Abstract
Inflammatory bowel disease (IBD) is a multifactorial chronic disease, commonly associated with alteration in the composition and function of gut microbiota. This process can lead to a decreased production of short chain fatty acids (SCFAs) by the gut microbiota, mainly butyrate, which is an important immunomodulatory molecule in the intestine. Butyrogenic bacteria normally produces butyrate through carbohydrate fermentation or amino acids degradation pathways. This molecule plays an important protective role in intestinal homeostasis acting in both adaptive immunity and innate immunity. This review summarizes the current knowledge about the role of butyrate on the development of IBD and the protective mechanisms of this metabolite on the intestinal mucosa and the whole body, as reported by in vitro and in vivo studies. Thus, butyrate can regulate the activation of regulatory T cells, increasing the acetylation of histones and decreasing the activation of NF-κB. In addition, it can also stimulate the mucus production from epithelial cells and the rearrangement of tight junction proteins.
Keywords: Butyrate, Short chain fatty acids, inflammatory bowel disease, IBD, inflammation, ulcerative Colitis, Crohn's disease.
Current Pharmaceutical Design
Title:Protective Mechanisms of Butyrate on Inflammatory Bowel Disease
Volume: 24 Issue: 35
Author(s): João P.B. Silva, Kely C. Navegantes-Lima, Ana L.B. Oliveira, Dávila V.S. Rodrigues, Sílvia L.F. Gaspar, Valter V.S. Monteiro, Davi P. Moura and Marta C. Monteiro*
Affiliation:
- Neuroscience and Cellular Biology Post Graduation Program, Institute of Biological Sciences, Federal University of Para, Avenue Augusto Correa SN, Guama, Para 66075-110,Brazil
Keywords: Butyrate, Short chain fatty acids, inflammatory bowel disease, IBD, inflammation, ulcerative Colitis, Crohn's disease.
Abstract: Inflammatory bowel disease (IBD) is a multifactorial chronic disease, commonly associated with alteration in the composition and function of gut microbiota. This process can lead to a decreased production of short chain fatty acids (SCFAs) by the gut microbiota, mainly butyrate, which is an important immunomodulatory molecule in the intestine. Butyrogenic bacteria normally produces butyrate through carbohydrate fermentation or amino acids degradation pathways. This molecule plays an important protective role in intestinal homeostasis acting in both adaptive immunity and innate immunity. This review summarizes the current knowledge about the role of butyrate on the development of IBD and the protective mechanisms of this metabolite on the intestinal mucosa and the whole body, as reported by in vitro and in vivo studies. Thus, butyrate can regulate the activation of regulatory T cells, increasing the acetylation of histones and decreasing the activation of NF-κB. In addition, it can also stimulate the mucus production from epithelial cells and the rearrangement of tight junction proteins.
Export Options
About this article
Cite this article as:
Silva P.B. João , Navegantes-Lima C. Kely , Oliveira L.B. Ana, Rodrigues V.S. Dávila , Gaspar L.F. Sílvia, Monteiro V.S. Valter , Moura P. Davi and Monteiro C. Marta *, Protective Mechanisms of Butyrate on Inflammatory Bowel Disease, Current Pharmaceutical Design 2018; 24 (35) . https://dx.doi.org/10.2174/1381612824666181001153605
DOI https://dx.doi.org/10.2174/1381612824666181001153605 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
Call for Papers in Thematic Issues
Advances in the Molecular Pathogenesis of Inflammatory Bowel Disease.
This thematic issue will emphasize the recent breakthroughs in the mechanisms of Inflammatory bowel disease (IBD) pathogenesis and devotes some understanding of both Crohn’s and ulcerative colitis. It is expected to include studies about cellular and genetic aspects, which help to precipitate the disease, and the immune system-gut microbiome relations ...read more
Blood-based biomarkers in large-scale screening for neurodegenerative diseases
Disease biomarkers are necessary tools that can be employ in several clinical context of use (COU), ranging from the (early) diagnosis, prognosis, prediction, to monitor of disease state and/or drug efficacy. Regarding neurodegenerative diseases, in particular Alzheimer’s disease (AD), a battery of well-validated biomarkers are available, such as cerebrospinal fluid ...read more
Current Pharmaceutical challenges in the treatment and diagnosis of neurological dysfunctions
Neurological dysfunctions (MND, ALS, MS, PD, AD, HD, ALS, Autism, OCD etc..) present significant challenges in both diagnosis and treatment, often necessitating innovative approaches and therapeutic interventions. This thematic issue aims to explore the current pharmaceutical landscape surrounding neurological disorders, shedding light on the challenges faced by researchers, clinicians, and ...read more
Diabetes mellitus: advances in diagnosis and treatment driving by precision medicine
Diabetes mellitus (DM) is a chronic degenerative metabolic disease with ever increasing prevalence worldwide which is now an epidemic disease affecting 500 million people worldwide. Insufficient insulin secretion from pancreatic β cells unable to maintain blood glucose homeostasis is the main feature of this disease. Multifactorial and complex nature of ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements