Generic placeholder image

Current Organic Synthesis


ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Piperazine as an Inexpensive and Efficient Ligand for Pd-Catalyzed Homocoupling Reactions to Synthesize Bipyridines and Their Analogues

Author(s): Mingwei Chen, Jinyu Hu, Xiaoli Tang and Qiming Zhu*

Volume 16, Issue 1, 2019

Page: [173 - 180] Pages: 8

DOI: 10.2174/1570179415666180913131905

Price: $65


Aim and Objective: The synthesis of bipyridines, especially 2, 2’-bipyridines, remains challenging because the catalytic cycle can be inhibited due to coordination of bipyridine to transition metal. Thus, the development of efficient methods for the synthesis of bipyridines is highly desirable. In the present work, we presented a promising approach for preparation of bipyridines via a Pd-catalyzed reductive homocoupling reaction with simple piperazine as a ligand.

Materials and Methods: Simple and inexpensive piperazine was used as a ligand for Pd-catalyzed homocoupling reaction. The combination of Pd(OAc)2 and piperazine in dimethylformamide (DMF) was observed to form an excellent catalyst and efficiently catalyzed the homocoupling of azaarenyl halides, in which DMF was used as the solvent without excess reductants although stoichiometric reductant was generally required to generate the low-oxidation-state active metal species in the catalytic cycles.

Results: In this case, good to excellent yields of bipyridines and their (hetero) aromatic analogues were obtained in the presence of 2.5 mol% of Pd(OAc)2 and 5 mol% of piperazine, using K3PO4 as a base in DMF at 140°C.

Conclusion: According to the results, piperazine as an inexpensive and efficient ligand was used in the Pd(OAc)2-catalyzed homocoupling reaction of heteroaryl and aryl halides. The coupling reaction was operationally simple and displayed good substrate compatibility.

Keywords: Piperazine, Pd-catalyzed, homocoupling reaction, bipyridines, halide azaarenes, heteroaryl, aryl halides.

Graphical Abstract
(a)Kaes, C.; Katz, A.; Hosseini, M.W. Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2,2′-bipyridine units. Chem. Rev., 2000, 100(10), 3553-3590.
(b)Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102(5), 1359-1470.
(c)Balzani, V.; Campagna, S. Photochemistry and Photophysics of Coordination Compounds I, II (Topics in Current Chemistry); Springer: Verlag, Berlin, 2007, Vol. 280-281, .
(d)Hapke, M.; Brandt, L.; Lutzen, A. Versatile tools in the construction of substituted 2,2-bipyridines-cross-coupling reactions with tin, zinc and boron compounds. Chem. Soc. Rev., 2008, 37(12), 2782-2797.
(e)Zhang, F.; Duan, X-F. Facile One-Pot Direct arylation and alkylation of nitropyridine n-oxides with grignard reagents. Org. Lett., 2011, 13(22), 6102-6105.
(a)Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95(7), 2457-2483.
(b)Korn, T.J.; Cahiez, G.; Knochel, P. New cobalt-catalyzed cross-coupling reactions of heterocyclic chlorides with aryl and heteroaryl magnesium halides. Synlett, 2003, 2003(12), 1892-1894.
(c)Zapf, A. Coupling of Aryl and Alkyl Halides with Organoboron Reagents Wiley-VCH: Verlag GmbH 2008, 211-229.
(d)Meijere, A.D.; Bräse, S.; Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and More; Wiley-VCH: Weinheim, 2012.
(e)Almond-Thynne, J.; Blakemore, D.C.; Pryde, D.C.; Spivey, A.C. Site-selective Suzuki–Miyaura coupling of heteroaryl halides–understanding the trends for pharmaceutically important classes. Chem. Sci., 2017, 8, 40-62.
(a)Eichenseher, S.; Delacroix, O.; Kromm, K.; Hampel, F.; Gladysz, J.A. Rhenium-containing phosphorus donor ligands for palladium-catalyzed suzuki cross-coupling reactions: A new strategy for high-activity systems. Organometallics, 2005, 24(2), 245-255.
(b)Martin, R.; Buchwald, S.L. Palladium-catalyzed suzuki−miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res., 2008, 41(11), 1461-1473.
(c)Birkholz, M-N.; Freixa, Z.; van Leeuwen, P.W.N.M. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions. Chem. Soc. Rev., 2009, 38(4), 1099-1118.
Pignolet, L.H., Ed.; Homogeneous Catalysis with Metal Phosphine Complexes; Plenum: New York, 1983.
(a)Kantchev, E.A.B.; O’Brien, C.J.; Organ, M.G. Palladium complexes of n-heterocyclic carbenes as catalysts for cross-coupling reactions—a synthetic chemist’s perspective. Angew. Chem. Int. Ed., 2007, 46(16), 2768-2813.
(b)Marion, N.; Nolan, S.P. Well-defined n-heterocyclic carbenes−palladium(II) precatalysts for cross-coupling reactions. Acc. Chem. Res., 2008, 41(11), 1440-1449.
(a)Weissman, H.; Milstein, D. Highly active PdII cyclometallated imine catalyst for the Suzuki reaction. Chem. Commun. (Camb.), 1999, 18, 1901-1902.
(b)Serrano, J.L.; García, L.; Pérez, J.; Pérez, E.; García, J.; Sánchez, G.; Sehnal, P.; De Ornellas, S.; Williams, T.J.; Fairlamb, I.J.S. Synthesis and characterization of imine-palladacycles containing imidate “pseudohalide” ligands: efficient suzuki–miyaura cross-coupling precatalysts and their activation to give Pd0Ln species (L = Phosphine). Organometallics, 2011, 30(19), 5095-5109.
(c)Mandegani, Z.; Asadi, M.; Asadi, Z. Nano tetraimine Pd(0) complex as an efficient catalyst for phosphine-free Suzuki reaction in water and copper-free Sonogashira reaction under aerobic conditions. Appl. Organomet. Chem., 2016, 30(8), 657-663.
(a)Li, J-H.; Liu, W-J. Dabco as an inexpensive and highly efficient ligand for palladium-catalyzed suzuki−miyaura cross-coupling reaction. Org. Lett., 2004, 6(16), 2809-2811.
(b)Li, J-H.; Liang, Y.; Wang, D-P.; Liu, W-J.; Xie, Y-X.; Yin, D-L. Efficient stille cross-coupling reaction catalyzed by the Pd(OAc)2/dabco catalytic system. J. Org. Chem., 2005, 70(7), 2832-2834.
(c)Kylmälä, T.; Kuuloja, N.; Xu, Y.; Rissanen, K.; Franzén, R. Synthesis of chlorinated biphenyls by Suzuki cross-coupling using diamine or diimine-palladium complexes. Eur. J. Org. Chem., 2008, 2008(23), 4019-4024.
(d)Bowser, A.K.; Anderson-Wile, A.M.; Johnston, D.H.; Wile, B.M. Diamine bis(phenolate) and pendant amine bis(phenolate) ligands: catalytic activity for the room temperature palladium-catalyzed Suzuki–Miyauracoupling reaction. Appl. Organomet. Chem., 2016, 30(1), 32-39.
(a)Tao, B.; Boykin, D.W. Pd(OAc)2/2-aryl-2-oxazolines catalyzed Suzuki coupling reactions of aryl bromides and arylboronic acids. Tetrahedron Lett., 2002, 43(28), 4955-4957.
(b)Gu, P.; Xu, Q.; Shi, M. Synthesis of Novel N-heterocyclic carbene-oxazoline palladium complexes and their applications in Suzuki–Miyaura cross-coupling reaction. Synlett, 2013, 24(10), 1255-1259.
(a)Mohanty, S.; Suresh, D.; Balakrishna, M.S.; Mague, J.T. Phosphine free diamino-diol based palladium catalysts and their application in Suzuki–Miyaura cross-coupling reactions. J. Organomet. Chem., 2009, 694(13), 2114-2121.
(b)Saikia, B.; Boruah, P.R.; Ali, A.A.; Sarma, D. Simple and efficient phosphine-free Pd(OAc)2 catalyzed urea accelerated Suzuki–Miyaura cross-coupling reactions in iPrOH–H2O at room temperature. Tetrahedron Lett., 2015, 56(4), 633-635.
(a)Zhang, S.; Zhang, D.; Liebeskind, L.S. Ambient temperature, ullmann-like reductive coupling of aryl, heteroaryl, and alkenyl halides. J. Org. Chem., 1997, 62(8), 2312-2313.
(b)Ma, N.; Duan, Z.; Wu, Y. DAB-Cy as an inexpensive and effective ligand for palladium-catalyzed homocoupling reaction of aryl halides. J. Organomet. Chem., 2006, 691(26), 5697-5700.
(c)Ratniyom, J.; Chaiprasert, T.; Pramjit, S.; Yotphan, S.; Sangtrirutnugul, P.; Srisuratsiri, P.; Kongsaeree, P.; Kiatisevi, S. Air-stable imidazole-imine palladium complexes for Suzuki–Miyaura coupling: Toward an efficient, green synthesis of biaryl compounds. J. Organomet. Chem., 2014, 752, 161-170.
(a)Hanan, G.S.; Lehn, J-M.; Kyritsakas, N.; Fischer, J. Molecular helicity: A general approach for helicity induction in a polyheterocyclic molecular strand. J. Chem. Soc. Chem. Commun., 1995, 7, 765-766.
(b)Moore, L.R.; Vicic, D.A. A heterogeneous-catalyst-based, microwave-assisted protocol for the synthesis of 2,2′-bipyridines. Chem. Asian J., 2008, 3(6), 1046-1049.
(c)Liao, L-Y.; Kong, X-R.; Duan, X-F. Reductive Couplings of 2-halopyridines without external ligand: phosphine-free nickel-catalyzed synthesis of symmetrical and unsymmetrical 2, 2′-bipyridines. J. Org. Chem., 2014, 79(2), 777-782.
(a)Storr, T.E.; Baumann, C.G.; Thatcher, R.J.; De Ornellas, S.; Whitwood, A.C.; Fairlamb, I.J.S. Pd(0)/Cu(I)-mediated direct arylation of 2′-deoxyadenosines: Mechanistic role of Cu(I) and reactivity comparisons with related purine nucleosides. J. Org. Chem., 2009, 74(16), 5810-5821.
(b)Baumann, C.G.; De Ornellas, S.; Reeds, J.P.; Storr, T.E.; Williams, T.J.; Fairlamb, I.J.S. Formation and propagation of well-defined Pd nanoparticles (PdNPs) during C–H bond functionalization of heteroarenes: are nanoparticles a moribund form of Pd or an active catalytic species? Tetrahedron, 2014, 70(36), 6174-6187.
(c)Reay, A.J.; Fairlamb, I.J.S. Catalytic C-H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis. Chem. Commun., 2015, 51(91), 16289-16307.
(a)Drozdzak, R.; Allaert, B.; Ledoux, N.; Dragutan, I.; Dragutan, V.; Verpoort, F. Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses. Coord. Chem. Rev., 2005, 249(24), 3055-3074.
(b)Li, J-H.; Hu, X-C.; Liang, Y.; Xie, Y-X. PEG-400 promoted Pd(OAc)2/DABCO-catalyzed cross-coupling reactions in aqueous media. Tetrahedron, 2006, 62(1), 31-38.
(c)Durand, J.; Milani, B. The role of nitrogen-donor ligands in the palladium-catalyzed polyketones synthesis. Coord. Chem. Rev., 2006, 250(3-4), 542-560.
(d)Truong, T.; Nguyen, C.K.; Tran, T.V.; Nguyen, T.T.; Phan, N.T.S. Nickel-catalyzed oxidative coupling of alkynes and arylboronic acids using the metal-organic framework Ni2(BDC)2(DABCO) as an efficient heterogeneous catalyst. Catal. Sci. Technol., 2014, 4(5), 1276-1285.
Palladium nanoclusters (Pd NCs) was prepared according to the reference: Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y., Surfactant- free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. Chem. Commun. , 2011, 47(20), 5750-5752.
Ram, M.S.; Jones, L.M.; Ward, H.J.; Wong, Y.H.; Johnson, C.S.; Subramanian, P.; Hupp, J.T. Ligand tuning effects upon the multielectron reduction and single-electron oxidation of (bi)pyridyl complexes of cis- and trans-dioxorhenium(V): redox thermodynamics, preliminary electrochemical kinetics, and charge-transfer absorption spectroscopy. Inorg. Chem., 1991, 30(14), 2928-2938.
(a)Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, 1980.
(b)Lin, Y-S.; Yamamoto, A. Studies relevant to palladium-catalyzed carbonylation processes. mechanisms of formation of esters and amides from benzylpalladium and (phenylacetyl)palladium complexes on reactions with alcohols and amines. Organometallics, 1998, 17(16), 3466-3478.
(c)Qi, C.; Sun, X.; Lu, C.; Yang, J.; Du, Y.; Wu, H.; Zhang, X-M. Palladium catalyzed reductive homocoupling reactions of aromatic halides in dimethyl sulfoxide (DMSO) solution. J. Organomet. Chem., 2009, 694(18), 2912-2916.
(d)Zeng, M.; Du, Y.; Qi, C.; Zuo, S.; Li, X.; Shao, L.; Zhang, X-M. An efficient and recyclable heterogeneous palladium catalyst utilizing naturally abundant pearl shell waste. Green Chem., 2011, 13(2), 350-356.
(e)Willcox, D.; Chappell, B.G.N.; Hogg, K.F.; Calleja, J.; Smalley, A.P.; Gaunt, M.J. A general catalytic β-C–H carbonylation of aliphatic amines to β-lactams. Science, 2016, 354(6314), 851-857.
(a)Hennings, D.D.; Iwama, T.; Rawal, V.H. Palladium-catalyzed (ullmann-type) homocoupling of aryl halides: A convenient and general synthesis of symmetrical biaryls via inter- and intramolecular coupling reactions. Org. Lett., 1999, 1(8), 1205-1208.
(b)Jutand, A.; Mosleh, A. Nickel- and palladium-catalyzed homocoupling of aryl triflates. scope, limitation, and mechanistic aspects. J. Org. Chem., 1997, 62(2), 261-274.

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy