Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Brief Overview of Frequently used Macrolides and Analytical Techniques for their Assessment

Author(s): Syed Tufail Hussain Sherazi*, Sarfaraz Ahmed Mahesar, Sirajuddin and Muhammad Ali Malah

Volume 15, Issue 4, 2019

Page: [324 - 338] Pages: 15

DOI: 10.2174/1573411014666180917105750

Price: $65

Abstract

Background: Macrolide antibiotics are known as versatile broad-spectrum antibiotics. Macrolides belong to the oldest group of antibacterial agents. The macrolides which are frequently used for clinical purposes are broadly categorized in three classes depending on the number of membered macrocyclic lactone ring. These three classes actually consist of 14, 15 or 16 atoms in macrocyclic lactone ring which are linked through glycosidic bonds. Erythromycin, azithromycin clarithromycin and roxithromycin are frequently used to control against bacterial infections.

Methods: The quality assurance and quality controls are important tasks in the pharmaceutical industries. Consequently, to check the quality of drugs, there is a strong need to know about alternative analytical methods for the routine analysis. Many methods have been reported in the literature for the quantitative determination of erythromycin, clarithromycin, azithromycin and clarithromycin in pharmaceutical formulations and biological samples.

Results: This review will cover a brief introduction of erythromycin, azithromycin, clarithromycin and roxithromycin as well as analytical techniques for their assessment. Each developed method has its own merits and demerits.

Conclusion: Any accurate method could be used for the quality control and quality assurance of macrolide antibiotics according to the availability, performance and procedure of selected instrument as well as skill and expertise of the analyst.

Keywords: Analytical techniques, azithromycin, clarithromycin, erythromycin, macrolides, roxithromycin.

Graphical Abstract
[1]
Kanfer, I.; Skinner, M.F.; Walker, R.B. Analysis of macrolide antibiotics. J. Chromatogr. A, 1998, 812, 255-286.
[2]
González de la Huebra, M.J.; Bordin, G.; Rodríguez, A.R. A multiresidue method for the simultaneous determination of ten macrolide antibiotics in human urine based on gradient elution liquid chromatography coupled to coulometric detection (HPLC-ECD). Anal. Chim. Acta, 2004, 517, 53-63.
[3]
Kees, F.; Spangler, S.; Wellenhofer, M. Determination of macrolides in biological matrices by high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A, 1998, 812, 287-293.
[4]
Chen, K.Y.; Yang, T.C.; Chang, S.Y. Determination of macrolide antibiotics using dispersive liquid-liquid microextraction followed by surface-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2012, 23, 1157-1160.
[5]
Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000-2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis., 2014, 14, 742-750.
[6]
European Centre for Disease Prevention and Control (ECDC), Summary of the Latest Data on Antibiotic Consumption in the European Union, ESAC-Net Surveillance Data European Centre for Disease Prevention and Control (2015) Stockholm. Available at: http://ecdc.europa.eu/hr/eaad/antibiotics-news/Documents/antimic-robial-consumption-ESAC-Net-summary-2015
[7]
Senta, I.; Krizman-Matasic, I.; Terzic, S.; Ahel, M. Comprehensive determination of macrolide antibiotics, their synthesis intermediates and transformation products in wastewater effluents and ambient waters by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2017, 1509, 60-68.
[8]
Qi, M.; Wang, P.; Cong, R.; Yang, J. Simultaneous determination of roxithromycin and ambroxol hydrochloride in a new tablet formulation by liquid chromatography. J. Pharm. Biomed. Anal., 2004, 35, 1287-1291.
[9]
Yu, B.; Wang, X.; Yu, S.; Li, Q.; Zhou, Q. Effects of roxithromycin on ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in the rhizosphere of wheat. Appl. Microbiol. Biotechnol., 2014, 98, 263-272.
[10]
Bryskier, A. Roxithromycin: Review of its antimicrobial activity. J. Antimicrob. Chemother., 1998, 41, 1-21.
[11]
Norouzi, P.; Daneshgar, P.; Ganjali, M.R. Electrochemical evaluation of non-electroactive drug erythromycin in trace amount at biological samples by continuous cyclic voltammetry. Mater. Sci. Eng., 2009, 29, 1281-1287.
[12]
Ali, M.; Sherazi, S.T.H.; Mahesar, S.A. Quantification of erythromycin in pharmaceutical formulation by transmission Fourier transform infrared spectroscopy. Arab. J. Chem., 2014, 7, 1104-1109.
[13]
Avramov Ivic, M.L.; Petrović, S.D.; Mijin, D.Ž.; Vanmoos, F.; Radović, V.V. The electrochemical behavior of erythromycin A on a gold electrode. Electrochim. Acta, 2008, 54, 649-654.
[14]
Yang, Z.Y.; Wang, L.; Tang, X. Determination of azithromycin by ion-pair HPLC with UV detection. J. Pharm. Biomed. Anal., 2009, 49, 811-815.
[15]
Petropoulos, A.D.; Kouvela, E.C.; Starosta, A.L.; Wilson, D.N.; Kalpaxis, D.L. Time-resolved binding of azithromycin to escherichia coli ribosomes. J. Mol. Biol., 2009, 385, 1179-1192.
[16]
Shaikh, K.A.; Patil, S.D.; Devkhile, A.B. Development and validation of a reversed-phase HPLC method for simultaneous estimation of ambroxol hydrochloride and azithromycin in tablet dosage form. J. Pharm. Biomed. Anal., 2008, 48, 1481-1484.
[17]
Breier, A.R.; Garcia, C.V.; Oppe, T.P.; Steppe, M.; Schapoval, E.E.S. Microbiological assay for azithromycin in pharmaceutical formulations. J. Pharm. Biomed. Anal., 2002, 29, 957-961.
[18]
Mallah, M.A.; Sherazi, S.T.H.; Mahesar, S.A.; Rauf, A. Assessment of azithromycin in pharmaceutical formulation by Fourier-transform infrared (FT-IR) transmission spectroscopy. Pak. J. Anal. Environ. Chem., 2011, 12, 61-67.
[19]
Mallah, M.A.; Sherazi, S.T.H.; Mahesar, S.A.; Rauf, A. Development and validation of green method for estimation of clarithromycin in pharmaceutical formulation by transmission Fourier transform infrared spectroscopy. J. Chem. Soc. Pak., 2012, 34, 556-562.
[20]
Li, W.; Jia, H.; Zhao, K. Determination of clarithromycin in rat plasma by HPLC-UV method with pre-column derivatization. Talanta, 2007, 71, 385-390.
[21]
Ozkan, Y.; Dikmen, N.; Işimer, A. Clarithromycin targeting to lung: optimization of the size, morphology and release characteristics of albumin microspheres. Acta Pol. Pharm., 2000, 57, 375-380.
[22]
Chu, S-Y.; Sennello, L.T.; Sonders, R.C. Simultaneous determination of clarithromycin and 14(R)-hydroxyclarithromycin in plasma and urine using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B., 1991, 571, 199-208.
[23]
Pappa-Louisi, A.; Papageorgiou, A.; Zitrou, A.; Sotiropoulos, S.; Zougrou, F. Study on the electrochemical detection of the macrolide antibiotics clarithromycin and roxithromycin in reversed-phase high-performance liquid chromatography. J. Chromatogr. B, 2001, 755, 57-64.
[24]
Jiang, Y.; Wang, J.; Li, H.; Wang, Y.; Gu, J. Determination of clarithromycin in human plasma by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Pharm. Biomed. Anal., 2007, 43, 1460-1464.
[25]
Wang, J.; Yang, Z.; Wang, X.; Yang, N. Capillary electrophoresis with gold nanoparticles enhanced electrochemiluminescence for the detection of roxithromycin. Talanta, 2008, 76, 85-90.
[26]
Sherazi, S.T.H.; Ali, M.; Mahesar, S.A. Application of Fourier-transform infrared (FT-IR) transmission spectroscopy for the estimation of roxithromycin in pharmaceutical formulation. Vib. Spectrosc., 2011, 55, 115-118.
[27]
Hang, T-J.; Zhang, M.; Song, M.; Shen, J-P.; Zhang, Y-D. Simultaneous determination and pharmacokinetic study of roxithromycin and ambroxol hydrochloride in human plasma by LC-MS/MS. Clin. Chim. Acta, 2007, 382, 20-24.
[28]
Selenke, W.M.; Leung, G.W.; Townley, R.G. Nonantibiotic effects of macrolide antibiotics of the oleandomycin-erythromycin group with special reference to their “steroid-sparing” effects. J. Allergy Clin. Immunol., 1980, 65, 454-464.
[29]
Kanoh, S.; Rubin, B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin. Microbiol. Rev., 2010, 23, 590-615.
[30]
Arsic, B.; Barber, J.; Čikoš, A.; Mladenovic, M.; Novak, P. 16-Membered macrolide antibiotics: A review. Int. J. Antimicrob. Agents, 2017, 51, 283-298.
[31]
Poletti, V.; Casoni, G.; Chilosi, M.; Zompatori, M. Diffuse panbronchi-olitis. Eur. Respir. J., 2006, 28, 862-871.
[32]
Yang, M.; Dong, B.R.; Lu, J.; Lin, X.; Wu, H.M. Macrolides for diffuse pan-bronchiolitis. Cochrane Database Syst. Rev., 2010, 12Art. No.: CD007716.
[http://dx.doi.org/10.1002/14651858.CD007716.pub2]
[33]
Hunter, R.P.; Lynch, M.J.; Erimn, J.P.; Mfllas, W.J.; Fletcher, A.M.; Ryan, N.L.; Olson, J.A. Pharmacokinetics, oral bioavailability and tissue distribution of azithromycin in cats. J. Vet. Phmacol. Therap., 1995, 18, 38-46.
[34]
Adeli, E. The use of spray freeze drying for dissolution and oral bioavailability improvement of azithromycin. Powder Technol., 2017, 319, 323-331.
[35]
Alvarez-Elcoro, M.D.S.; Mark, J.; Enzler, M.D. The Macrolides: Erythromycin, Clarithromycin, and Azithromycin, Symposium on Antimicrobial Agents-Part IX. Mayo Clin. Proc., 1999, 74, 613-634.
[36]
Gunjan, S.; Singh, S.K.; Chauhan, B.S.; Pandey, S.K.; Tripathi, R. Clarithromycin enhances the antimalarial efficacy of mefloquine via its increased bioavailability and disrupting P. falciparum apicoplast. Life Sci., 2015, 136, 126-132.
[37]
Biradar, S.V.; Patil, A.R.; Sudarsan, G.V.; Pokharka, V.B. A comparative study of approaches used to improve solubility of roxithromycin. Powder Technol., 2006, 169, 22-32.
[38]
Bernabeu, J.A.; Camacho, M.A.; Gil-Alegre, M.E.; Ruz, V.; Torres-Suárez, A.I. Microbiological bioassay of erythromycin thiocyanate: Optimisation and validation. J. Pharm. Biomed. Anal., 1999, 21, 347-353.
[39]
Andreotti, P.E.; Morse, I.S.; Hartmann, D.M. Microbioluminometry assay: Determination of erythromycin activity in plasma or serum. J. Pharm. Sci., 1989, 78, 979-985.
[40]
Tepe, J. JohnSt, C. Determination of erythromycin by ultraviolet spectrophotometry. Anal. Chem., 1955, 27, 744-746.
[41]
Amin, A.S.; Issa, Y.M. Selective spectrophotometric method for the determination of erythromycin and its esters in pharmaceutical formulations using gentiana violet. J. Pharm. Biomed. Anal., 1996, 14, 1625-1629.
[42]
Deubel, A.; Holzgrabe, U. Development of an enhanced separation of erythromycin and its related substances by liquid chromatography. J. Pharm. Biomed. Anal., 2007, 43, 493-498.
[43]
Wardrop, J.; Ficker, D.; Franklin, S.; Gorski, R.J. Determination of erythromycin and related substances in enteric coated tablet formulations by reversed phase Liquid chromatography. J. Pharm. Sci., 2000, 89, 1097-1105.
[44]
Van den Bossche, L.; Lodi, A.; Schaar, J.; Shaakov, S.; Adams, E. An interlaboratory study on the suitability of a gradient LC-UV method as a compendial method for the determination of erythromycin and its related substances. J. Pharm. Biomed. Anal., 2010, 53, 109-112.
[45]
Hassib, S.T.; Farag, A.E.; Elkady, E.F. Liquid chromatographic and spectrophotometric methods for the determination of erythromycin stearate and trimethoprim in tablets. Bulletin Faculty Pharm. Cairo Uni., 2011, 49, 81-89.
[46]
Xiao, W.; Chen, B.; Yao, S.; Cheng, Z. Simultaneous determination of erythromycin propionate and base in human plasma by high-performance liquid chromatography-electrospray mass spectrometry. J. Chromatogr. B, 2005, 817, 153-158.
[47]
Deubel, A.; Fandiño, A.S.; Sörgel, F.; Holzgrabe, U. Determination of erythromycin and related substances in commercial samples using liquid chromatography/ion trap mass spectrometry. J. Chromatogr. A, 2006, 1136, 39-47.
[48]
Yudi, L.M.; Baruzzi, A.M.; Solis, V. Quantitative determination of erythromycin and its hydrolysis products by cyclic voltammetry at the interface between water and 1,2-dichloroethane. J. Electroanal. Chem., 1993, 360, 211-219.
[49]
Wang, H.; Zhang, A.; Cui, H.; Liu, D.; Liu, R. Adsorptive stripping voltammetric determination of erythromycin at a pretreated glassy carbon electrode. Microchem. J., 2000, 64, 67-71.
[50]
Vajdle, O.; Guzsvány, V.; Škorić, D.; Anojčić, J.; Bobrowski, A. Voltammetric behavior of erythromycin ethylsuccinate at a renewable silver-amalgam film electrode and its determination in urine and in a pharmaceutical preparation. Electrochim. Acta, 2016, 191, 44-54.
[51]
Vajdle, O.; Guzsvány, V.; Škoric, D.; Csanádi, J.; Petkovic, M.; Avramov-Ivic, M.; Kónya, Z.; Petrovic, S.; Bobrowski, A. Voltammetric behavior and determination of the macrolide antibiotics azithromycin, clarithromycin and roxithromycin at a renewable silver - Amalgam film electrode. Electrochim. Acta, 2017, 229, 334-344.
[52]
Lalloo, A.K.; Kanfer, I. Determination of erythromycin and related substances by capillary electrophoresis. J. Chromatogr. B, 1997, 704, 343-350.
[53]
Ha, P.T.T.; Van Schepdael, A.; Roets, E.; Hoogmartens, J. Investigating the potential of erythromycin and derivatives as chiral selector in capillary electrophoresis. J. Pharm. Biomed. Anal., 2004, 34, 861-870.
[54]
Feng, Y-C.; Hu, C-Q. Construction of universal quantitative models for determination of roxithromycin and erythromycin ethylsuccinate in tablets from different manufacturers using near infrared reflectance spectroscopy. J. Pharm. Biomed. Anal., 2006, 41, 373-384.
[55]
Qu, N.; Li, X.; Dou, Y.; Mi, H.; Ren, Y. Nondestructive quantitative analysis of erythromycin ethylsuccinate powder drug via short-wave near-infrared spectroscopy combined with radial basis function neural networks. Eur. J. Pharm. Sci., 2007, 31, 156-164.
[56]
Wu, B.; Guo, Y.; Cao, H.; Zhang, Y.; Yu, L.; Jia, N. A novel mesoporous molecular sieves-based electrochemilumenescence sensor for sensitive detection of azithromycin. Sens. Actuat. B, 2013, 186, 219-225.
[57]
Suhagia, B.N.; Shah, S.A.; Rathod, I.S.; Patel, H.M.; Doshi, K.R. Determination of azithromycin in pharmaceutical dosage forms by spectrophotometric method. Indian J. Pharm. Sci., 2006, 68, 242-245.
[58]
De Paula, C.E.R.; Almeida, V.G.K.; Cassella, R.J. Novel spectrophotometric method for the determination of azithromycin in pharmaceutical formulations based on its charge transfer reaction with quinalizarin. J. Braz. Chem. Soc., 2010, 21, 1664-1671.
[59]
Jayanna, B.K.; Nagendrappa, G. Arunkumar; Gowda N. Spectrophotometric Estimation of Azithromycin in Tablets. Indian J. Pharm. Sci., 2012, 74, 365-367.
[60]
Sharmin, N.; Shanta, N.S.; Bachar, S.C. Spectrophotometric Analysis of azithromycin and its pharmaceutical dosage forms: Comparison between spectrophotometry and HPLC. Dhaka Univ. J. Pharm. Sci, 2013, 12, 171-179.
[61]
Omara, H.A.; Ahmed, H.A.; El-Mahdy, A.A.; Musbah, S.A. New spectrophotometric determination of azithromycin in pure and dosage forms using nbromosuccinimide and potassium permanganate as oxidants. World J. Pharm. Pharm. Sci., 2014, 3, 100-112.
[62]
Bhimani, S.; Sanghvi, G.; Pethani, T.; Dave, G.; Airao, V.; Sharma, T.; Sheth, N.; Vaishnav, D. Development of the UV spectrophotometric method of azithromycin in API and stress degradation studies. Int. Lett. Chem. Phys. Astron., 2016, 68, 48-53.
[63]
Rufino, J.L.; Pezza, H.R.; Pezza, L. Flow-injection spectrophotometric determination of azithromycin in pharmaceutical formulations using p-chloranil in the presence of hydrogen peroxide. Anal. Sci., 2008, 24, 871-876.
[64]
Nigovic, B.; Simunic, B. Voltammetric assay of azithromycin in pharmaceutical dosage forms. J. Pharm. Biomed. Anal., 2003, 32, 197-202.
[65]
Nigovic, B. Adsorptive stripping voltammetric determination of azithromycin at a glassy carbon electrode modified by electrochemical oxidation. Anal. Sci., 2004, 20, 639-643.
[66]
Farghaly, O.A.; Mohamed, N.A. Voltammetric determination of azithromycin at the carbon paste electrode. Talanta, 2004, 62, 531-538.
[67]
Araujo, J.; Oritz, R.; Velasquez, W.; Ortega, J.M. Determination of azithromycin in pharmaceutical formulations by differential pulse voltammetry. Comparison with Fourier transform infrared spectroscopic analysis. Port. Electrochem. Acta, 2006, 24, 71-81.
[68]
Palomeque, M.E.; Ortíz, P.I. New automatized method with amperometric, detection for the determination of azithromycin. Talanta, 2007, 72, 101-105.
[69]
Peng, J.Y.; Hou, C.T.; Liu, X.X.; Li, H.B.; Hu, X.Y. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta, 2011, 86, 227-232.
[70]
Zhang, K.; Lu, L.; Wen, Y.; Xu, J.; Duan, X.; Zhang, L.; Hu, D.; Nie, T. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin. Anal. Chim. Acta, 2013, 787, 50-56.
[71]
Ensafi, A.A.; Allafchian, A.R.; Rezaei, B. A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr2O4 for the determination of azithromycin. Colloid. Surf. B., 2013, 103, 468-474.
[72]
Torano, J.S.; Guchelaar, H.J.; Sastre, J. Quantitative determination of the macrolide antibiotics erythromycin, roxithromycin, azithromycin and clarithromycin in human serum by high-performance liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl chloride and fluorescence detection. J. Chromatogr. B, 1998, 720, 89-97.
[73]
Zubata, P.; Ceresole, R.; Rosasco, M.A.; Pizzorno, M.T. A new HPLC method for azithromycin quantitation. J. Pharm. Biomeical. Anal., 2002, 27, 833-836.
[74]
Bahrami, G.; Mirzae, S.; Kiani, A. High performance liquid chromatographic determination of azithromycin in serum using fluorescence detection and its application in human pharmacokinetic studies. J. Chromatogr. B, 2005, 820, 277-281.
[75]
Wilms, E.; Trumpie, H.; Veenendaal, W.; Touw, D. Quantitative determination of azithromycin in plasma, blood and isolated neutrophils by liquid chromatography using pre-column derivatization with 9-fluorenylmethyloxycarbonyl-chloride and fluorescence detection. J. Chromatogr. B, 2005, 814, 37-42.
[76]
Bahrami, G.; Mohammadi, B. A new on-line, in-tube pre-column derivatization technique for high performance liquid chromatographic determination of azithromycin in human serum. J. Chromatogr. B, 2006, 830, 355-358.
[77]
Zeng, A.; Liu, X.; Zhang, S.; Zheng, Y.; Huang, P.; Du, K.; Fu, Q. Determination of azithromycin in raw materials and pharmaceutical formulations by HPLC coupled with an evaporative light scattering detector. Asian J. Pharm. Sci., 2014, 9, 107-116.
[78]
Barrett, B.; Booek-Dohalsky, V.; Fejt, P.; Vaingatova, S.; Huclova, J.; Nimec, B.; Jelinek, I. Validated HPLC-MS-MS method for determination of azithromycin in human plasma. Anal. Bioanal. Chem., 2005, 383, 210-217.
[79]
Nirogi, R.V.S.; Kandikere, V.N.; Shukla, M.; Mudigonda, K.; Maurya, S.; Boosi, R.; Yerramilli, A. Sensitive and selective liquid chromatography-tandem mass spectrometry method for the quantification of azithromycin in human plasma. Anal. Chim. Acta, 2005, 553, 1-8.
[80]
Chen, B.M.; Liang, Y.Z.; Chen, X.; Liu, S.G.; Deng, F.L.; Zhou, P. Quantitative determination of azithromycin in human plasma by liquid chromatography-mass spectrometry and its application in a bioequivalence study. J. Pharm. Biomed. Anal., 2006, 42, 480-487.
[81]
Yuzuak, N.; Ozden, T.; Eren, S.; Toptan, S. Analysis of azithromycin in human plasma by LC-MS-MS. Chromatographia, 2007, 66, S115-S118.
[82]
Filist, M.; Buś-Kwaśnik, K.; Ksycińska, H.; Rudzki, P.J. Simplified LC-MS/MS method enabling the determination of azithromycin in human plasma after a low 100mg dose administration. J. Pharm. Biomed. Anal., 2014, 100, 184-189.
[83]
Boyer, C.; Gaudin, K.; Kauss, T.; Gaubert, A.; Boudis, A.; Verschelden, J.; Franc, M.; Roussille, J.; Boucher, J.; Olliaro, P.; White, N.J.; Millet, P.; Dubost, J-P. Development of NIRS method for quality control of drug combination artesunate-azithromycin for the treatment of severe malaria. J. Pharm. Biomed. Anal., 2012, 67-68, 10-15.
[84]
Robaina, N.F.; de Paula, C.E.R.; Brum, D.M.; de la Guardia, M.; Garrigues, S.; Cassella, R.J. Novel approach for the determination of azithromycin in pharmaceutical formulations by Fourier transform infrared spectroscopy in film-through transmission mode. Microchem. J., 2013, 110, 301-307.
[85]
Mahmoudi, A.; Fourar, R.E-A.; Boukhechem, M.S.; Zarkout, S. Microbiological assay for the analysis of certain macrolides in pharmaceutical dosage forms. Int. J. Pharm., 2015, 491, 285-291.
[86]
Jain, A.; Jain, A.; Jain, A. Sensitive polarographic electrochemical determination of clarithromycin in blood serum. J. Young Pharm., 2013, 5, 70-72.
[87]
Taninaka, C.; Ohtani, H.; Hanada, E.; Kotaki, H.; Sato, H.; Iga, T. Determination of erythromycin, clarithromycin, roxithromycin, and azithromycin in plasma by high-performance liquid chromatography with amperometric detection. J. Chromatogr. B, 2000, 738, 405-411.
[88]
Hedenmo, M.; Britt-Marie, E. Liquid chromatographic determination of the macrolide antibiotics roxithromycin and clarithromycin in plasma by automated solid-phase extraction and electrochemical detection. J. Chromatogr. A, 1995, 692, 161-166.
[89]
Wibawa, J.I.D.; Shaw, P.N.; Barrett, D.A. Quantification of clarithromycin, its 14-hydroxy and decladinose metabolites in rat plasma, gastric juice and gastric tissue using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B, 2003, 783, 359-366.
[90]
Niopas, I.; Daftsios, A.C. Determination of clarithromycin in human plasma by HPLC with electrochemical detection: validation and application in pharmacokinetic study. Biomed. Chromatogr., 2001, 15, 507-508.
[91]
Choi, S.J.; Kim, S.B.; Lee, H-Y.; Na, D.H.; Yoon, Y.S.; Lee, S.S.; Kim, J.H.; Lee, K.C.; Lee, H.S. Column-switching high-performance liquid chromatographic determination of clarithromycin in human plasma with electrochemical detection. Talanta, 2001, 54, 377-382.
[92]
Peng, X.; Wang, Z.; Li, J.; Le, G.; Shi, Y. Electrochemiluminescence detection of clarithromycin in biological fluids after capillary electrophoresis separation. Anal. Lett., 2008, 41, 1184-1199.
[93]
Amini, H.; Ahmadiani, A. Sensitive determination of clarithromycin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J. Chromatogr. B, 2005, 817, 193-197.
[94]
Bahrami, G.; Mohammadi, B. Determination of clarithromycin in human serum by high-performance liquid chromatography after pre-column derivatization with 9-fluorenylmethyl chloroformate: Application to a bioequivalence study. J. Chromatogr. B, 2007, 850, 417-422.
[95]
van Rooyen, G.F.; Smit, M.J.; de Jager, A.D.; Hundt, H.K.L.; Hundt, A.F. Sensitive liquid chromatography-tandem mass spectrometry method for the determination of clarithromycin in human plasma. J. Chromatogr. B, 2002, 768, 223-229.
[96]
Shin, J.; Pauly, D.; Johnsona, J.; Fryea, R. Simplified method for determination of clarithromycin in human plasma using protein precipitation in a 96-well format and liquid chromatography-tandem mass spectrometry. J. Chromatogr. B, 2008, 871, 130-134.
[97]
de Velde, F.; Alffenaar, J.W.A.; Wessels, A.M.; Greijdanus, B.; Uges, D.R. Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B, 2009, 877, 1771-1777.
[98]
Oswald, S.; Peters, J.; Venner, M.; Siegmund, W. LC-MS/MS method for the simultaneous determination of clarithromycin, rifampicin and their main metabolites in horse plasma, epithelial lining fluid and broncho-alveolar cells. J. Pharm. Biomed. Anal., 2011, 55, 194-201.
[99]
Vu, D.H.; Koster, R.A.; Bolhuis, M.S.; Greijdanus, B.; Altena, R.V.; Nguyen, D.H.; Brouwers, J.R.B.J.; Uges, D.R.A.; Alffenaar, J.W.C. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC-MS/MS. Talanta, 2014, 121, 9-17.
[100]
Lotfy, H.M.; Hagazy, M.A-M. Comparative study of novel spectrophotometric methods manipulating ratio spectra: An application on pharmaceutical ternary mixture of omeprazole, tinidazole and clarithromycin. Spectrochim. Acta, Part A., 2012, 96, 259-270.
[101]
Ivic, M.L.A.; Petrović, S.D.; Vonmoos, F.; Mijin, D.Ž.; Drljević, K.M. The qualitative electrochemical determination of clarithromycin and spectroscopic detection of its structural changes at gold electrode. Electrochem. Commun., 2007, 9, 1643-1647.
[102]
Bekele, L.K.; Gebeyehu, G.G. Application of different analytical techniques and microbiological assays for the analysis of macrolide antibiotics from pharmaceutical dosage forms and biological matrices. ISRN Anal. Chem., 2012, 1-17.
[103]
Khashaba, P.Y. Spectrofluorimetric analysis of certain macrolide antibiotics in bulk and pharmaceutical formulations. J. Pharm. Biomed. Anal., 2002, 27, 923-932.
[104]
Peng, J.; Hu, X. A simple fluorescence quenching method for roxithromycin determination using CdTe quantum dots as probes. J. Luminescence, 2011, 131, 952-955.
[105]
de Oliveira, V.; Bergold, A.M.; Schapoval, E.E.S. High performance liquid chromatographic determination of roxithromycin in tablets. Anal. Lett., 1996, 29, 2377-2382.
[106]
Macek, J.; Ptáček, P.; Klíma, J. Determination of roxithromycin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J. Chromatogr. B, 1999, 723, 233-238.
[107]
Glowka, F.K.; Karazniewicz-Lada, M. Determination of roxithromycin in human plasma by HPLC with fluorescence and UV absorbance detection: Application to a pharmacokinetic study. J. Chromatogr. B, 2007, 852, 669-673.
[108]
Drljevic-Djuric, K.M.; Jović, V.D.; Lacnjevac, U.Č.; Ivić, M.L.A.; Djordjević, S.B. Voltammetric and differential pulse determination of roxithromycin. Electrochim. Acta, 2010, 56, 47-52.
[109]
Zhang, L.; Duan, X.; Wen, Y.; Xu, J.; Zhang, O. Electrochemical behaviors of roxithromycin at poly(3,4-ethylenedioxythiophene) modified gold electrode and its electrochemical determination. Electrochim. Acta, 2012, 72, 179-185.
[110]
Dubois, M.; Fluchard, D.; Sior, E.; Delahaut, P. Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B, 2001, 753, 189-202.
[111]
Miao, X.S.; Metcalfe, C.D. Determination of pharmaceuticals in aqueous samples using positive and negative voltage switching microbore liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom., 2003, 38, 27-34.
[112]
Wang, P.; Qi, M.; Jin, X. Determination of roxithromycin in rat lung tissue by liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2005, 39, 618-623.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy