Generic placeholder image

Anti-Infective Agents


ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Modeling and Statistical Optimization of Culture Conditions for Improvement of Antifungal Compounds Production by Streptomyces albidoflavus S19 Strain of Wastewater Origin

Author(s): S. Souagui*, W. Djoudi, H. Boudries, M. Béchet, V. Leclére and M. Kecha

Volume 17, Issue 1, 2019

Page: [39 - 49] Pages: 11

DOI: 10.2174/2211352516666180813102424


Background: The actinomycetes strains isolated from unexplored ecosystems are a promising alternative for the biosynthesis of novel antimicrobial compounds. Depending on the interesting antifungal activity of the studied strain S19, the statistical method seems to be an effective tool for optimizing the production of anticandidal molecules.

Introduction: This study was conducted in order to optimize the culture parameters (medium nutrients concentrations and initial pH value) affecting the production of antifungal metabolites from S. albidoflavus strain S19 (obtained from wastewater collected in Bejaia region, Algeria) using Response Surface Methodology (RSM). The best conditions for anti-Candida albicans compounds biosynthesis were determined.

Methods and Results: The antimicrobial producer strain S. albidoflavus S19 was identified on the basis of morphological, chemicals characters and physiological characteristics along with 16S rRNA gene sequencing analysis.

Response Surface Methodology by Central Composite Design (CCD) was employed to improve the anti- C. albicans agents production through the optimization of medium parameters. The highest antifungal activity was obtained by using a mixture of 2g l-1 starch, 4g l-1 yeast extract, 2g l-1 peptone at pH 11.

Conclusion: The strain S19 isolated from wastewater showed a significant anti-C. albicans activity and this study revealed the effectiveness of RSM and CCD for increasing bioactive compounds production, rising the diameter of inhibition zones from 13 to 34 mm.

Keywords: Streptomyces albidoflavus, central composite design, RSM, optimization, antifungal production, antimicrobial activity, Candida albicans.

Graphical Abstract
Kalyani, A.L.T.; Ramya-Sravani, K.M.; Annapurna, J. Isolation and characterization of antibiotic producing actinomycetes from marine soil samples. Int. J. Curr. Pharm. Res., 2012, 4, 109-112.
McCullough, M.J.; Ross, B.C.; Reade, P.C. Candida albicans: A review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int. J. Oral Maxillofac. Surg., 1996, 25, 136-144.
Vazquez, J.A. Options for the management of nosocomial candidiasis in patients with AIDS and HIV infection. Pharmacotherapy, 1999, 19, 76-87.
Bharti, A.; Kumar, V.; Gusain, O.; Bisht, G.S. Antifungal activity of actinomycetes isolated from Garhwal region. J. Sci. Eng. Tech. Mgt., 2010, 2, 3-9.
Bevan, P.; Ryder, H.; Shaw, I. Identifying small-molecule lead compounds: The screening approach to drug discovery. Trends Biotechnol., 1995, 113, 115-121.
Marinelli, F.; Genilloud, O.; Fedorenko, V.; Ron, E.Z. Specialized bioactive microbial metabolites: From gene to product. BioMed Res. Int., 2015.
Gupte, M.; Kulkarni, P.; Ganguli, B.N. Antifungal antibiotics. Appl. Microbiol. Biotechnol., 2002, 58, 46-57.
Waksman, S.A. The Actinomycetes: Classification, identification and description of genera and species; Williams and Wilkins Co.: Baltimore, 1961, Vol. 2, .
Raja, A.; Prabakarana, P. Actinomycetes and drug-an overview. Am. J. Drug Discov. Dev., 2011, 1, 75-84.
Sanasam, S.; Ningthoujam, D.S. Screening of local actinomycete isolated in Manipur for anticandidal activity. Asian J. Biotechnol., 2010, 2, 139-145.
Ponmurugan, P.; Nithya, B. Plasmid DNA of antibiotic producing strains of Streptomyces sannanensis isolated from different states in Southern India. Biotechnology, 2008, 7, 487-492.
Berdy, J. Are actinomycetes exhausted as a source of secondary metabolites? Biotecnologica, 1995, 7-8, 13-34.
Wellington, E.M.; Stackebrandt, E.; Sanders, D.; Wolstrup, J.; Jorgensen, N.O.G. Taxonomic status of Kitasatosporia and proposed unification with Streptomyces on the basis of phenotypic and 16S rRNA analysis and emendation of Streptomyces Waksman and Enrici 1943, 339AL. Int. J. Syst. Bacteriol., 1992, 42, 156-160.
Ravel, J.; Wellington, E.M.H.; Hill, R.T. Interspecific transfer of Streptomyces linear plasmids in sterile amended soil microcosms. Appl. Environ. Microbiol., 2000, 66, 529-534.
Arasu, M.V.; Duraipandiyan, V.; Ignacimuthu, S. Antibacterial and antifungal activities of polyketide metabolite from marine Streptomyces sp.AP-123 and its cytotoxic effect. Chemosphere, 2013, 90, 479-487.
Jang, K.H.; Nam, S-J.; Locke, J.B.; Kauffman, C.A.; Beatty, D.S.; Paul, L.A.; Fenical, W. Anthracimycin, a potent anthrax antibiotic from a marine derived actinomycete. Angew. Chem. Int. Ed. Engl., 2013, 52, 7822-7824.
Wang, X.; Huang, L.; Kang, Z.; Buchenauer, H.; Gao, X. Optimization of the fermentation process of actinomycete strain Hhs.015T. J. Biomed. Biotechnol., 2010.
Parekh, S.; Vinci, V.A.; Strobel, R.J. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol., 2000, 54, 287-301.
Sanchez, S.; Demain, A.L. Metabolic regulation of fermentation processes. Enzyme Microb. Technol., 2002, 31, 895-906.
Yu, J.; Liu, Q.; Liu, X.; Sun, Q.; Yan, J.; Qi, X.; Fan, S. Effect of liquid culture requirements on antifungal antibiotic production by Streptomyces rimosus MY02. Bioresour. Technol., 2008, 99, 2087-2091.
Purama, R.K.; Goyal, A. Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresour. Technol., 2008, 99, 7108-7114.
Yuan, L.L.; Li, Y.Q.; Wang, Y.; Zhang, X.H.; Xu, Y.Q. Optimization of critical medium components using response surface methodology for phenazine-1-carboxylic acid production by Pseudomonas sp. M-18Q. J. Biosci. Bioeng., 2008, 105, 232-237.
Wang, Y.; Fang, X.; An, F.; Wang, G.; Zhang, X. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb. Cell Fact, 2011, 10:98. doi.org10.1186/1475-2859-10-98.
Kanmani, P.; Karthik, S.; Aravind, J.; Kumaresan, K. The use of response surface methodology as a statistical tool for media optimization in lipase production from the dairy effluent isolate Fusarium solani. ISRN Biotechnol., 2013, Article ID 528708, 8 pages.
Küster, E.; Williams, S.T. Selection of media for isolation of Streptomycetes. Nature (London), 1964, 202, 928-929.
Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol., 1966, 16, 313-340.
Athalye, M.; Lacey, J.; Goodfellow, M. Selective isolation and enumeration of actinomycetes using rifampicin. J. Appl. Bacteriol., 1985, 51, 289-291.
Seong, C.N.; Kim, Y.S.; Baik, K.S.; Lee, S.D.; Hah, Y.C.; Kim, S.B.; Goodfellow, M. Mycolic acid-containing actinomycetes associated with activated sludge foam. J. Microbiol., 1999, 37, 66-72.
Lechevalier, M.P.; Lechevalier, H.A. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol., 1970, 20, 435-443.
Pridham, T.G.; Gottlieb, G.D. The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J. Bacteriol., 1948, 56, 107-114.
Locci, R. Streptomycetes and related genera. In: Bergey’s Manual of Systematic Bacteriology, Williams, Ed.; Williams and Wilkins: Baltimore. 1989, Vol. 4, pp. 2451-2508.
Gordon, R.E.; Barnett, D.A.; Handarhan, J.E.; Hor-Nay-Pang, C. Nocardia coeliaca, Nocardia autotrophica and the nocardin strains. Int. J. Syst. Bacteriol., 1974, 24, 54-63.
Marchal, N.; Bourdon, J.L.; Richard, C.L. Les milieux de culture pour l’isolement et l’identification biochimique des bactéries; Doin Press: Paris, 1987.
Sierra, G. A simple method for the detection of lipolytic activity of microorganisms and some observations on the influence of the contact between cells and fatty substrates. J. Microbiol. Serol., 1957, 23, 15-22.
Daboor, S.M.; Amany, M.H. Neven AbdElfatah E.; Hanouna S.I. Heavy metal adsorption of Streptomyces chromofuscus. J. Coast. Life Med., 2014, 2, 431-437.
Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 1997, 25, 4876-4882.
Saitou, N.; Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic tree. Mol. Biol. Evol., 1987, 4, 406-425.
Bastide, A.; De Méo, M.; Andriantsoa, M.; Laget, M.; Duménil, G. Isolement et sélection de souches d’actinomycète productrices de substances antifongiques de structure non-polyéniques. Mircen J. Appl. Microbiol., 1986, 2, 453-466.
Mincer, T.J.; Jensen, P.R.; Kauffman, C.A.; Fenical, W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl. Environ. Microbiol., 2002, 68, 5005-5011.
Ivantiskaya, L.P.; Singal, S.M.; Bibikova, M.V.; Vostrov, S.N. Direct isolation of Micromonospora on selective media with gentamicin. Antibiotiki, 1978, 23, 690-692.
Lawrence, C.H. A method for isolating actinomycetes from scabby potato tissue and soil with minimal contamination. Can. J. Bot., 1956, 34, 44-47.
Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T.; Williams, S.T. Bergey’s Manual of Determinative Bacteriology, 9th ed; Williams and Wilkins: Baltimore, 1994, p. 816p.
Rong, X.; Guo, Y.; Huang, Y. Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst. Appl. Microbiol., 2009, 32, 314-322.
Kaushik, R.; Saran, S.; Isar, J.; Saxena, R.K. Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J. Mol. Catal. B-Enz., 2006, 40, 121-126.
Chen, X.C.; Bai, J.X.; Cao, J.M.; Li, Z.J.; Xiong, J.; Zhang, L.; Hong, Y.; Ying, H.J. Medium optimization for the production of cyclic adenosine 30, 50-monophosphate by Microbacterium sp. no. 205 using response surface methodology. Bioresour. Technol., 2009, 100, 919-924.
Sarmiento-Vizcaíno, A.; Braña, A.F.; González, V.; Nava, H.; Molina, A.; Llera, E.; Fiedler, H-P.; Rico, J.M.; García-Flórez, L.; Acuña, J.L.; García, L.A.; Blanco, G. Atmospheric dispersal of bioactive Streptomyces albidoflavus strains among terrestrial and marine environments. Microb. Ecol., 2015, 71, 375-386.
Willams, S.T.; Cross, T. Actinomycetes. In: Methods in Microbiology; Booth, Ed., Academic Pres Inc: London, 1971; Vol. 4, pp. 295- 334.
Lam, K.S. Discovery of novel metabolites from marine actinomycetes. Curr. Opin. Microbiol., 2006, 9, 245-251.
Medema, M.H.; Breitling, R.; Takano, E. Synthetic biology in Streptomyces bacteria. Methods Enzymol., 2011, 497, 485-502.
Hamedi, J.; Mohammadipanah, F.; Ventosa, A. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles, 2012, 17, 1-13.
Jose, P.A.; Jebakumar, S.R.D. Phylogenetic appraisal of antagonistic, slow growing actinomycetes isolated from hypersaline inland solar salterns at Sambhar salt Lake, India. Front. Microbiol., 2013, 4, 190.
Amato, P.; Parazols, M.; Sancelme, M.; Laj, P.; Mailhot, G.; Delort, A.M. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and growth abilities at low temperatures. FEMS Microbiol. Ecol., 2007, 59, 242-254.
Porter, J.N. Cultural conditions for antibiotic producing microorganisms. In: Methods in Enzymology, Hach, Ed.; Academic Press: New York, 1975; Vol. 43, pp. 3-23.
Augustine, S.K.; Bhavsar, S.P.; Baserisalehi, M.; Kapadnis, B.P. Isolation, characterization and optimization of antifungal activity of an actinomycete of soil origin. Indian J. Exp. Biol., 2004, 42, 928-932.
Narayana, K.J.P.; Vijayalakshmi, M. Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Res. J. Pharmacol., 2008, 2, 4-7.
Jia, B.; Jin, Z.H.; Mei, L.H. Medium optimization based on statistical methodologies for pristinamycins production by Streptomyces pristinaespiralis. Appl. Biochem. Biotechnol., 2008, 144, 133-143.
Paulsen, I.T. Carbon metabolism and its regulation in Streptomyces and other high GC gram-positive bacteria. Res. Microbiol., 1996, 147, 535-541.
Gupte, T.E.; Naik, S.R. Optimisation of nutritional requirements and process control parameters for the production of HA-2-91, a new tetraene polyene antibiotic. Hindustan Antibiot. Bull., 1998, 40, 5-13.
Syed, D.G.; Lee, J.C.; Li, W.J.; Kim, C.J.; Agasar, D. Production, characterization and application of keratinase from Streptomyces gulbargensis. Bioresour. Technol., 2009, 100, 1868-1871.
Jonsbu, E.; McIntyre, M.; Nielsen, J. The influence of carbon source and morphology on nystatin production by Streptomyces noursei. J. Biotechnol., 2002, 95, 133-144.
Suutari, M.; Lignell, U.; Hyvarinen, A.; Nevalainen, A. Media for cultivation of indoor Streptomycetes. J. Microbiol. Methods, 2002, 51, 411-416.
Gill, P.K.; Sharma, A.D.; Harchand, R.K.; Singh, P. Effect of media supplements and culture conditions on inulinase production by an actinomycete strain. Bioresour. Technol., 2003, 87, 359-362.
Tuncer, M.; Kuru, A.; Isikli, M.; Sahin, N.; Celenk, F.G. Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. J. Appl. Microbiol., 2004, 97, 783-791.
Lazim, H.; Mankai, H.; Slama, N.; Barkallah, I.; Limam, F. Production and optimization of thermophilic alkaline protease in solid-state fermentation by Streptomyces sp. CN902. J. Ind. Microbiol. Biotechnol., 2009, 36, 531-537.
Himabindu, M.; Jetty, A. Optimization of nutritional requirements for gentamicin production by Micromonospora echinospora. Indian J. Exp. Biol., 2006, 44, 842-848.

© 2022 Bentham Science Publishers | Privacy Policy