N.; Iwasaki, A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science, 2007, 315(5817), 1398-1401.
[http://dx.doi.org/10.1126/science.1136880] [PMID: 17272685]
[10]
Scherz-Shouval, R.; Elazar, Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci., 2011, 36(1), 30-38.
[http://dx.doi.org/10.1016/j.tibs.2010.07.007] [PMID: 20728362]
[11]
Wong, E.; Cuervo, A.M. Autophagy gone awry in neurodegenerative diseases. Nat. Neurosci., 2010, 13(7), 805-811.
[http://dx.doi.org/10.1038/nn.2575] [PMID: 20581817]
[12]
Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med., 2013, 19(8), 983-997.
[http://dx.doi.org/10.1038/nm.3232] [PMID: 23921753]
[13]
Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell, 2008, 132(1), 27-42.
[http://dx.doi.org/10.1016/j.cell.2007.12.018] [PMID: 18191218]
[14]
Su, P.; Zhang, J.; Wang, D.; Zhao, F.; Cao, Z.; Aschner, M.; Luo, W. The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience, 2016, 319, 155-167.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.035] [PMID: 26827945]
[15]
Tansey, M.G.; McCoy, M.K.; Frank-Cannon, T.C. Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol., 2007, 208(1), 1-25.
[http://dx.doi.org/10.1016/j.expneurol.2007.07.004] [PMID: 17720159]
[16]
Frank-Cannon, T.C.; Alto, L.T.; McAlpine, F.E.; Tansey, M.G. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener., 2009, 4, 47.
[http://dx.doi.org/10.1186/1750-1326-4-47] [PMID: 19917131]
[17]
Hirsch, E.C.; Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol., 2009, 8(4), 382-397.
[http://dx.doi.org/10.1016/S1474-4422(09)70062-6] [PMID: 19296921]
[18]
Philips, T.; Robberecht, W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol., 2011, 10(3), 253-263.
[http://dx.doi.org/10.1016/S1474-4422(11)70015-1] [PMID: 21349440]
[19]
Kumar, A.; Loane, D.J. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav. Immun., 2012, 26(8), 1191-1201.
[http://dx.doi.org/10.1016/j.bbi.2012.06.008] [PMID: 22728326]
[20]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[21]
Tooze, S.A.; Yoshimori, T. The origin of the autophagosomal membrane. Nat. Cell Biol., 2010, 12(9), 831-835.
[http://dx.doi.org/10.1038/ncb0910-831] [PMID: 20811355]
[22]
Mizushima, N.; Yoshimori, T.; Levine, B. Methods in mammalian autophagy research. Cell, 2010, 140(3), 313-326.
[http://dx.doi.org/10.1016/j.cell.2010.01.028] [PMID: 20144757]
[23]
Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182), 1069-1075.
[http://dx.doi.org/10.1038/nature06639] [PMID: 18305538]
[24]
Dunlop, E.A.; Tee, A.R. mTOR and autophagy: a dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol., 2014, 36, 121-129.
[http://dx.doi.org/10.1016/j.semcdb.2014.08.006] [PMID: 25158238]
[25]
Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol., 2010, 22(2), 132-139.
[http://dx.doi.org/10.1016/j.ceb.2009.12.004] [PMID: 20056399]
[26]
Wong, P.M.; Puente, C.; Ganley, I.G.; Jiang, X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy, 2013, 9(2), 124-137.
[http://dx.doi.org/10.4161/auto.23323] [PMID: 23295650]
[27]
Kaur, J.; Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol., 2015, 16(8), 461-472.
[http://dx.doi.org/10.1038/nrm4024] [PMID: 26177004]
[28]
Kuma, A.; Mizushima, N.; Ishihara, N.; Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem., 2002, 277(21), 18619-18625.
[http://dx.doi.org/10.1074/jbc.M111889200] [PMID: 11897782]
[29]
Barth, S.; Glick, D.; Macleod, K.F. Autophagy: assays and artifacts. J. Pathol., 2010, 221(2), 117-124.
[http://dx.doi.org/10.1002/path.2694] [PMID: 20225337]
[30]
He, C.; Baba, M.; Cao, Y.; Klionsky, D.J. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Biol. Cell, 2008, 19(12), 5506-5516.
[http://dx.doi.org/10.1091/mbc.e08-05-0544] [PMID: 18829864]
[31]
Nakatogawa, H.; Ichimura, Y.; Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 2007, 130(1), 165-178.
[http://dx.doi.org/10.1016/j.cell.2007.05.021] [PMID: 17632063]
[32]
Klionsky, D.J. The molecular machinery of autophagy: unanswered questions. J. Cell Sci., 2005, 118(Pt 1), 7-18.
[http://dx.doi.org/10.1242/jcs.01620] [PMID: 15615779]
[33]
Tooze, S.A.; Abada, A.; Elazar, Z. Endocytosis and autophagy: exploitation or cooperation? Cold Spring Harb. Perspect. Biol., 2014, 6(5)a018358
[http://dx.doi.org/10.1101/cshperspect.a018358] [PMID: 24789822]
[34]
Eskelinen, E.L.; Tanaka, Y.; Saftig, P. At the acidic edge: emerging functions for lysosomal membrane proteins. Trends Cell Biol., 2003, 13(3), 137-145.
[http://dx.doi.org/10.1016/S0962-8924(03)00005-9] [PMID: 12628346]
[35]
Jäger, S.; Bucci, C.; Tanida, I.; Ueno, T.; Kominami, E.; Saftig, P.; Eskelinen, E.L. Role for Rab7 in maturation of late autophagic vacuoles. J. Cell Sci., 2004, 117(Pt 20), 4837-4848.
[http://dx.doi.org/10.1242/jcs.01370] [PMID: 15340014]
[36]
Ishihara, N.; Hamasaki, M.; Yokota, S.; Suzuki, K.; Kamada, Y.; Kihara, A.; Yoshimori, T.; Noda, T.; Ohsumi, Y. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol. Biol. Cell, 2001, 12(11), 3690-3702.
[http://dx.doi.org/10.1091/mbc.12.11.3690] [PMID: 11694599]
[37]
Wang, C.W.; Stromhaug, P.E.; Shima, J.; Klionsky, D.J. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J. Biol. Chem., 2002, 277(49), 47917-47927.
[http://dx.doi.org/10.1074/jbc.M208191200] [PMID: 12364329]
[38]
Liang, C.; Lee, J.S.; Inn, K.S.; Gack, M.U.; Li, Q.; Roberts, E.A.; Vergne, I.; Deretic, V.; Feng, P.; Akazawa, C.; Jung, J.U. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat. Cell Biol., 2008, 10(7), 776-787.
[http://dx.doi.org/10.1038/ncb1740] [PMID: 18552835]
[39]
Eskelinen, E.L. Maturation of autophagic vacuoles in Mammalian cells. Autophagy, 2005, 1(1), 1-10.
[http://dx.doi.org/10.4161/auto.1.1.1270] [PMID: 16874026]
[40]
Yang, Z.; Huang, J.; Geng, J.; Nair, U.; Klionsky, D.J. Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol. Biol. Cell, 2006, 17(12), 5094-5104.
[http://dx.doi.org/10.1091/mbc.e06-06-0479] [PMID: 17021250]
[41]
Yamamoto, A.; Yue, Z. Autophagy and its normal and pathogenic states in the brain. Annu. Rev. Neurosci., 2014, 37, 55-78.
[http://dx.doi.org/10.1146/annurev-neuro-071013-014149] [PMID: 24821313]
[42]
Kulkarni, V.V.; Maday, S. Compartment-specific dynamics and functions of autophagy in neurons. Dev. Neurobiol., 2018, 78(3), 298-310.
[http://dx.doi.org/10.1002/dneu.22562] [PMID: 29197160]
[43]
Maday, S.; Wallace, K.E.; Holzbaur, E.L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol., 2012, 196(4), 407-417.
[http://dx.doi.org/10.1083/jcb.201106120] [PMID: 22331844]
[44]
Ravikumar, B.; Acevedo-Arozena, A.; Imarisio, S.; Berger, Z.; Vacher, C.; O’Kane, C.J.; Brown, S.D.; Rubinsztein, D.C. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet., 2005, 37(7), 771-776.
[http://dx.doi.org/10.1038/ng1591] [PMID: 15980862]
[45]
Ariosa, A.R.; Klionsky, D.J. Autophagy core machinery: overcoming spatial barriers in neurons. J. Mol. Med. (Berl.), 2016, 94(11), 1217-1227.
[http://dx.doi.org/10.1007/s00109-016-1461-9] [PMID: 27544281]
[46]
Tammineni, P.; Cai, Q. Defective retrograde transport impairs autophagic clearance in Alzheimer disease neurons. Autophagy, 2017, 13(5), 982-984.
[http://dx.doi.org/10.1080/15548627.2017.1291114] [PMID: 28318364]
[47]
Stephan, J.S.; Yeh, Y.Y.; Ramachandran, V.; Deminoff, S.J.; Herman, P.K. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc. Natl. Acad. Sci. USA, 2009, 106(40), 17049-17054.
[http://dx.doi.org/10.1073/pnas.0903316106] [PMID: 19805182]
[48]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[49]
Klionsky, D.J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 931-937.
[http://dx.doi.org/10.1038/nrm2245] [PMID: 17712358]
[50]
Nazio, F.; Strappazzon, F.; Antonioli, M.; Bielli, P.; Cianfanelli, V.; Bordi, M.; Gretzmeier, C.; Dengjel, J.; Piacentini, M.; Fimia, G.M.; Cecconi, F. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol., 2013, 15(4), 406-416.
[http://dx.doi.org/10.1038/ncb2708] [PMID: 23524951]
[51]
Gwinn, D.M.; Shackelford, D.B.; Egan, D.F.; Mihaylova, M.M.; Mery, A.; Vasquez, D.S.; Turk, B.E.; Shaw, R.J. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell, 2008, 30(2), 214-226.
[http://dx.doi.org/10.1016/j.molcel.2008.03.003] [PMID: 18439900]
[52]
Cantó, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241), 1056-1060.
[http://dx.doi.org/10.1038/nature07813] [PMID: 19262508]
[53]
Lee, I.H.; Cao, L.; Mostoslavsky, R.; Lombard, D.B.; Liu, J.; Bruns, N.E.; Tsokos, M.; Alt, F.W.; Finkel, T. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA, 2008, 105(9), 3374-3379.
[http://dx.doi.org/10.1073/pnas.0712145105] [PMID: 18296641]
[54]
Stretton, C.; Hoffmann, T.M.; Munson, M.J.; Prescott, A.; Taylor, P.M.; Ganley, I.G.; Hundal, H.S. GSK3-mediated raptor phosphorylation supports amino-acid-dependent mTORC1-directed signalling. Biochem. J., 2015, 470(2), 207-221.
[http://dx.doi.org/10.1042/BJ20150404] [PMID: 26348909]
[55]
Azoulay-Alfaguter, I.; Elya, R.; Avrahami, L.; Katz, A.; Eldar-Finkelman, H. Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene, 2015, 34(35), 4613-4623.
[http://dx.doi.org/10.1038/onc.2014.390] [PMID: 25500539]
[56]
Sun, A.; Li, C.; Chen, R.; Huang, Y.; Chen, Q.; Cui, X.; Liu, H.; Thrasher, J.B.; Li, B. GSK-3β controls autophagy by modulating LKB1-AMPK pathway in prostate cancer cells. Prostate, 2016, 76(2), 172-183.
[http://dx.doi.org/10.1002/pros.23106] [PMID: 26440826]
[57]
Yi, C.; Ma, M.; Ran, L.; Zheng, J.; Tong, J.; Zhu, J.; Ma, C.; Sun, Y.; Zhang, S.; Feng, W.; Zhu, L.; Le, Y.; Gong, X.; Yan, X.; Hong, B.; Jiang, F.J.; Xie, Z.; Miao, D.; Deng, H.; Yu, L. Function and molecular mechanism of acetylation in autophagy regulation. Science, 2012, 336(6080), 474-477.
[http://dx.doi.org/10.1126/science.1216990] [PMID: 22539722]
[58]
Füllgrabe, J.; Heldring, N.; Hermanson, O.; Joseph, B. Cracking the survival code: autophagy-related histone modifications. Autophagy, 2014, 10(4), 556-561.
[http://dx.doi.org/10.4161/auto.27280] [PMID: 24429873]
[59]
Shao, Y.; Gao, Z.; Marks, P.A.; Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA, 2004, 101(52), 18030-18035.
[http://dx.doi.org/10.1073/pnas.0408345102] [PMID: 15596714]
[60]
Harder, B.; Jiang, T.; Wu, T.; Tao, S.; Rojo de la Vega, M.; Tian, W.; Chapman, E.; Zhang, D.D. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem. Soc. Trans., 2015, 43(4), 680-686.
[http://dx.doi.org/10.1042/BST20150020] [PMID: 26551712]
[61]
Jain, A.; Lamark, T.; Sjøttem, E.; Larsen, K.B.; Awuh, J.A.; Øvervatn, A.; McMahon, M.; Hayes, J.D.; Johansen, T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem., 2010, 285(29), 22576-22591.
[http://dx.doi.org/10.1074/jbc.M110.118976] [PMID: 20452972]
[62]
Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Overvatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 2005, 171(4), 603-614.
[http://dx.doi.org/10.1083/jcb.200507002] [PMID: 16286508]
[63]
Gassen, N.C.; Hartmann, J.; Schmidt, M.V.; Rein, T. FKBP5/FKBP51 enhances autophagy to synergize with antidepressant action. Autophagy, 2015, 11(3), 578-580.
[http://dx.doi.org/10.1080/15548627.2015.1017224] [PMID: 25714272]
[64]
Gassen, N.C.; Hartmann, J.; Zschocke, J.; Stepan, J.; Hafner, K.; Zellner, A.; Kirmeier, T.; Kollmannsberger, L.; Wagner, K.V.; Dedic, N.; Balsevich, G.; Deussing, J.M.; Kloiber, S.; Lucae, S.; Holsboer, F.; Eder, M.; Uhr, M.; Ising, M.; Schmidt, M.V.; Rein, T. Association of FKBP51 with priming of autophagy pathways and mediation of antidepressant treatment response: evidence in cells, mice, and humans. PLoS Med., 2014, 11(11)e1001755
[http://dx.doi.org/10.1371/journal.pmed.1001755] [PMID: 25386878]
[65]
Kulkarni, A.; Chen, J.; Maday, S. Neuronal autophagy and intercellular regulation of homeostasis in the brain. Curr. Opin. Neurobiol., 2018, 51, 29-36.
[http://dx.doi.org/10.1016/j.conb.2018.02.008] [PMID: 29529415]
[66]
Madill, M.; McDonagh, K.; Ma, J.; Vajda, A.; McLoughlin, P.; O’Brien, T.; Hardiman, O.; Shen, S. Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. Mol. Brain, 2017, 10(1), 22.
[http://dx.doi.org/10.1186/s13041-017-0300-4] [PMID: 28610619]
[67]
Gan, L.; Vargas, M.R.; Johnson, D.A.; Johnson, J.A. Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J. Neurosci., 2012, 32(49), 17775-17787.
[http://dx.doi.org/10.1523/JNEUROSCI.3049-12.2012] [PMID: 23223297]
[68]
Ulgherait, M.; Rana, A.; Rera, M.; Graniel, J.; Walker, D.W. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep., 2014, 8(6), 1767-1780.
[http://dx.doi.org/10.1016/j.celrep.2014.08.006] [PMID: 25199830]
[69]
Minnerly, J.; Zhang, J.; Parker, T.; Kaul, T.; Jia, K. The cell non-autonomous function of ATG-18 is essential for neuroendocrine regulation of Caenorhabditis elegans lifespan. PLoS Genet., 2017, 13(5)e1006764
[http://dx.doi.org/10.1371/journal.pgen.1006764] [PMID: 28557996]
[70]
Demontis, F.; Perrimon, N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell, 2010, 143(5), 813-825.
[http://dx.doi.org/10.1016/j.cell.2010.10.007] [PMID: 21111239]
[71]
Levine, B.; Mizushima, N.; Virgin, H.W. Autophagy in immunity and inflammation. Nature, 2011, 469(7330), 323-335.
[http://dx.doi.org/10.1038/nature09782] [PMID: 21248839]
[72]
Chovatiya, R.; Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell, 2014, 54(2), 281-288.
[http://dx.doi.org/10.1016/j.molcel.2014.03.030] [PMID: 24766892]
[73]
Newton, K.; Dixit, V.M. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol., 2012, 4(3)a006049
[http://dx.doi.org/10.1101/cshperspect.a006049] [PMID: 22296764]
[74]
Barnes, P.J.; Karin, M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med., 1997, 336(15), 1066-1071.
[http://dx.doi.org/10.1056/NEJM199704103361506] [PMID: 9091804]
[75]
Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell, 2006, 124(4), 783-801.
[http://dx.doi.org/10.1016/j.cell.2006.02.015] [PMID: 16497588]
[76]
Rathinam, V.A.; Vanaja, S.K.; Fitzgerald, K.A. Regulation of inflammasome signaling. Nat. Immunol., 2012, 13(4), 333-342.
[http://dx.doi.org/10.1038/ni.2237] [PMID: 22430786]
[77]
Netea, M.G.; Simon, A.; van de Veerdonk, F.; Kullberg, B.J.; Van der Meer, J.W.; Joosten, L.A. IL-1beta processing in host defense: beyond the inflammasomes. PLoS Pathog., 2010, 6(2) e1000661
[http://dx.doi.org/10.1371/journal.ppat.1000661] [PMID: 20195505]
[78]
van de Veerdonk, F.L.; Netea, M.G.; Dinarello, C.A.; Joosten, L.A. Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol., 2011, 32(3), 110-116.
[http://dx.doi.org/10.1016/j.it.2011.01.003] [PMID: 21333600]
[79]
Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447(7145), 661-678.
[http://dx.doi.org/10.1038/nature05911] [PMID: 17554300]
[80]
Henckaerts, L.; Cleynen, I.; Brinar, M.; John, J.M.; Van Steen, K.; Rutgeerts, P.; Vermeire, S. Genetic variation in the autophagy gene ULK1 and risk of Crohn’s disease. Inflamm. Bowel Dis., 2011, 17(6), 1392-1397.
[http://dx.doi.org/10.1002/ibd.21486] [PMID: 21560199]
[81]
Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; Essers, J.; Mitrovic, M.; Ning, K.; Cleynen, I.; Theatre, E.; Spain, S.L.; Raychaudhuri, S.; Goyette, P.; Wei, Z.; Abraham, C.; Achkar, J.P.; Ahmad, T.; Amininejad, L.; Ananthakrishnan, A.N.; Andersen, V.; Andrews, J.M.; Baidoo, L.; Balschun, T.; Bampton, P.A.; Bitton, A.; Boucher, G.; Brand, S.; Büning, C.; Cohain, A.; Cichon, S.; D’Amato, M.; De Jong, D.; Devaney, K.L.; Dubinsky, M.; Edwards, C.; Ellinghaus, D.; Ferguson, L.R.; Franchimont, D.; Fransen, K.; Gearry, R.; Georges, M.; Gieger, C.; Glas, J.; Haritunians, T.; Hart, A.; Hawkey, C.; Hedl, M.; Hu, X.; Karlsen, T.H.; Kupcinskas, L.; Kugathasan, S.; Latiano, A.; Laukens, D.; Lawrance, I.C.; Lees, C.W.; Louis, E.; Mahy, G.; Mansfield, J.; Morgan, A.R.; Mowat, C.; Newman, W.; Palmieri, O.; Ponsioen, C.Y.; Potocnik, U.; Prescott, N.J.; Regueiro, M.; Rotter, J.I.; Russell, R.K.; Sanderson, J.D.; Sans, M.; Satsangi, J.; Schreiber, S.; Simms, L.A.; Sventoraityte, J.; Targan, S.R.; Taylor, K.D.; Tremelling, M.; Verspaget, H.W.; De Vos, M.; Wijmenga, C.; Wilson, D.C.; Winkelmann, J.; Xavier, R.J.; Zeissig, S.; Zhang, B.; Zhang, C.K.; Zhao, H.; Silverberg, M.S.; Annese, V.; Hakonarson, H.; Brant, S.R.; Radford-Smith, G.; Mathew, C.G.; Rioux, J.D.; Schadt, E.E.; Daly, M.J.; Franke, A.; Parkes, M.; Vermeire, S.; Barrett, J.C.; Cho, J.H.; Cho, J.H. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491(7422), 119-124.
[http://dx.doi.org/10.1038/nature11582] [PMID: 23128233]
[82]
Ramos, P.S.; Criswell, L.A.; Moser, K.L.; Comeau, M.E.; Williams, A.H.; Pajewski, N.M.; Chung, S.A.; Graham, R.R.; Zidovetzki, R.; Kelly, J.A.; Kaufman, K.M.; Jacob, C.O.; Vyse, T.J.; Tsao, B.P.; Kimberly, R.P.; Gaffney, P.M.; Alarcón-Riquelme, M.E.; Harley, J.B.; Langefeld, C.D. A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap. PLoS Genet., 2011, 7(12) e1002406
[http://dx.doi.org/10.1371/journal.pgen.1002406] [PMID: 22174698]
[83]
Dupont, N.; Jiang, S.; Pilli, M.; Ornatowski, W.; Bhattacharya, D.; Deretic, V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J., 2011, 30(23), 4701-4711.
[http://dx.doi.org/10.1038/emboj.2011.398] [PMID: 22068051]
[84]
Nakahira, K.; Haspel, J.A.; Rathinam, V.A.; Lee, S.J.; Dolinay, T.; Lam, H.C.; Englert, J.A.; Rabinovitch, M.; Cernadas, M.; Kim, H.P.; Fitzgerald, K.A.; Ryter, S.W.; Choi, A.M. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol., 2011, 12(3), 222-230.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[85]
Zhou, R.; Yazdi, A.S.; Menu, P.; Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225.
[http://dx.doi.org/10.1038/nature09663] [PMID: 21124315]
[86]
Shi, C.S.; Shenderov, K.; Huang, N.N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol., 2012, 13(3), 255-263.
[http://dx.doi.org/10.1038/ni.2215] [PMID: 22286270]
[87]
Lupfer, C.; Thomas, P.G.; Anand, P.K.; Vogel, P.; Milasta, S.; Martinez, J.; Huang, G.; Green, M.; Kundu, M.; Chi, H.; Xavier, R.J.; Green, D.R.; Lamkanfi, M.; Dinarello, C.A.; Doherty, P.C.; Kanneganti, T.D. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat. Immunol., 2013, 14(5), 480-488.
[http://dx.doi.org/10.1038/ni.2563] [PMID: 23525089]
[88]
Fliss, P.M.; Jowers, T.P.; Brinkmann, M.M.; Holstermann, B.; Mack, C.; Dickinson, P.; Hohenberg, H.; Ghazal, P.; Brune, W. Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLoS Pathog., 2012, 8(2) e1002517
[http://dx.doi.org/10.1371/journal.ppat.1002517] [PMID: 22319449]
[89]
Paul, S.; Kashyap, A.K.; Jia, W.; He, Y.W.; Schaefer, B.C. Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity, 2012, 36(6), 947-958.
[http://dx.doi.org/10.1016/j.immuni.2012.04.008] [PMID: 22658522]
[90]
Shibata, Y.; Oyama, M.; Kozuka-Hata, H.; Han, X.; Tanaka, Y.; Gohda, J.; Inoue, J. p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO. Nat. Commun., 2012, 3, 1061.
[http://dx.doi.org/10.1038/ncomms2068] [PMID: 22990857]
[91]
Yang, C.S.; Rodgers, M.; Min, C.K.; Lee, J.S.; Kingeter, L.; Lee, J.Y.; Jong, A.; Kramnik, I.; Lin, X.; Jung, J.U. The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe, 2012, 11(3), 277-289.
[http://dx.doi.org/10.1016/j.chom.2012.01.019] [PMID: 22423967]
[92]
Castillo, E.F.; Dekonenko, A.; Arko-Mensah, J.; Mandell, M.A.; Dupont, N.; Jiang, S.; Delgado-Vargas, M.; Timmins, G.S.; Bhattacharya, D.; Yang, H.; Hutt, J.; Lyons, C.R.; Dobos, K.M.; Deretic, V. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. USA, 2012, 109(46), E3168-E3176.
[http://dx.doi.org/10.1073/pnas.1210500109] [PMID: 23093667]
[93]
Jounai, N.; Takeshita, F.; Kobiyama, K.; Sawano, A.; Miyawaki, A.; Xin, K.Q.; Ishii, K.J.; Kawai, T.; Akira, S.; Suzuki, K.; Okuda, K. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA, 2007, 104(35), 14050-14055.
[http://dx.doi.org/10.1073/pnas.0704014104] [PMID: 17709747]
[94]
Saitoh, T.; Fujita, N.; Hayashi, T.; Takahara, K.; Satoh, T.; Lee, H.; Matsunaga, K.; Kageyama, S.; Omori, H.; Noda, T.; Yamamoto, N.; Kawai, T.; Ishii, K.; Takeuchi, O.; Yoshimori, T.; Akira, S. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA, 2009, 106(49), 20842-20846.
[http://dx.doi.org/10.1073/pnas.0911267106] [PMID: 19926846]
[95]
Harris, J.; Hartman, M.; Roche, C.; Zeng, S.G.; O’Shea, A.; Sharp, F.A.; Lambe, E.M.; Creagh, E.M.; Golenbock, D.T.; Tschopp, J.; Kornfeld, H.; Fitzgerald, K.A.; Lavelle, E.C. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem., 2011, 286(11), 9587-9597.
[http://dx.doi.org/10.1074/jbc.M110.202911] [PMID: 21228274]
[96]
Claude-Taupin, A.; Jia, J.; Mudd, M.; Deretic, V. Autophagy’s secret life: secretion instead of degradation. Essays Biochem., 2017, 61(6), 637-647.
[http://dx.doi.org/10.1042/EBC20170024] [PMID: 29233874]
[97]
Cho, M.H.; Cho, K.; Kang, H.J.; Jeon, E.Y.; Kim, H.S.; Kwon, H.J.; Kim, H.M.; Kim, D.H.; Yoon, S.Y. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy, 2014, 10(10), 1761-1775.
[http://dx.doi.org/10.4161/auto.29647] [PMID: 25126727]
[98]
Jiang, T.; Yu, J.T.; Zhu, X.C.; Tan, M.S.; Wang, H.F.; Cao, L.; Zhang, Q.Q.; Shi, J.Q.; Gao, L.; Qin, H.; Zhang, Y.D.; Tan, L. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol. Res., 2014, 81, 54-63.
[http://dx.doi.org/10.1016/j.phrs.2014.02.008] [PMID: 24602800]
[99]
Jiang, T.; Yu, J.T.; Zhu, X.C.; Zhang, Q.Q.; Cao, L.; Wang, H.F.; Tan, M.S.; Gao, Q.; Qin, H.; Zhang, Y.D.; Tan, L. Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance. Neuropharmacology, 2014, 85, 121-130.
[http://dx.doi.org/10.1016/j.neuropharm.2014.05.032] [PMID: 24880087]
[100]
Gontier, G.; George, C.; Chaker, Z.; Holzenberger, M.; Aïd, S. Blocking IGF signaling in adult neurons alleviates alzheimer’s disease pathology through amyloid-β clearance. J. Neurosci., 2015, 35(33), 11500-11513.
[http://dx.doi.org/10.1523/JNEUROSCI.0343-15.2015] [PMID: 26290229]
[101]
Zhang, Z.H.; Wu, Q.Y.; Zheng, R.; Chen, C.; Chen, Y.; Liu, Q.; Hoffmann, P.R.; Ni, J.Z.; Song, G.L. Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. J. Neurosci., 2017, 37(9), 2449-2462.
[http://dx.doi.org/10.1523/JNEUROSCI.3229-16.2017] [PMID: 28137967]
[102]
Yates, S.L.; Burgess, L.H.; Kocsis-Angle, J.; Antal, J.M.; Dority, M.D.; Embury, P.B.; Piotrkowski, A.M.; Brunden, K.R. Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J. Neurochem., 2000, 74(3), 1017-1025.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0741017.x] [PMID: 10693932]
[103]
Szczepanik, A.M.; Rampe, D.; Ringheim, G.E. Amyloid-beta peptide fragments p3 and p4 induce pro-inflammatory cytokine and chemokine production in vitro and in vivo. J. Neurochem., 2001, 77(1), 304-317.
[http://dx.doi.org/10.1046/j.1471-4159.2001.t01-1-00240.x] [PMID: 11279286]
[104]
Plaza-Zabala, A.; Sierra-Torre, V.; Sierra, A. Autophagy and microglia: novel partners in neurodegeneration and aging. Int. J. Mol. Sci., 2017, 18(3)E598
[http://dx.doi.org/10.3390/ijms18030598] [PMID: 28282924]
[105]
Banta, R.G.; Markesbery, W.R. Elevated manganese levels associated with dementia and extrapyramidal signs. Neurology, 1977, 27(3), 213-216.
[http://dx.doi.org/10.1212/WNL.27.3.213] [PMID: 557755]
[106]
Wang, D.; Zhang, J.; Jiang, W.; Cao, Z.; Zhao, F.; Cai, T.; Aschner, M.; Luo, W. The role of NLRP3-CASP1 in inflammasome-mediated neuroinflammation and autophagy dysfunction in manganese-induced, hippocampal-dependent impairment of learning and memory ability. Autophagy, 2017, 13(5), 914-927.
[http://dx.doi.org/10.1080/15548627.2017.1293766] [PMID: 28318352]
[107]
Shintani, T.; Klionsky, D.J. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698), 990-995.
[http://dx.doi.org/10.1126/science.1099993] [PMID: 15528435]
[108]
Zhang, W.; Wang, T.; Pei, Z.; Miller, D.S.; Wu, X.; Block, M.L.; Wilson, B.; Zhang, W.; Zhou, Y.; Hong, J.S.; Zhang, J. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J., 2005, 19(6), 533-542.
[http://dx.doi.org/10.1096/fj.04-2751com] [PMID: 15791003]
[109]
Sarkar, S.; Davies, J.E.; Huang, Z.; Tunnacliffe, A.; Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J. Biol. Chem., 2007, 282(8), 5641-5652.
[http://dx.doi.org/10.1074/jbc.M609532200] [PMID: 17182613]
[110]
Bae, E.J.; Lee, H.J.; Jang, Y.H.; Michael, S.; Masliah, E.; Min, D.S.; Lee, S.J. Phospholipase D1 regulates autophagic flux and clearance of α-synuclein aggregates. Cell Death Differ., 2014, 21(7), 1132-1141.
[http://dx.doi.org/10.1038/cdd.2014.30] [PMID: 24632948]
[111]
Kim, C.; Rockenstein, E.; Spencer, B.; Kim, H.K.; Adame, A.; Trejo, M.; Stafa, K.; Lee, H.J.; Lee, S.J.; Masliah, E. Antagonizing neuronal toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Rep., 2015, 13(4), 771-782.
[http://dx.doi.org/10.1016/j.celrep.2015.09.044] [PMID: 26489461]
[112]
Tian, T.; Sun, Y.; Wu, H.; Pei, J.; Zhang, J.; Zhang, Y.; Wang, L.; Li, B.; Wang, L.; Shi, J.; Hu, J.; Fan, C. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain. Sci. Rep., 2016, 6, 19714.
[http://dx.doi.org/10.1038/srep19714] [PMID: 26792101]
[113]
Hu, G.; Gong, X.; Wang, L.; Liu, M.; Liu, Y.; Fu, X.; Wang, W.; Zhang, T.; Wang, X. Triptolide promotes the clearance of α-Synuclein by enhancing autophagy in neuronal cells. Mol. Neurobiol., 2017, 54(3), 2361-2372.
[http://dx.doi.org/10.1007/s12035-016-9808-3] [PMID: 26957304]
[114]
Sheng, Y.L.; Chen, X.; Hou, X.O.; Yuan, X.; Yuan, B.S.; Yuan, Y.Q.; Zhang, Q.L.; Cao, X.; Liu, C.F.; Luo, W.F.; Hu, L.F. Urate promotes SNCA/α-synuclein clearance via regulating mTOR-dependent macroautophagy. Exp. Neurol., 2017, 297, 138-147.
[http://dx.doi.org/10.1016/j.expneurol.2017.08.007] [PMID: 28821398]
[115]
Lu, M.; Su, C.; Qiao, C.; Bian, Y.; Ding, J.; Hu, G. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson’s disease via autophagy and mitochondrial ROS clearance. Int. J. Neuropsychopharmacol., 2016, 19(9)pyw047
[http://dx.doi.org/10.1093/ijnp/pyw047] [PMID: 27207919]
[116]
Liang, Y.; Zhou, T.; Chen, Y.; Lin, D.; Jing, X.; Peng, S.; Zheng, D.; Zeng, Z.; Lei, M.; Wu, X.; Huang, K.; Yang, L.; Xiao, S.; Liu, J.; Tao, E. Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology, 2017, 63, 137-145.
[http://dx.doi.org/10.1016/j.neuro.2017.09.015] [PMID: 28986232]
[117]
Siracusa, R.; Paterniti, I.; Cordaro, M.; Crupi, R.; Bruschetta, G.; Campolo, M.; Cuzzocrea, S.; Esposito, E. Neuroprotective effects of Temsirolimus in animal models of Parkinson’s disease. Mol. Neurobiol., 2018, 55(3), 2403-2419.
[http://dx.doi.org/10.1007/s12035-017-0496-4] [PMID: 28357809]
[118]
Pasquali, L.; Ruffoli, R.; Fulceri, F.; Pietracupa, S.; Siciliano, G.; Paparelli, A.; Fornai, F. The role of autophagy: what can be learned from the genetic forms of amyotrophic lateral sclerosis. CNS Neurol. Disord. Drug Targets, 2010, 9(3), 268-278.
[http://dx.doi.org/10.2174/187152710791292594] [PMID: 20406184]
[119]
Chen, S.; Zhang, X.; Song, L.; Le, W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol., 2012, 22(1), 110-116.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00546.x] [PMID: 22150926]
[120]
Rubino, E.; Rainero, I.; Chiò, A.; Rogaeva, E.; Galimberti, D.; Fenoglio, P.; Grinberg, Y.; Isaia, G.; Calvo, A.; Gentile, S.; Bruni, A.C.; St George-Hyslop, P.H.; Scarpini, E.; Gallone, S.; Pinessi, L.; Group, T.S. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology, 2012, 79(15), 1556-1562.
[http://dx.doi.org/10.1212/WNL.0b013e31826e25df] [PMID: 22972638]
[121]
Nassif, M.; Valenzuela, V.; Rojas-Rivera, D.; Vidal, R.; Matus, S.; Castillo, K.; Fuentealba, Y.; Kroemer, G.; Levine, B.; Hetz, C. Pathogenic role of BECN1/Beclin 1 in the development of amyotrophic lateral sclerosis. Autophagy, 2014, 10(7), 1256-1271.
[http://dx.doi.org/10.4161/auto.28784] [PMID: 24905722]
[122]
Cirulli, E.T.; Lasseigne, B.N.; Petrovski, S.; Sapp, P.C.; Dion, P.A.; Leblond, C.S.; Couthouis, J.; Lu, Y.F.; Wang, Q.; Krueger, B.J.; Ren, Z.; Keebler, J.; Han, Y.; Levy, S.E.; Boone, B.E.; Wimbish, J.R.; Waite, L.L.; Jones, A.L.; Carulli, J.P.; Day-Williams, A.G.; Staropoli, J.F.; Xin, W.W.; Chesi, A.; Raphael, A.R.; McKenna-Yasek, D.; Cady, J.; Vianney de Jong, J.M.; Kenna, K.P.; Smith, B.N.; Topp, S.; Miller, J.; Gkazi, A.; Al-Chalabi, A.; van den Berg, L.H.; Veldink, J.; Silani, V.; Ticozzi, N.; Shaw, C.E.; Baloh, R.H.; Appel, S.; Simpson, E.; Lagier-Tourenne, C.; Pulst, S.M.; Gibson, S.; Trojanowski, J.Q.; Elman, L.; McCluskey, L.; Grossman, M.; Shneider, N.A.; Chung, W.K.; Ravits, J.M.; Glass, J.D.; Sims, K.B.; Van Deerlin, V.M.; Maniatis, T.; Hayes, S.D.; Ordureau, A.; Swarup, S.; Landers, J.; Baas, F.; Allen, A.S.; Bedlack, R.S.; Harper, J.W.; Gitler, A.D.; Rouleau, G.A.; Brown, R.; Harms, M.B.; Cooper, G.M.; Harris, T.; Myers, R.M.; Goldstein, D.B.; Goldstein, D.B. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science, 2015, 347(6229), 1436-1441.
[http://dx.doi.org/10.1126/science.aaa3650] [PMID: 25700176]
[123]
Freischmidt, A.; Wieland, T.; Richter, B.; Ruf, W.; Schaeffer, V.; Müller, K.; Marroquin, N.; Nordin, F.; Hübers, A.; Weydt, P.; Pinto, S.; Press, R.; Millecamps, S.; Molko, N.; Bernard, E.; Desnuelle, C.; Soriani, M.H.; Dorst, J.; Graf, E.; Nordström, U.; Feiler, M.S.; Putz, S.; Boeckers, T.M.; Meyer, T.; Winkler, A.S.; Winkelman, J.; de Carvalho, M.; Thal, D.R.; Otto, M.; Brännström, T.; Volk, A.E.; Kursula, P.; Danzer, K.M.; Lichtner, P.; Dikic, I.; Meitinger, T.; Ludolph, A.C.; Strom, T.M.; Andersen, P.M.; Weishaupt, J.H. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci., 2015, 18(5), 631-636.
[http://dx.doi.org/10.1038/nn.4000] [PMID: 25803835]
[124]
Johann, S.; Heitzer, M.; Kanagaratnam, M.; Goswami, A.; Rizo, T.; Weis, J.; Troost, D.; Beyer, C. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia, 2015, 63(12), 2260-2273.
[http://dx.doi.org/10.1002/glia.22891] [PMID: 26200799]
[125]
O’Rourke, J.G.; Bogdanik, L.; Yáñez, A.; Lall, D.; Wolf, A.J.; Muhammad, A.K.; Ho, R.; Carmona, S.; Vit, J.P.; Zarrow, J.; Kim, K.J.; Bell, S.; Harms, M.B.; Miller, T.M.; Dangler, C.A.; Underhill, D.M.; Goodridge, H.S.; Lutz, C.M.; Baloh, R.H. C9orf72 is required for proper macrophage and microglial function in mice. Science, 2016, 351(6279), 1324-1329.
[http://dx.doi.org/10.1126/science.aaf1064] [PMID: 26989253]
[126]
D’Ambrosi, N.; Cozzolino, M.; Carrì, M.T. Neuroinflammation in Amyotrophic lateral sclerosis: Role of redox (dys)Regulation. Antioxid. Redox Signal., 2018, 29(1), 15-36.
[http://dx.doi.org/10.1089/ars.2017.7271] [PMID: 28895473]
[127]
Fornai, F.; Longone, P.; Cafaro, L.; Kastsiuchenka, O.; Ferrucci, M.; Manca, M.L.; Lazzeri, G.; Spalloni, A.; Bellio, N.; Lenzi, P.; Modugno, N.; Siciliano, G.; Isidoro, C.; Murri, L.; Ruggieri, S.; Paparelli, A. Lithium delays progression of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA, 2008, 105(6), 2052-2057.
[http://dx.doi.org/10.1073/pnas.0708022105] [PMID: 18250315]
[128]
Wang, I.F.; Guo, B.S.; Liu, Y.C.; Wu, C.C.; Yang, C.H.; Tsai, K.J.; Shen, C.K. Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc. Natl. Acad. Sci. USA, 2012, 109(37), 15024-15029.
[http://dx.doi.org/10.1073/pnas.1206362109] [PMID: 22932872]
[129]
Castillo, K.; Nassif, M.; Valenzuela, V.; Rojas, F.; Matus, S.; Mercado, G.; Court, F.A.; van Zundert, B.; Hetz, C. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy, 2013, 9(9), 1308-1320.
[http://dx.doi.org/10.4161/auto.25188] [PMID: 23851366]
[130]
Barmada, S.J.; Serio, A.; Arjun, A.; Bilican, B.; Daub, A.; Ando, D.M.; Tsvetkov, A.; Pleiss, M.; Li, X.; Peisach, D.; Shaw, C.; Chandran, S.; Finkbeiner, S. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol., 2014, 10(8), 677-685.
[http://dx.doi.org/10.1038/nchembio.1563] [PMID: 24974230]
[131]
Fellner, A.; Barhum, Y.; Angel, A.; Perets, N.; Steiner, I.; Offen, D.; Lev, N. Toll-Like Receptor-4 Inhibitor TAK-242 Attenuates motor dysfunction and spinal cord pathology in an Amyotrophic lateral sclerosis mouse model. Int. J. Mol. Sci., 2017, 18(8), 1666.
[http://dx.doi.org/10.3390/ijms18081666] [PMID: 28763002]
[132]
Pasetto, L.; Pozzi, S.; Castelnovo, M.; Basso, M.; Estevez, A.G.; Fumagalli, S.; De Simoni, M.G.; Castellaneta, V.; Bigini, P.; Restelli, E.; Chiesa, R.; Trojsi, F.; Monsurrò, M.R.; Callea, L.; Malešević, M.; Fischer, G.; Freschi, M.; Tortarolo, M.; Bendotti, C.; Bonetto, V. Targeting extracellular cyclophilin a reduces neuroinflammation and extends survival in a mouse model of amyotrophic lateral sclerosis. J. Neurosci., 2017, 37(6), 1413-1427.
[http://dx.doi.org/10.1523/JNEUROSCI.2462-16.2016] [PMID: 28011744]
[133]
Vallarola, A.; Sironi, F.; Tortarolo, M.; Gatto, N.; De Gioia, R.; Pasetto, L.; De Paola, M.; Mariani, A.; Ghosh, S.; Watson, R.; Kalmes, A.; Bonetto, V.; Bendotti, C. RNS60 exerts therapeutic effects in the SOD1 ALS mouse model through protective glia and peripheral nerve rescue. J. Neuroinflammation, 2018, 15(1), 65.
[http://dx.doi.org/10.1186/s12974-018-1101-0] [PMID: 29495962]
[134]
Meissner, F.; Molawi, K.; Zychlinsky, A. Mutant superoxide dismutase 1-induced IL-1beta accelerates ALS pathogenesis. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 13046-13050.
[http://dx.doi.org/10.1073/pnas.1002396107] [PMID: 20616033]
[135]
Fabbrizio, P.; Amadio, S.; Apolloni, S.; Volonté, C. P2X7 receptor activation modulates autophagy in SOD1-G93A mouse microglia. Front. Cell. Neurosci., 2017, 11, 249.
[http://dx.doi.org/10.3389/fncel.2017.00249] [PMID: 28871219]
[136]
Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H.; Komure, O.; Matsuura, S.; Kobatake, K.; Morimoto, N.; Abe, K.; Suzuki, N.; Aoki, M.; Kawata, A.; Hirai, T.; Kato, T.; Ogasawara, K.; Hirano, A.; Takumi, T.; Kusaka, H.; Hagiwara, K.; Kaji, R.; Kawakami, H. Mutations of optineurin in amyotrophic lateral sclerosis. Nature, 2010, 465(7295), 223-226.
[http://dx.doi.org/10.1038/nature08971] [PMID: 20428114]
[137]
Rea, S.L.; Majcher, V.; Searle, M.S.; Layfield, R. SQSTM1 mutations--bridging Paget disease of bone and ALS/FTLD. Exp. Cell Res., 2014, 325(1), 27-37.
[http://dx.doi.org/10.1016/j.yexcr.2014.01.020] [PMID: 24486447]
[138]
Korac, J.; Schaeffer, V.; Kovacevic, I.; Clement, A.M.; Jungblut, B.; Behl, C.; Terzic, J.; Dikic, I. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci., 2013, 126(Pt 2), 580-592.
[http://dx.doi.org/10.1242/jcs.114926] [PMID: 23178947]
[139]
Ahmad, L.; Zhang, S.Y.; Casanova, J.L.; Sancho-Shimizu, V. Human TBK1: A Gatekeeper of Neuroinflammation. Trends Mol. Med., 2016, 22(6), 511-527.
[http://dx.doi.org/10.1016/j.molmed.2016.04.006] [PMID: 27211305]
[140]
Mathur, V.; Burai, R.; Vest, R.T.; Bonanno, L.N.; Lehallier, B.; Zardeneta, M.E.; Mistry, K.N.; Do, D.; Marsh, S.E.; Abud, E.M.; Blurton-Jones, M.; Li, L.; Lashuel, H.A.; Wyss-Coray, T. Activation of the STING-dependent type I interferon response reduces microglial reactivity and neuroinflammation. Neuron, 2017, 96(6), 1290-1302.
[http://dx.doi.org/10.1016/j.neuron.2017.11.032]
[141]
Shao, B.Z.; Wei, W.; Ke, P.; Xu, Z.Q.; Zhou, J.X.; Liu, C. Activating cannabinoid receptor 2 alleviates pathogenesis of experimental autoimmune encephalomyelitis via activation of autophagy and inhibiting NLRP3 inflammasome. CNS Neurosci. Ther., 2014, 20(12), 1021-1028.
[http://dx.doi.org/10.1111/cns.12349] [PMID: 25417929]
[142]
Zhou, X.; Zhou, J.; Li, X.; Guo, C.; Fang, T.; Chen, Z. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem. Biophys. Res. Commun., 2011, 411(2), 271-275.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.117] [PMID: 21723251]
[143]
Srivastava, I.N.; Shperdheja, J.; Baybis, M.; Ferguson, T.; Crino, P.B. mTOR pathway inhibition prevents neuroinflammation and neuronal death in a mouse model of cerebral palsy. Neurobiol. Dis., 2016, 85, 144-154.
[http://dx.doi.org/10.1016/j.nbd.2015.10.001] [PMID: 26459113]
[144]
Yerra, V.G.; Areti, A.; Kumar, A. Adenosine monophosphate-activated protein kinase abates hyperglycaemia-induced neuronal injury in experimental models of diabetic neuropathy: effects on mitochondrial biogenesis, autophagy and neuroinflammation. Mol. Neurobiol., 2017, 54(3), 2301-2312.
[http://dx.doi.org/10.1007/s12035-016-9824-3] [PMID: 26957299]
[145]
Lin, C.; Chao, H.; Li, Z.; Xu, X.; Liu, Y.; Hou, L.; Liu, N.; Ji, J. Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J. Pineal Res., 2016, 61(2), 177-186.
[http://dx.doi.org/10.1111/jpi.12337] [PMID: 27117839]
[146]
Li, J.R.; Xu, H.Z.; Nie, S.; Peng, Y.C.; Fan, L.F.; Wang, Z.J.; Wu, C.; Yan, F.; Chen, J.Y.; Gu, C.; Wang, C.; Chen, J.S.; Wang, L.; Chen, G. Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subrachnoid hemorrhage in rats. J. Neuroinflammation, 2017, 14(1), 186.
[http://dx.doi.org/10.1186/s12974-017-0959-6] [PMID: 28903766]
[147]
Pastor, M.D.; García-Yébenes, I.; Fradejas, N.; Pérez-Ortiz, J.M.; Mora-Lee, S.; Tranque, P.; Moro, M.A.; Pende, M.; Calvo, S. mTOR/S6 kinase pathway contributes to astrocyte survival during ischemia. J. Biol. Chem., 2009, 284(33), 22067-22078.
[http://dx.doi.org/10.1074/jbc.M109.033100] [PMID: 19535330]
[148]
Hong, Y.; Liu, Y.; Zhang, G.; Wu, H.; Hou, Y. Progesterone suppresses Aβ42-induced neuroinflammation by enhancing autophagy in astrocytes. Int. Immunopharmacol., 2018, 54, 336-343.
[http://dx.doi.org/10.1016/j.intimp.2017.11.044] [PMID: 29197800]
[149]
Goldshmit, Y.; Kanner, S.; Zacs, M.; Frisca, F.; Pinto, A.R.; Currie, P.D.; Pinkas-Kramarski, R. Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury. Mol. Cell. Neurosci., 2015, 68, 82-91.
[http://dx.doi.org/10.1016/j.mcn.2015.04.006] [PMID: 25936601]
[150]
Li, C.Y.; Li, X.; Liu, S.F.; Qu, W.S.; Wang, W.; Tian, D.S. Inhibition of mTOR pathway restrains astrocyte proliferation, migration and production of inflammatory mediators after oxygen-glucose deprivation and reoxygenation. Neurochem. Int., 2015, 83-84, 9-18.
[http://dx.doi.org/10.1016/j.neuint.2015.03.001] [PMID: 25770080]
[151]
Hosseini, A.; Estiri, H.; Akhavan Niaki, H.; Alizadeh, A.; Abdolhossein Zadeh, B.; Ghaderian, S.M.H.; Farjadfar, A.; Fallah, A. Multiple sclerosis gene therapy with recombinant viral vectors: overexpression of IL-4, leukemia inhibitory factor, and IL-10 in Wharton’s jelly stem cells used in EAE mice model. Cell J., 2017, 19(3), 361-374.
[PMID: 28836399]
[152]
Yuan, J.; Ge, H.; Liu, W.; Zhu, H.; Chen, Y.; Zhang, X.; Yang, Y.; Yin, Y.; Chen, W.; Wu, W.; Yang, Y.; Lin, J. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget, 2017, 8(12), 19855-19865.
[http://dx.doi.org/10.18632/oncotarget.15774] [PMID: 28423639]
[153]
Caccamo, A.; Majumder, S.; Richardson, A.; Strong, R.; Oddo, S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and Tau: effects on cognitive impairments. J. Biol. Chem., 2010, 285(17), 13107-13120.
[http://dx.doi.org/10.1074/jbc.M110.100420] [PMID: 20178983]
[154]
Malagelada, C.; Jin, Z.H.; Jackson-Lewis, V.; Przedborski, S.; Greene, L.A. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson’s disease. J. Neurosci., 2010, 30(3), 1166-1175.
[http://dx.doi.org/10.1523/JNEUROSCI.3944-09.2010] [PMID: 20089925]
[155]
Ravikumar, B.; Vacher, C.; Berger, Z.; Davies, J.E.; Luo, S.; Oroz, L.G.; Scaravilli, F.; Easton, D.F.; Duden, R.; O’Kane, C.J.; Rubinsztein, D.C. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet., 2004, 36(6), 585-595.
[http://dx.doi.org/10.1038/ng1362] [PMID: 15146184]
[156]
Webb, J.L.; Ravikumar, B.; Atkins, J.; Skepper, J.N.; Rubinsztein, D.C. Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem., 2003, 278(27), 25009-25013.
[http://dx.doi.org/10.1074/jbc.M300227200] [PMID: 12719433]
[157]
Dumont, F.J.; Su, Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci., 1996, 58(5), 373-395.
[http://dx.doi.org/10.1016/0024-3205(95)02233-3] [PMID: 8594303]
[158]
Liu, Y.C.; Gao, X.X.; Chen, L.; You, X.Q. Rapamycin suppresses Aβ25-35- or LPS-induced neuronal inflammation via modulation of NF-κB signaling. Neuroscience, 2017, 355, 188-199.
[http://dx.doi.org/10.1016/j.neuroscience.2017.05.005] [PMID: 28504198]
[159]
Kirchner, G.I.; Meier-Wiedenbach, I.; Manns, M.P. Clinical pharmacokinetics of everolimus. Clin. Pharmacokinet., 2004, 43(2), 83-95.
[http://dx.doi.org/10.2165/00003088-200443020-00002] [PMID: 14748618]
[160]
Li, D.; Wang, C.; Yao, Y.; Chen, L.; Liu, G.; Zhang, R.; Liu, Q.; Shi, F.D.; Hao, J. mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type. FASEB J., 2016, 30(10), 3388-3399.
[http://dx.doi.org/10.1096/fj.201600495R] [PMID: 27342766]
[161]
Yang, M.T.; Lin, Y.C.; Ho, W.H.; Liu, C.L.; Lee, W.T. Everolimus is better than rapamycin in attenuating neuroinflammation in kainic acid-induced seizures. J. Neuroinflammation, 2017, 14(1), 15.
[http://dx.doi.org/10.1186/s12974-017-0797-6] [PMID: 28109197]
[162]
Cordaro, M.; Paterniti, I.; Siracusa, R.; Impellizzeri, D.; Esposito, E.; Cuzzocrea, S. KU0063794, a Dual mTORC1 and mTORC2 inhibitor, reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. Mol. Neurobiol., 2017, 54(4), 2415-2427.
[http://dx.doi.org/10.1007/s12035-016-9827-0] [PMID: 26960330]
[163]
Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, J.E.; Janle, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; Marambaud, P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem., 2010, 285(12), 9100-9113.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[164]
Yang, X.; Xu, S.; Qian, Y.; Xiao, Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav. Immun., 2017, 64, 162-172.
[http://dx.doi.org/10.1016/j.bbi.2017.03.003] [PMID: 28268115]
[165]
Guo, D.; Xie, J.; Zhao, J.; Huang, T.; Guo, X.; Song, J. Resveratrol protects early brain injury after subarachnoid hemorrhage by activating autophagy and inhibiting apoptosis mediated by the Akt/mTOR pathway. Neuroreport, 2018, 29(5), 368-379.
[http://dx.doi.org/10.1097/WNR.0000000000000975] [PMID: 29360689]
[166]
Guo, Y.J.; Dong, S.Y.; Cui, X.X.; Feng, Y.; Liu, T.; Yin, M.; Kuo, S.H.; Tan, E.K.; Zhao, W.J.; Wu, Y.C. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol. Nutr. Food Res., 2016, 60(10), 2161-2175.
[http://dx.doi.org/10.1002/mnfr.201600111] [PMID: 27296520]
[167]
Han, X.; Tai, H.; Wang, X.; Wang, Z.; Zhou, J.; Wei, X.; Ding, Y.; Gong, H.; Mo, C.; Zhang, J.; Qin, J.; Ma, Y.; Huang, N.; Xiang, R.; Xiao, H. AMPK activation protects cells from oxidative stress-induced senescence via autophagic flux restoration and intracellular NAD(+) elevation. Aging Cell, 2016, 15(3), 416-427.
[http://dx.doi.org/10.1111/acel.12446] [PMID: 26890602]
[168]
Walter, C.; Clemens, L.E.; Müller, A.J.; Fallier-Becker, P.; Proikas-Cezanne, T.; Riess, O.; Metzger, S.; Nguyen, H.P. Activation of AMPK-induced autophagy ameliorates Huntington disease pathology in vitro. Neuropharmacology, 2016, 108, 24-38.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.041] [PMID: 27133377]
[169]
Qi, B.; Hu, L.; Zhu, L.; Shang, L.; Wang, X.; Liu, N.; Wen, N.; Hong, Y.; Fang, D. Metformin attenuates neurological deficit after intracerebral hemorrhage by inhibiting apoptosis, oxidative stress and neuroinflammation in rats. Neurochem. Res., 2017, 42(10), 2912-2920.
[http://dx.doi.org/10.1007/s11064-017-2322-9] [PMID: 28664399]
[170]
Wang, S.F.; Wu, M.Y.; Cai, C.Z.; Li, M.; Lu, J.H. Autophagy modulators from traditional Chinese medicine: Mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J. Ethnopharmacol., 2016, 194, 861-876.
[http://dx.doi.org/10.1016/j.jep.2016.10.069] [PMID: 27793785]
[171]
Wang, H.; Liu, C.; Mei, X.; Cao, Y.; Guo, Z.; Yuan, Y.; Zhao, Z.; Song, C.; Guo, Y.; Shen, Z. Berberine attenuated pro-inflammatory factors and protect against neuronal damage via triggering oligodendrocyte autophagy in spinal cord injury. Oncotarget, 2017, 8(58), 98312-98321.
[http://dx.doi.org/10.18632/oncotarget.21203] [PMID: 29228691]
[172]
Li, M.H.; Zhang, Y.J.; Yu, Y.H.; Yang, S.H.; Iqbal, J.; Mi, Q.Y.; Li, B.; Wang, Z.M.; Mao, W.X.; Xie, H.G.; Chen, S.L. Berberine improves pressure overload-induced cardiac hypertrophy and dysfunction through enhanced autophagy. Eur. J. Pharmacol., 2014, 728, 67-76.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.061] [PMID: 24508518]
[173]
Inoue, T.; Tanaka, M.; Masuda, S.; Ohue-Kitano, R.; Yamakage, H.; Muranaka, K.; Wada, H.; Kusakabe, T.; Shimatsu, A.; Hasegawa, K.; Satoh-Asahara, N. Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2017, 1862(5), 552-560.
[http://dx.doi.org/10.1016/j.bbalip.2017.02.010] [PMID: 28254441]
[174]
Kazantsev, A.G.; Thompson, L.M. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat. Rev. Drug Discov., 2008, 7(10), 854-868.
[http://dx.doi.org/10.1038/nrd2681] [PMID: 18827828]
[175]
Ziemka-Nalecz, M.; Zalewska, T. Neuroprotective effects of histone deacetylase inhibitors in brain ischemia. Acta Neurobiol. Exp. (Warsz.), 2014, 74(4), 383-395.
[PMID: 25576969]
[176]
Roy, A.; Ghosh, A.; Jana, A.; Liu, X.; Brahmachari, S.; Gendelman, H.E.; Pahan, K. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS One, 2012, 7(6)e38113
[http://dx.doi.org/10.1371/journal.pone.0038113] [PMID: 22723850]
[177]
Zhang, Z.Y.; Schluesener, H.J. Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model. J. Neuropathol. Exp. Neurol., 2013, 72(3), 178-185.
[http://dx.doi.org/10.1097/NEN.0b013e318283114a] [PMID: 23399896]
[178]
Ricobaraza, A.; Cuadrado-Tejedor, M.; Marco, S.; Pérez-Otaño, I.; García-Osta, A. Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus, 2012, 22(5), 1040-1050.
[http://dx.doi.org/10.1002/hipo.20883] [PMID: 21069780]
[179]
Zeng, M.; Sang, W.; Chen, S.; Chen, R.; Zhang, H.; Xue, F.; Li, Z.; Liu, Y.; Gong, Y.; Zhang, H.; Kong, X. 4-PBA inhibits LPS-induced inflammation through regulating ER stress and autophagy in acute lung injury models. Toxicol. Lett., 2017, 271, 26-37.
[http://dx.doi.org/10.1016/j.toxlet.2017.02.023] [PMID: 28245985]
[180]
Kim, H.J.; Chuang, D.M. HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am. J. Transl. Res., 2014, 6(3), 206-223.
[PMID: 24936215]
[181]
Camelo, S.; Iglesias, A.H.; Hwang, D.; Due, B.; Ryu, H.; Smith, K.; Gray, S.G.; Imitola, J.; Duran, G.; Assaf, B.; Langley, B.; Khoury, S.J.; Stephanopoulos, G.; De Girolami, U.; Ratan, R.R.; Ferrante, R.J.; Dangond, F. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J. Neuroimmunol., 2005, 164(1-2), 10-21.
[http://dx.doi.org/10.1016/j.jneuroim.2005.02.022] [PMID: 15885809]
[182]
Jayaraman, A.; Sharma, M.; Prabhakar, B.; Holterman, M.; Jayaraman, S. Amelioration of progressive autoimmune encephalomyelitis by epigenetic regulation involves selective repression of mature neutrophils during the preclinical phase. Exp. Neurol., 2018, 304, 14-20.
[http://dx.doi.org/10.1016/j.expneurol.2018.02.008] [PMID: 29453977]
[183]
Durham, B.S.; Grigg, R.; Wood, I.C. Inhibition of histone deacetylase 1 or 2 reduces induced cytokine expression in microglia through a protein synthesis independent mechanism. J. Neurochem., 2017, 143(2), 214-224.
[http://dx.doi.org/10.1111/jnc.14144] [PMID: 28796285]
[184]
Zhan, Y.; Gong, K.; Chen, C.; Wang, H.; Li, W. P38 MAP kinase functions as a switch in MS-275-induced reactive oxygen species-dependent autophagy and apoptosis in human colon cancer cells. Free Radic. Biol. Med., 2012, 53(3), 532-543.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.05.018] [PMID: 22634147]
[185]
Ahn, M.Y.; Ahn, S.G.; Yoon, J.H. Apicidin, a histone deaceylase inhibitor, induces both apoptosis and autophagy in human oral squamous carcinoma cells. Oral Oncol., 2011, 47(11), 1032-1038.
[http://dx.doi.org/10.1016/j.oraloncology.2011.07.027] [PMID: 21856210]
[186]
D’Angelo, B.; Ek, C.J.; Sun, Y.; Zhu, C.; Sandberg, M.; Mallard, C. GSK3β inhibition protects the immature brain from hypoxic-ischaemic insult via reduced STAT3 signalling. Neuropharmacology, 2016, 101, 13-23.
[http://dx.doi.org/10.1016/j.neuropharm.2015.09.017] [PMID: 26384655]
[187]
Huang, S.; Wang, H.; Turlova, E.; Abussaud, A.; Ji, X.; Britto, L.R.; Miller, S.P.; Martinez, A.; Sun, H.S.; Feng, Z.P. GSK-3β inhibitor TDZD-8 reduces neonatal hypoxic-ischemic brain injury in mice. CNS Neurosci. Ther., 2017, 23(5), 405-415.
[http://dx.doi.org/10.1111/cns.12683] [PMID: 28256059]
[188]
Suresh, S.N.; Chavalmane, A.K.; Dj, V.; Yarreiphang, H.; Rai, S.; Paul, A.; Clement, J.P.; Alladi, P.A.; Manjithaya, R. A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity. Autophagy, 2017, 13(7), 1221-1234.
[http://dx.doi.org/10.1080/15548627.2017.1302045] [PMID: 28350199]
[189]
Wang, W.; Li, M.; Wang, Y.; Wang, Z.; Zhang, W.; Guan, F.; Chen, Q.; Wang, J. GSK-3β as a target for protection against transient cerebral ischemia. Int. J. Med. Sci., 2017, 14(4), 333-339.
[http://dx.doi.org/10.7150/ijms.17514] [PMID: 28553165]
[190]
Xiao, H.; Deng, M.; Yang, B.; Tang, J.; Hu, Z. Role of glycogen synthase kinase 3 in ischemia-induced blood-brain barrier disruption in aged female rats. J. Neurochem., 2017, 142(2), 194-203.
[http://dx.doi.org/10.1111/jnc.14051] [PMID: 28440874]
[191]
Moharregh-Khiabani, D.; Linker, R.A.; Gold, R.; Stangel, M. Fumaric Acid and its esters: an emerging treatment for multiple sclerosis. Curr. Neuropharmacol., 2009, 7(1), 60-64.
[http://dx.doi.org/10.2174/157015909787602788] [PMID: 19721818]
[192]
Lastres-Becker, I.; García-Yagüe, A.J.; Scannevin, R.H.; Casarejos, M.J.; Kügler, S.; Rábano, A.; Cuadrado, A. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid. Redox Signal., 2016, 25(2), 61-77.
[http://dx.doi.org/10.1089/ars.2015.6549] [PMID: 27009601]
[193]
Wang, Y.; Huang, Y.; Xu, Y.; Ruan, W.; Wang, H.; Zhang, Y.; Saavedra, J.M.; Zhang, L.; Huang, Z.; Pang, T. A Dual AMPK/Nrf2 activator reduces brain inflammation after stroke by enhancing microglia M2 polarization. Antioxid. Redox Signal., 2018, 28(2), 141-163.
[http://dx.doi.org/10.1089/ars.2017.7003] [PMID: 28747068]
[194]
Alcocer-Gómez, E.; Casas-Barquero, N.; Williams, M.R.; Romero-Guillena, S.L.; Cañadas-Lozano, D.; Bullón, P.; Sánchez-Alcazar, J.A.; Navarro-Pando, J.M.; Cordero, M.D. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder. Pharmacol. Res., 2017, 121, 114-121.
[http://dx.doi.org/10.1016/j.phrs.2017.04.028] [PMID: 28465217]
[195]
Zhang, F.; Zhou, H.; Wilson, B.C.; Shi, J.S.; Hong, J.S.; Gao, H.M. Fluoxetine protects neurons against microglial activation-mediated neurotoxicity. Parkinsonism Relat. Disord., 2012, 18(Suppl. 1), S213-S217.
[http://dx.doi.org/10.1016/S1353-8020(11)70066-9] [PMID: 22166439]
[196]
Valera, E.; Ubhi, K.; Mante, M.; Rockenstein, E.; Masliah, E. Antidepressants reduce neuroinflammatory responses and astroglial alpha-synuclein accumulation in a transgenic mouse model of multiple system atrophy. Glia, 2014, 62(2), 317-337.
[http://dx.doi.org/10.1002/glia.22610] [PMID: 24310907]
[197]
Qiao, J.; Wang, J.; Wang, H.; Zhang, Y.; Zhu, S.; Adilijiang, A.; Guo, H.; Zhang, R.; Guo, W.; Luo, G.; Qiu, Y.; Xu, H.; Kong, J.; Huang, Q.; Li, X.M. Regulation of astrocyte pathology by fluoxetine prevents the deterioration of Alzheimer phenotypes in an APP/PS1 mouse model. Glia, 2016, 64(2), 240-254.
[http://dx.doi.org/10.1002/glia.22926] [PMID: 26446044]
[198]
Koschnitzky, J.E.; Quinlan, K.A.; Lukas, T.J.; Kajtaz, E.; Kocevar, E.J.; Mayers, W.F.; Siddique, T.; Heckman, C.J. Effect of fluoxetine on disease progression in a mouse model of ALS. J. Neurophysiol., 2014, 111(11), 2164-2176.
[http://dx.doi.org/10.1152/jn.00425.2013] [PMID: 24598527]
[199]
Lee, M.Y.; Hong, S.; Kim, N.; Shin, K.S.; Kang, S.J. Tricyclic antidepressants amitriptyline and desipramine induced neurotoxicity associated with Parkinson’s disease. Mol. Cells, 2015, 38(8), 734-740.
[http://dx.doi.org/10.14348/molcells.2015.0131] [PMID: 26242194]
[200]
Podurgiel, S.J.; Milligan, M.N.; Yohn, S.E.; Purcell, L.J.; Contreras-Mora, H.M.; Correa, M.; Salamone, J.D. Fluoxetine administration exacerbates oral tremor and striatal dopamine depletion in a rodent pharmacological model of parkinsonism. Neuropsychopharmacology, 2015, 40(9), 2240-2247.
[http://dx.doi.org/10.1038/npp.2015.69] [PMID: 25759301]
[201]
Sierksma, A.S.; de Nijs, L.; Hoogland, G.; Vanmierlo, T.; van Leeuwen, F.W.; Rutten, B.P.; Steinbusch, H.W.; Prickaerts, J.; van den Hove, D.L. Fluoxetine treatment induces seizure behavior and premature death in APPswe/PS1dE9 mice. J. Alzheimers Dis., 2016, 51(3), 677-682.
[http://dx.doi.org/10.3233/JAD-151066] [PMID: 26890781]
[202]
Gong, F.; Peng, X.; Sang, Y.; Qiu, M.; Luo, C.; He, Z.; Zhao, X.; Tong, A. Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling. Cell Death Dis, 2013, 4e913.
[http://dx.doi.org/10.1038/cddis.2013.438] [PMID: 24201812]
[203]
Jia, H.Y.; Wang, H.N.; Xia, F.Y.; Sun, Y.; Liu, H.L.; Yan, L.L.; Li, S.S.; Jiang, D.C.; Xu, M.M. Dichloroacetate induces protective autophagy in esophageal squamous carcinoma cells. Oncol. Lett., 2017, 14(3), 2765-2770.
[http://dx.doi.org/10.3892/ol.2017.6562] [PMID: 28928817]
[204]
Sun, Y.; Li, T.; Xie, C.; Zhang, Y.; Zhou, K.; Wang, X.; Blomgren, K.; Zhu, C. Dichloroacetate treatment improves mitochondrial metabolism and reduces brain injury in neonatal mice. Oncotarget, 2016, 7(22), 31708-31722.
[http://dx.doi.org/10.18632/oncotarget.9150] [PMID: 27153546]
[205]
Miquel, E.; Cassina, A.; Martínez-Palma, L.; Bolatto, C.; Trías, E.; Gandelman, M.; Radi, R.; Barbeito, L.; Cassina, P. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS One, 2012, 7(4) e34776
[http://dx.doi.org/10.1371/journal.pone.0034776] [PMID: 22509356]
[206]
Jha, M.K.; Song, G.J.; Lee, M.G.; Jeoung, N.H.; Go, Y.; Harris, R.A.; Park, D.H.; Kook, H.; Lee, I.K.; Suk, K. Metabolic connection of inflammatory pain: pivotal role of a pyruvate dehydrogenase kinase-pyruvate dehydrogenase-lactic acid axis. J. Neurosci., 2015, 35(42), 14353-14369.
[http://dx.doi.org/10.1523/JNEUROSCI.1910-15.2015] [PMID: 26490872]
[207]
Apolloni, S.; Fabbrizio, P.; Amadio, S.; Volonté, C. Actions of the antihistaminergic clemastine on presymptomatic SOD1-G93A mice ameliorate ALS disease progression. J. Neuroinflammation, 2016, 13(1), 191.
[http://dx.doi.org/10.1186/s12974-016-0658-8] [PMID: 27549088]
[208]
Apolloni, S.; Fabbrizio, P.; Parisi, C.; Amadio, S.; Volonté, C. Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol., 2016, 53(1), 518-531.
[http://dx.doi.org/10.1007/s12035-014-9019-8] [PMID: 25482048]
[209]
Hu, W.W.; Yang, Y.; Wang, Z.; Shen, Z.; Zhang, X.N.; Wang, G.H.; Chen, Z. H1-antihistamines induce vacuolation in astrocytes through macroautophagy. Toxicol. Appl. Pharmacol., 2012, 260(2), 115-123.
[http://dx.doi.org/10.1016/j.taap.2012.01.020] [PMID: 22310178]
[210]
Scuderi, C.; Valenza, M.; Stecca, C.; Esposito, G.; Carratù, M.R.; Steardo, L. Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-α. J. Neuroinflammation, 2012, 9, 49.
[http://dx.doi.org/10.1186/1742-2094-9-49] [PMID: 22405189]
[211]
Siracusa, R.; Paterniti, I.; Impellizzeri, D.; Cordaro, M.; Crupi, R.; Navarra, M.; Cuzzocrea, S.; Esposito, E. The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol. Disord. Drug Targets, 2015, 14(10), 1350-1365.
[http://dx.doi.org/10.2174/1871527314666150821102823] [PMID: 26295827]
[212]
Cordaro, M.; Impellizzeri, D.; Paterniti, I.; Bruschetta, G.; Siracusa, R.; De Stefano, D.; Cuzzocrea, S.; Esposito, E. Neuroprotective effects of Co-UltraPEALut on secondary inflammatory process and autophagy involved in traumatic brain injury. J. Neurotrauma, 2016, 33(1), 132-146.
[http://dx.doi.org/10.1089/neu.2014.3460] [PMID: 25046306]
[213]
Siracusa, R.; Paterniti, I.; Bruschetta, G.; Cordaro, M.; Impellizzeri, D.; Crupi, R.; Cuzzocrea, S.; Esposito, E. The association of Palmitoylethanolamide with luteolin decreases autophagy in spinal cord injury. Mol. Neurobiol., 2016, 53(6), 3783-3792.
[http://dx.doi.org/10.1007/s12035-015-9328-6] [PMID: 26143261]
[214]
Liu, S.; Wu, H.; Xue, G.; Ma, X.; Wu, J.; Qin, Y.; Hou, Y. Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer’s disease-like rats. Neural Regen. Res., 2013, 8(30), 2800-2810.
[PMID: 25206601]
[215]
Espinosa-García, C.; Aguilar-Hernández, A.; Cervantes, M.; Moralí, G. Effects of progesterone on neurite growth inhibitors in the hippocampus following global cerebral ischemia. Brain Res., 2014, 1545, 23-34.
[http://dx.doi.org/10.1016/j.brainres.2013.11.030] [PMID: 24316245]
[216]
Qin, Y.; Chen, Z.; Han, X.; Wu, H.; Yu, Y.; Wu, J.; Liu, S.; Hou, Y. Progesterone attenuates Aβ(25-35)-induced neuronal toxicity via JNK inactivation and progesterone receptor membrane component 1-dependent inhibition of mitochondrial apoptotic pathway. J. Steroid Biochem. Mol. Biol., 2015, 154, 302-311.
[http://dx.doi.org/10.1016/j.jsbmb.2015.01.002] [PMID: 25576906]
[217]
Kim, H.N.; Lee, S.J.; Koh, J.Y. The neurosteroids, allopregnanolone and progesterone, induce autophagy in cultured astrocytes. Neurochem. Int., 2012, 60(2), 125-133.
[http://dx.doi.org/10.1016/j.neuint.2011.11.015] [PMID: 22154800]
[218]
Kim, J.; Kim, T.Y.; Cho, K.S.; Kim, H.N.; Koh, J.Y. Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 59, 80-85.
[http://dx.doi.org/10.1016/j.nbd.2013.07.011] [PMID: 23891729]
[219]
Campbell, E.A.; Korzheva, N.; Mustaev, A.; Murakami, K.; Nair, S.; Goldfarb, A.; Darst, S.A. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell, 2001, 104(6), 901-912.
[http://dx.doi.org/10.1016/S0092-8674(01)00286-0] [PMID: 11290327]
[220]
Chen, B.; Cao, H.; Chen, L.; Yang, X.; Tian, X.; Li, R.; Cheng, O. Rifampicin attenuated global cerebral ischemia injury via activating the nuclear factor erythroid 2-related factor pathway. Front. Cell. Neurosci., 2016, 10, 273.
[http://dx.doi.org/10.3389/fncel.2016.00273] [PMID: 27965540]
[221]
Umeda, T.; Ono, K.; Sakai, A.; Yamashita, M.; Mizuguchi, M.; Klein, W.L.; Yamada, M.; Mori, H.; Tomiyama, T. Rifampicin is a candidate preventive medicine against amyloid-β and tau oligomers. Brain, 2016, 139(Pt 5), 1568-1586.
[http://dx.doi.org/10.1093/brain/aww042] [PMID: 27020329]
[222]
Wu, X.; Liang, Y.; Jing, X.; Lin, D.; Chen, Y.; Zhou, T.; Peng, S.; Zheng, D.; Zeng, Z.; Lei, M.; Huang, K.; Tao, E. Rifampicin prevents SH-SY5Y cells from rotenone-induced apoptosis via the PI3K/Akt/GSK-3β/CREB signaling pathway. Neurochem. Res., 2018, 43(4), 886-893.
[http://dx.doi.org/10.1007/s11064-018-2494-y] [PMID: 29435803]
[223]
Tomiyama, T.; Asano, S.; Suwa, Y.; Morita, T.; Kataoka, K.; Mori, H.; Endo, N. Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem. Biophys. Res. Commun., 1994, 204(1), 76-83.
[http://dx.doi.org/10.1006/bbrc.1994.2428] [PMID: 7945395]
[224]
Tomiyama, T.; Shoji, A.; Kataoka, K.; Suwa, Y.; Asano, S.; Kaneko, H.; Endo, N. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin. Its possible function as a hydroxyl radical scavenger. J. Biol. Chem., 1996, 271(12), 6839-6844.
[http://dx.doi.org/10.1074/jbc.271.12.6839] [PMID: 8636108]
[225]
Li, J.; Zhu, M.; Rajamani, S.; Uversky, V.N.; Fink, A.L. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem. Biol., 2004, 11(11), 1513-1521.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.025] [PMID: 15556002]
[226]
Zhou, L.; Zuo, Z.; Chow, M.S. Danshen: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol., 2005, 45(12), 1345-1359.
[http://dx.doi.org/10.1177/0091270005282630] [PMID: 16291709]
[227]
Gong, L.; Di, C.; Xia, X.; Wang, J.; Chen, G.; Shi, J.; Chen, P.; Xu, H.; Zhang, W. AKT/mTOR signaling pathway is involved in salvianolic acid B-induced autophagy and apoptosis in hepatocellular carcinoma cells. Int. J. Oncol., 2016, 49(6), 2538-2548.
[http://dx.doi.org/10.3892/ijo.2016.3748] [PMID: 27779641]
[228]
Jing, Z.; Fei, W.; Zhou, J.; Zhang, L.; Chen, L.; Zhang, X.; Liang, X.; Xie, J.; Fang, Y.; Sui, X.; Han, W.; Pan, H. Salvianolic acid B, a novel autophagy inducer, exerts antitumor activity as a single agent in colorectal cancer cells. Oncotarget, 2016, 7(38), 61509-61519.
[http://dx.doi.org/10.18632/oncotarget.11385] [PMID: 27557491]
[229]
Lin, C.; Liu, Z.; Lu, Y.; Yao, Y.; Zhang, Y.; Ma, Z.; Kuai, M.; Sun, X.; Sun, S.; Jing, Y.; Yu, L.; Li, Y.; Zhang, Q.; Bian, H. Cardioprotective effect of Salvianolic acid B on acute myocardial infarction by promoting autophagy and neovascularization and inhibiting apoptosis. J. Pharm. Pharmacol., 2016, 68(7), 941-952.
[http://dx.doi.org/10.1111/jphp.12567] [PMID: 27139338]
[230]
Jiang, P.; Guo, Y.; Dang, R.; Yang, M.; Liao, D.; Li, H.; Sun, Z.; Feng, Q.; Xu, P. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J. Neuroinflammation, 2017, 14(1), 239.
[http://dx.doi.org/10.1186/s12974-017-1013-4] [PMID: 29212498]
[231]
Rodríguez-Navarro, J.A.; Rodríguez, L.; Casarejos, M.J.; Solano, R.M.; Gómez, A.; Perucho, J.; Cuervo, A.M.; García de Yébenes, J.; Mena, M.A. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol. Dis., 2010, 39(3), 423-438.
[http://dx.doi.org/10.1016/j.nbd.2010.05.014] [PMID: 20546895]
[232]
Schaeffer, V.; Lavenir, I.; Ozcelik, S.; Tolnay, M.; Winkler, D.T.; Goedert, M. Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain, 2012, 135(Pt 7), 2169-2177.
[http://dx.doi.org/10.1093/brain/aws143] [PMID: 22689910]
[233]
Perucho, J.; Casarejos, M.J.; Gomez, A.; Solano, R.M.; de Yébenes, J.G.; Mena, M.A. Trehalose protects from aggravation of amyloid pathology induced by isoflurane anesthesia in APP(swe) mutant mice. Curr. Alzheimer Res., 2012, 9(3), 334-343.
[http://dx.doi.org/10.2174/156720512800107573] [PMID: 22272607]
[234]
He, Q.; Wang, Y.; Lin, W.; Zhang, Q.; Zhao, J.; Liu, F.T.; Tang, Y.L.; Xiao, B.G.; Wang, J. Trehalose alleviates PC12 neuronal death mediated by lipopolysaccharide-stimulated BV-2 cells via inhibiting nuclear transcription factor NF-κB and AP-1 activation. Neurotox. Res., 2014, 26(4), 430-439.
[http://dx.doi.org/10.1007/s12640-014-9487-7] [PMID: 25125332]
[235]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[236]
Song, G.J.; Suk, K. Pharmacological modulation of functional phenotypes of microglia in neurodegenerative diseases. Front. Aging Neurosci., 2017, 9, 139.
[http://dx.doi.org/10.3389/fnagi.2017.00139] [PMID: 28555105]
[237]
Ransohoff, R.M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci., 2016, 19(8), 987-991.
[http://dx.doi.org/10.1038/nn.4338] [PMID: 27459405]
[238]
You, W.; Wang, Z.; Li, H.; Shen, H.; Xu, X.; Jia, G.; Chen, G. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. J. Neurol. Sci., 2016, 367, 224-231.
[http://dx.doi.org/10.1016/j.jns.2016.06.021] [PMID: 27423593]
[239]
Jin, Q.; Cheng, J.; Liu, Y.; Wu, J.; Wang, X.; Wei, S.; Zhou, X.; Qin, Z.; Jia, J.; Zhen, X. Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav. Immun., 2014, 40, 131-142.
[http://dx.doi.org/10.1016/j.bbi.2014.03.003] [PMID: 24632338]
[240]
Tang, Y.; Le, W. Differential Roles of M1 and M2 Microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[241]
Au, A.K.; Bayir, H.; Kochanek, P.M.; Clark, R.S. Evaluation of autophagy using mouse models of brain injury. Biochim. Biophys. Acta, 2010, 1802(10), 918-923.
[http://dx.doi.org/10.1016/j.bbadis.2009.10.010] [PMID: 19879944]
[242]
Xilouri, M.; Brekk, O.R.; Stefanis, L. Autophagy and alpha-synuclein: relevance to parkinson’s disease and related synucleopathies. Mov. Disord., 2016, 31(2), 178-192.
[http://dx.doi.org/10.1002/mds.26477] [PMID: 26813776]
[243]
Cerri, S.; Blandini, F. Role of autophagy in Parkinson’s disease. Curr. Med. Chem., 2019, 26(20), 3702-3718.
[http://dx.doi.org/10.2174/0929867325666180226094351] [PMID: 29484979]
[244]
Li, X.; Wang, M.H.; Qin, C.; Fan, W.H.; Tian, D.S.; Liu, J.L. Fingolimod suppresses neuronal autophagy through the mTOR/p70S6K pathway and alleviates ischemic brain damage in mice. PLoS One, 2017, 12(11) e0188748
[http://dx.doi.org/10.1371/journal.pone.0188748] [PMID: 29186197]
[245]
Huang, L.; Chen, C.; Zhang, X.; Li, X.; Chen, Z.; Yang, C.; Liang, X.; Zhu, G.; Xu, Z. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation. J. Mol. Neurosci., 2018, 64(1), 129-139.
[http://dx.doi.org/10.1007/s12031-017-1006-x] [PMID: 29243061]
[246]
Banjara, M.; Ghosh, C. Sterile Neuroinflammation and strategies for therapeutic intervention. Int. J. Inflamm., 2017, 2017 8385961
[http://dx.doi.org/10.1155/2017/8385961] [PMID: 28127491]
[247]
Perry, V.H.; Nicoll, J.A.; Holmes, C. Microglia in neurodegenerative disease. Nat. Rev. Neurol., 2010, 6(4), 193-201.
[http://dx.doi.org/10.1038/nrneurol.2010.17] [PMID: 20234358]
[248]
Martinez-Vicente, M. Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation. Semin. Cell Dev. Biol., 2015, 40, 115-126.
[http://dx.doi.org/10.1016/j.semcdb.2015.03.005] [PMID: 25843774]
[249]
Xie, L.; Sun, F.; Wang, J.; Mao, X.; Xie, L.; Yang, S.H.; Su, D.M.; Simpkins, J.W.; Greenberg, D.A.; Jin, K. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J. Immunol., 2014, 192(12), 6009-6019.
[http://dx.doi.org/10.4049/jimmunol.1303492] [PMID: 24829408]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy