Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Assessment of Signal Peptides to Optimize Interleukin 2 (IL-2) Folding and Expression

Author(s): Narges Nazifi, Mojtaba Tahmoorespur*, Mohammad Hadi Sekhavati*, Alireza Haghparast and Mohammad Ali Behroozikhah

Volume 16, Issue 3, 2019

Page: [188 - 198] Pages: 11

DOI: 10.2174/1570164615666181024113612

Price: $65

Abstract

Background: Using a bacterial expression system such as Escherichia coli (E. coli) is very common for protein expression because of its simplicity, low cost and high efficiency.

Objective: In order to express proteins that contain di-sulfide bands, an oxidative space such as the periplasmic environment of the bacteria is required. Therefore, a leader sequence which named Signal Peptide (SP) is needed to direct recombinant protein to fold in periplasmic space. Interleukin-2 (IL-2) is a prominent cytokine which known as growth factor for T-cells and typically produced by a variety of immune cells that stimulate and regulate inflammatory and immune responses.

Methods: This study was designed to predict the best signal peptides to express IL-2 in E. coli. To predict the best signal peptides for the expression of IL-2 in Gram-negative bacteria (E. coli), forty-five sequences of SPs were extracted from data base. Some most important details such as n, h and c regions of signal peptides and their probability were studied through the signalP software.

Afterwards, physico–chemical features of SPs were analyzed by Portparam and Solpro tools. Finally, secretion-pathway and sub-cellular localization sites were evaluated by PRED-TAT and ProtcompB softwares.

Results: At the end of the in-silico analyzes, it was determined that ccmH, PelB, traU, yohN, lolA, yhcN are the most reliable SPs, respectively, with highest score and best performing to express the IL-2 protein in E. coli.

Keywords: Signal peptide, IL-2, E. coli, periplasm, interleukin, T-cells, immune cells.

Graphical Abstract
[1]
Gaffen, S.L.; Liu, K.D. Overview of interleukin-2 function, production and clinical applications. Cytokine, 2004, 28(3), 109-123.
[2]
Morris, J.C.; Waldmann, T.A. Advances in interleukin 2 receptor targeted treatment. Ann. Rheum. Dis., 2000, 59(Suppl. 1), i109-i114.
[3]
Cheng, L.E.; Öhlén, C.; Nelson, B.H.; Greenberg, P.D. Enhanced signaling through the IL-2 receptor in CD8+ T cells regulated by antigen recognition results in preferential proliferation and expansion of responding CD8+ T cells rather than promotion of cell death. Proc. Natl. Acad. Sci., 2002, 99(5), 3001-3006.
[4]
Bassiri, H.; Carding, S.R. A requirement for IL-2/IL-2 receptor signaling in intrathymic negative selection. J. Immunol., 2001, 166(10), 5945-5954.
[5]
Rathmell, J.C.; Vander-Heiden, M.G.; Harris, M.H.; Frauwirth, K.A.; Thompson, C.B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell, 2000, 6(3), 683-692.
[6]
Kahaleh, M.B.; LeRoy, E.C. Interleukin-2 in scleroderma: Correlation of serum level with extent of skin involvement and disease duration. Ann. Intern. Med., 1989, 110(6), 446-450.
[7]
Tebib, J.; Boughaba, H.; Letroublon, M.; Bienvenu, J.; Noel, E.; Armanet, P.; Colson, F.; Roullet, A.; Bouvier, M. Serum IL-2 level in rheumatoid arthritis: Correlation with joint destruction and disease progression. Eur. Cytokine Netw., 1991, 2(4), 239-243.
[8]
Bozkaya, H.; Bozdayi, M.; Türkyilmaz, R.; Sarioglu, M.; Cetinkaya, H.; Cinar, K.; Köse, K.; Yurdaydin, C.; Uzunalimoglu, O. Circulating IL-2, IL-10 and TNF-alpha in chronic hepatitis B: their relations to HBeAg status and the activity of liver disease. Hepatogastroenterology, 2000, 47(36), 1675-1679.
[9]
Clerici, M.; Hakim, F.T.; Venzon, D.J.; Blatt, S.; Hendrix, C.W.; Wynn, T.A.; Shearer, G.M. Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals. J. Clin. Invest., 1993, 91(3), 759.
[10]
Glaspy, J.A. In: Therapeutic options in the management of renal cell carcinoma. Semin. Oncol., 2002, 29(Suppl. 7), 41-46.
[11]
Natarajan, V.; Lempicki, R.A.; Sereti, I.; Badralmaa, Y.; Adelsberger, J.W.; Metcalf, J.A.; Prieto, D.A.; Stevens, R.; Baseler, M.W.; Kovacs, J.A. Increased peripheral expansion of naive CD4+ T cells in vivo after IL-2 treatment of patients with HIV infection. Proc. Natl. Acad. Sci. , 2002, 99(16), 10712-10717.
[12]
Sereti, I.; Martinez-Wilson, H.; Metcalf, J.A.; Baseler, M.W.; Hallahan, C.W.; Hahn, B.; Hengel, R.L.; Davey, R.T.; Kovacs, J.A.; Lane, H.C. Long-term effects of intermittent interleukin 2 therapy in patients with HIV infection: Characterization of a novel subset of CD4+/CD25+ T cells. Blood, 2002, 100(6), 2159-2167.
[13]
De Marco, A. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb. Cell Fact., 2009, 8(1), 26.
[14]
Tuteja, R. Type I signal peptidase: An overview. Arch. Biochem. Biophys., 2005, 441(2), 107-111.
[15]
Nielsen, H.; Engelbrecht, J.; Brunak, S. von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng., 1997, 10(1), 1-6.
[16]
Forouharmehr, A.; Nassiri, M.; Ghovvati, S.; Javadmanesh, A. Evaluation of different signal peptides for secretory production of recombinant bovine pancreatic ribonuclease a in gram negative bacterial system: An in silico study. Curr. Proteomics, 2017, 14, 1-10.
[17]
de Marco, A.; Deuerling, E.; Mogk, A.; Tomoyasu, T.; Bukau, B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol., 2007, 7.
[18]
Choi, J.; Lee, S. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol., 2004, 64(5), 625-635.
[19]
Baneyx, F.; Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol., 2004, 22(11), 1399.
[20]
Dyrløv Bendtsen, J.; Nielsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 2004, 340(4), 783-795.
[21]
Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 2011, 8(10), 785-786.
[22]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook; Springer: Humana Press, 2005; pp. 571-607.
[23]
Cheng, J.; Randall, A.Z.; Sweredoski, M.J.; Baldi, P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res., 2005, 33(Suppl_2), W72-W76.
[24]
Bagos, P.G.; Nikolaou, E.P.; Liakopoulos, T.D.; Tsirigos, K.D. Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics, 2010, 26(22), 2811-2817.
[25]
Jahandar, M.H.; Forouharmehr, A. Optimization of human serum albumin periplasmic localization in Escherichia coli using in silico evaluation of different signal peptides. Int. J. Pept. Res. Therapeut., 2018, 1-9.
[26]
Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods, 2011, 8(10), 785.
[27]
Zamani, M.; Nezafat, N.; Negahdaripour, M.; Dabbagh, F.; Ghasemi, Y. In silico evaluation of different signal peptides for the secretory production of human growth hormone in E. coli. Int. J. Pept. Res. Ther., 2015, 21(3), 261-268.
[28]
Jyothi, M.; Suneetha, V. A brief study on role of current bioinformatics in biological data analysis. Int. J. Pharm. Tech. Res., 2015, 8(3), 467-469.
[29]
Sezonov, G.; Joseleau-Petit, D.; D’Ari, R. Escherichia coli physiology in Luria-Bertani broth. J. Bacteriol., 2007, 189(23), 8746-8749.
[30]
Pope, B.; Kent, H.M. High efficiency 5 min transformation of Escherichia coli. Nucleic Acids Res., 1996, 24(3), 536-537.
[31]
Kreitman, R.J. Immunotoxins in cancer therapy. Curr. Opin. Immunol., 1999, 11(5), 570-578.
[32]
Murphy, J.R. In: Targeting diphtheria toxin to growth factor receptors. Semin. Cancer Biol., 1995, 6(5), 259-267.
[33]
Toka, F.N.; Pack, C.D.; Rouse, B.T. Molecular adjuvants for mucosal immunity. Immunol. Rev., 2004, 199(1), 100-112.
[34]
Dalbey, R.E.; von Heijne, G. Signal peptidases in prokaryotes and eukaryotes - a new protease family. Trends Biochem. Sci., 1992, 17(11), 474-478.
[35]
Hikita, C.; Mizushima, S. The requirement of a positive charge at the amino terminus can be compensated for by a longer central hydrophobic stretch in the functioning of signal peptides. J. Biol. Chem., 1992, 267(17), 12375-12379.
[36]
van Roosmalen, M.L.; Geukens, N.; Jongbloed, J.D.H.; Tjalsma, H.; Dubois, J-Y.F.; Bron, S.; van Dijl, J.M.; Anné, J. Type I signal peptidases of gram-positive bacteria. Biochimica et Biophysica Acta - Mol. Cell Res., 2004, 1694(1), 279-297.
[37]
Briggs, M.S.; Cornell, D.G.; Dluhy, R.A. L.M.G. Conformations of signal peptides induced by lipids suggest initial steps in protein export. Science, 1986, 233, 206-208.
[38]
Inouye, S.; Soberon, X.; Franceschini, T.; Nakamura, K.; Itakura, K.; Inouye, M. Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane. Proc. Natl. Acad. Sci. , 1982, 79(11), 3438-3441.
[39]
Nesmeyanova, M.A.; Karamyshev, A.L.; Karamysheva, Z.N.; Kalinin, A.E.; Ksenzenko, V.N.; Kajava, A.V. Positively charged lysine at the N-terminus of the signal peptide of the Escherichia coli alkaline phosphatase provides the secretion efficiency and is involved in the interaction with anionic phospholipids. FEBS Lett., 1997, 403(2), 203-207.
[40]
Chen, H.; Kim, J.; Kendall, D.A. Competition between functional signal peptides demonstrates variation in affinity for the secretion pathway. J. Bacteriol., 1996, 178(23), 6658-6664.
[41]
Pratap, J.; Dikshit, K. Effect of signal peptide changes on the extracellular processing of streptokinase from Escherichia coli: Requirement for secondary structure at the cleavage junction. Mol. Gen. Genet., 1998, 258(4), 326-333.
[42]
Rogers, S.; Wells, R.; Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science, 1986, 234(4774), 364-368.
[43]
Natale, P.; Brüser, T.; Driessen, A.J.M. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membranedistinct translocases and mechanisms. Biochimica et Biophysica Acta - Biomemb., 2008, 1778(9), 1735-1756.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy