Generic placeholder image

Nanoscience & Nanotechnology-Asia


ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Phytosynthesized Nanoparticles for Effective Cancer Treatment: A Review

Author(s): Anjana Goel* and Ashok K. Bhatia

Volume 9, Issue 4, 2019

Page: [437 - 443] Pages: 7

DOI: 10.2174/2210681208666180724100646

Price: $65


Introduction: Nanotechnology is a branch of nanosciences which includes the manipulation of particles at their atomic level in order to obtain certain desirable properties that enhance their use in the treatment of various metabolic disorders as well as other life-threatening diseases including cancer. Photosynthesized nanoparticles are eco-friendly, reliable and cost-effective. This biogenic route of nanoparticles synthesis is emerging as a beneficial method as plants contain diverse bioactive phytochemicals which act as reducing and capping agent thus, increase the stability and reduction rate of nanoparticles. The most commonly used nanoparticles are of silver, gold, iron oxides and copper. In few studies, bimetallic nanoparticles have been reported to have anti-cancer potential. The use of medicinal plants for the purpose of designing nanoparticles has paved a way for targeting a drug to the particular affected site of the tumor.

Conclusion: This review focuses on the anti-cancerous potential of nanoparticles of different metals using a variety of medicinal plants. These biogenic nanoparticles could limit the use of chemotherapy and radiation therapy, as these therapies have huge side effects which cannot be tolerated by the cancer patients, and in many cases, the patients die because of these treatments. Hence nanoparticles mediated therapy is now gaining attention for the treatment of cancer as targeted drug therapy, without having undesirable side effects.

Keywords: Nanoparticles, anti-cancer activity, medicinal plants, phytotherapy, cancer, chemotherapy.

Amin, A.; Muhtasib, H.G.; Ocker, M.; Stock, R.S. Overview of major classes of plant-derived anticancer drugs. Int. J. Biomed. Sci., 2009, 5(1), 1-11.
Nirmala, M.J.; Samundeeswari, A.; Sankar, P.D. Natural plant resources in anti-cancer therapy: A review. Res. Plant Biol, 2011, 1(3), 1-14.
Prakash, O.; Kumar, A.; Kumar, P. Ajeet. Anticancer potential of plants and natural products: A Review. Am. J. Pharma. Sci., 2013, 1(6), 104-113.
Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
Feynman, R. There’s plenty of room at the bottom. Science, 1991, 29, 1300-1301.
Parveen, S.; Misra, R.; Sahoo, S.K. Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine, 2012, 8(2), 147-166.
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3, 16-20.
Yezhelyev, M.V.; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol., 2006, 7(8), 657-667.
Wagner, V.; Dullaart, A.; Bock, A.K.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol., 2006, 24(10), 1211-1217.
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54(5), 631-651.
Liu, Y.; Miyoshi, H.; Nakamura, M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer, 2007, 120(12), 2527-2537.
Brown, S.D.; Nativo, P.; Smith, J.A.; Stirling, D.; Edwards, P.R.; Venugopal, B.; Flint, D.J.; Plumb, J.A.; Graham, D.; Wheate, N.J. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc., 2010, 132(13), 4678-4684.
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
Niki, E. In: Food Factors for Cancer Prevention; Ohigashi, H.; Osawa, T.; Terao, J.; Watanabe, S.; Yoshikawa, T., Eds.; Springer: Switzerland, 1997, pp. 55-57.
Seifermann, M.; Epe, B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark. Free Radic. Biol. Med., 2017, 107, 258-265.
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
Hu, M.L. Dietary polyphenols as antioxidants and anticancer agents: More questions than answers. Chang Gung Med. J., 2011, 34(5), 449-460.
Rajput, T.A.; Patil, S.A. Natural substances that reduces and fightes cancer in human being. J. Med. Sci. Chem. Res, 2017, 5(3), 19465-19471.
Beutler, J.A.; Cragg, G.M.; Newman, D.J. In: Drug discovery in Africa, Chibale, K.; Davies-Coleman, M.; Masimirembwa, C. Ed.; Springer-Verlag: Berlin Heidelberg, 2012, Chapter-2, pp. 29-52.
Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci., 2004, 74(17), 2157-2184.
Pan, L.; Chai, H.B.; Kinghorn, A.D. Discovery of new anticancer agents from higher plants. Front. Biosci. (Schol. Ed.), 2012, 4, 142-156.
de Almeida Alves, T.M.; Silva, A.F.; Brand˜ao, M.; Grandi, T.S.; Smânia, E.; Smânia, Jr. A.; Zani, C.L. Biological screening of Brazilian medicinal plants. Mem´orias do Instituto Oswaldo Cruz, 2000, 95(3), 367-373.
Rao, P.V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Wei, L.J.; Gan, S.H. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Oxid. Med. Cell. Longev., 2016, 20163685671
Choi, Y.J.; Park, H.H. Direct patterning of SnO2 composite films prepared with various contents of Pt nanoparticles by photochemical metal-organic deposition. Thin Solid Films, 2011, 519, 6214-6218.
Durán, N.; Seabra, A.B. Metallic oxide nanoparticles: State of the art in biogenic syntheses and their mechanisms. Appl. Microbiol. Biotechnol., 2012, 95, 275-288.
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13, 2638-2650.
Sharma, D.; Kanchi, S.; Bisetty, K. Biogenic synthesis of nanoparticles: A review. Arabian J. Chem., 2015, Available from:, (Accessed on: 25 November 2015).
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report. Saudi Pharmaceut. J., 2016, 24(4), 473-484.
Bhasmas: The Ayurvedic formulary of India, Part I, GOI, Ministry of health and family welfare. Dept of ISM & H. Second revised English edition 2003, pp. 246.
Das, S.; Das, M.C.; Paul, R. Swarna Bhasma in cancer: A prospective clinical study. Ayu, 2012, 33(3), 365-367.
Bhatnagar, P.; Pant, A.B.; Shukla, Y.; Chaudhari, B.; Kumar, P.; Gupta, K.C. Bromelain nanoparticles protect against 7, 12-dimethylbenz[a] anthracene induced skin carcinogenesis in mouse model. Eur. J. Pharm. Biopharm., 2015, 91, 35-46.
Seabra, A.B.; Haddad, P.S.; Duran, N. Biogenic synthesis of nanostructured iron compounds: Applications and perspectives. IET Nanobiotechnol., 2013, 7, 90-99.
Ingale, A.G.; Chaudhari, A.N. Biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach. J. Nanomed. Nanotechol., 2013, 4, 1-7.
Kulkarni, N.; Uday Muddapur, U. Biosynthesis of metal nanoparticles: A review. J. Nanotechnol., 2014, 510246, 1-8.
Che, E.; Gao, Y.; Wan, L.; Zhang, Y.; Han, N.; Bai, J.; Li, J.; Sha, Z.; Wang, S. Paclitaxel/gelatin coated magnetic mesosporous silica nanoparticles: Preparation and anti tumor efficacy in vivo. Microspor. Mesospor. Mater., 2015, 204, 226-234.
Alexander, J.W. History of the medical use of silver. Surg. Infect., 2009, 10(3), 289-92.
Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.; Kalaichelvan, P. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Repots., 2014, 4, 42-49.
Palaniappan, P.; Sathishkumar, G.; Sankar, R. Fabrication of nano-silver particles using Cymodocea serrulata and its cytotoxicity effect against human lung cancer A549 cells line. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2014, 138, 885-890.
Sathishkumar, G.; Gobinath, C.; Wilson, A.; Sivaramakrishnan, S. Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): A potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 128, 285-290.
Gajendran, B.; Chinnasamy, A.; Durai, P.; Raman, J.; Ramar, M. Biosynthesis and characterization of silver nanoparticles from Datura inoxia and its apoptotic effect on human breast cancer cell line MCF7. Mater. Lett., 2014, 122, 98-102.
Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells. Cancer Nanotechnol., 2013, 4(6), 137-143.
Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G. MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; Ganapathi, A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces, 2013, 106, 86-92.
Govender, R.; Phulukdaree, A.; Gengan, R.M.; Anand, K.; Chuturgoon, A.A. Silver nanoparticles of Albizia adianthifolia: The induction of apoptosis in human lung carcinoma cell line. J. Nanobiotechnol., 2013, 11(1), 5-13.
Valodkar, M.; Jadeja, R.N.; Thounaojam, M.C.; Devkar, R.V.; Thakore, S. In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater. Sci. Eng., 2011, 31(8), 1723-1728.
Sankar, R.; Karthik, A.; Prabu, A.; Karthik, S.; Shivashangari, K.S.; Ravikumar, V. Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf. B Biointerfaces, 2013, 108, 80-84.
Suman, T.Y.; Rajasree, S.R.R.; Kanchana, A.; Elizabeth, S.B. Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf. B Biointerfaces, 2013, 106, 74-78.
Jacob, S.J.P.; Finub, J.S.; Narayanan, A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf. B Biointerfaces, 2012, 91, 212-214.
Li, D.; Du, Z.; Li, C.; Liu, Y.; Goodin, S.; Huang, H.; He, Y.; Zhang, Y.; Wang, H.; Zheng, X.; Zhang, K. Potent inhibitory effect of terpenoids from Acanthopanax trifoliatus on growth of PC-3 prostate cancer cells in vitro and in vivo is associated with suppression of NF-kB and STAT3 signalling. J. Funct. Foods, 2015, 15, 274-283.
He, Y.; Du, Z.; Ma, S.; Cheng, S.; Jiang, S.; Liu, Y.; Li, D.; Huang, H.; Zhang, K.; Zheng, X. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus Longan Lour. peel extract. Nanoscale Res. Lett., 2016, 11, 300.
Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem., 2013, 48(2), 317-324.
Arunachalam, K.D.; Arun, L.B.; Annamalai, S.K.; Arunachalam, A.M. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int. J. Nanomed., 2014, 10, 31-41.
Das, S.; Das, J.; Samadder, A.; Bhattacharyya, S.S.; Das, D.; Khuda-Bukhsh, A.R. Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloid Surf. B, 2013, 101, 325-336.
Antony, J.J.; Sithika, M.A.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model. Colloids Surf. B Biointerfaces, 2013, 108, 185-190.
Paul, J.A.J.; Selvi, B.K.; Karmegam, N. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice. Appl. Nanosci., 2015, 5(8), 937-944.
Faraday, M. Experimental relations of gold and other metals to light. Philos Trans., 1857, 147, 145-181.
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 2005, 21, 10644-10654.
Hone, D.C.; Walker, P.I.; Evans, R.; FitzGerald, S.; Beeby, A.; Chambrier, I.; Cook, M.J.; Russell, D.A. Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy. Langmuir, 2002, 18(8), 2985-2987.
Li, Z.; Huang, H.; Tang, S.; Li, Y.; Yu, X.F.; Wang, H.; Li, P.; Sun, Z.; Zhang, H.; Liu, C.; Chu, P.K. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials, 2016, 74, 144-154.
Cobley, C.M.; Au, L.; Chen, J.; Xia, Y. Targeting gold nanocages to cancer cells for photothermal destruction and drug delivery. Expert Opin. Drug Deliv., 2010, 7(5), 577-587.
Künzel, R.; Okuno, E.; Levenhagen, R.S.; Umisedo, N.K. Evaluation of the X-ray absorption by gold nanoparticles solutions. ISRN Nanotechnol, 2013, 2013, 1-5.
Balasubramani, G.; Ramkumar, R.; Krishnaveni, N. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus. Hook. & Arn. J. Trace Elements Med. Biol., 2015, 30, 83-89.
Abel, E.E.; Poonga, P.R.J.; Panicker, S.G. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl. Nanosci., 2016, 6(1), 121-129.
Anand, K.; Gengan, R.M.; Phulukdaree, A.; Chuturgoon, A. Agroforestrywaste Moringa oleifera petalsmediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J. Indus. Eng. Chem., 2015, 21, 1105-1111.
Raghunandan, D.; Ravishankar, B.; Sharanbasava, G.; Mahesh, D.B.; Harsoor, V.; Yalagatti, M.S.; Bhagawanraju, M.; Venkataraman, A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol., 2011, 2, 57-65.
Jain, T.K.; Morales, M.A.; Sahoo, S.K.; Leslie-Pelecky, D.L.; Labhasetwar, V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm., 2005, 2, 194-205.
Polyak, B.; Friedman, G. Magnetic targeting for site-specific drug delivery: Applications and clinical potential. Expert Opin. Drug Deliv., 2009, 6(1), 53-70.
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
Huh, Y.M.; Jun, Y.W.; Song, H.T.; Kim, S.; Choi, S-S.; Lee, J-H.; Yoon, S.; Kim, K.S.; Shin, J-S.; Suh, J-S.; Cheon, S. In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. J. Am. Chem. Soc., 2005, 127, 12387-12391.
Issels, R.D. Hyperthermia adds to chemotherapy. Eur. J. Cancer, 2008, 44(17), 2546-2554.
Alvarez-Berr’ıos, M.P.; Castillo, A.; Rinaldi, C.; Torres-Lugo, M. Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines. Int. J. Nanomed., 2014, 9, 145-153.
Chertok, B.; David, A.E.; Yang, V.C. Polyethyleneimine modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 2010, 31(24), 6317-6324.
Vu-Quang, H.; Muthiah, M.; Lee, H.J.; Kim, Y-K.; Rhee, J.H.; Lee, J-H.; Cho, C-S.; Cho, Y-J.; Jeong, Y.Y.; Park, I-K. Immune cellspecific delivery of beta-glucan-coated iron oxide nanoparticles for diagnosing liver metastasis by MR imaging. Carbohydr. Polymers., 2012, 87(2), 1159-1168.
Nagajyothi, P.C.; Pandurangan, M.; Kim, D.H.; Sreekanth, T.V.M.; Shim, J. Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer Activities. J. Cluster Sci., 2017, 28(1), 245-252.
Khalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Maaza, M. Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea(Osbeck.) and their pharmacognostic properties. Green Chem. Lett. Rev., 2017, 10(4), 186-201.
Vignesh, V.; Sathiyanarayanan, G.; Sathishkumar, G.; Parthiban, K.; Kumard, K.S.; Thirumurugan, R. Formulation of Iron oxide nanoparticles using exopolysaccharide: Evaluation of their antibacterial and anticancer activity. RSC Adv., 2015, 5, 27794.
Ghosh, S.; More, P.; Derle, A.; Kitture, R.; Kale, T.; Gorain, M.; Avasthi, A.; Markad, P.; Kundu, G.C.; Kale, S.; Dhavale, D.D.; Bellare, J.; Chopade, B.A. Diosgenin functionalized iron oxide nanoparticles as novel nanomaterial against breast cancer. J. Nanosci. Nanotechnol., 2015, 15, 9464-9472.
Zhang, Y.; Aslan, K.; Previte, M.J.; Geddes, C.D. Plasmonic engineering of singlet oxygen generation. PNAS, 2008, 105, 1798-1802.
Guo, Y.; Zhang, J.; Yang, L.; Wang, H.; Wang, F.; Zheng, Z. Syntheses of amorphous and crystalline cupric sulfide nanoparticles and study on the specific activities on different cells. Chem. Commun. (Camb.), 2010, 46(20), 3493-3495.
Wang, Y.; Zi, X.Y.; Su, J.; Zhang, H.X.; Zhang, X.R.; Zhu, H.Y.; Li, J.X.; Yin, M.; Yang, F.; Hu, Y.P. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells. Int. J. Nanomed., 2012, 7, 2641-2652.
Rehana, D.; Mahendiran, D.; Kumar, R.S.; Rahiman, A.K. Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed. Pharmacother., 2017, 89, 1067-1077.
Jose, G.P.; Santra, S.; Mandal, S.K.; Sengupta, T.K. Singlet oxygen mediated DNA degradation by copper nanoparticles: Potential towards cytotoxic effect on cancer cells. J. Nanobiotechnol., 2011, 9, 9-16.
Pramanik, A.; Pramanik, S.; Pramanik, P. Copper based nanoparticle: A way towards future cancer therapy. Glob. J. Nanomed., 2017, 1(5), 1-3.
Mukhopadhyay, R.; Kazi, J.; Debnath, M.C. Synthesis and characterization of copper nanoparticles stabilized with Quisqualis indica extract: Evaluation of its cytotoxicity and apoptosis in B16F10 melanoma cells. Biomed. Pharmacother., 2018, 97, 1373-1385.
Dipranjan, L.; Arindam, P.; Sourav, C.; Sandip, K.D.; Somenath, R.; Pramanik, P.; Karmakar, P. Folic acid modified copper oxide nanoparticles for targeted delivery in in-vitro and in-vivo systems. RSC Adv., 2015, 5, 68169-68178.
Nagajyothi, P.C.; Muthuraman, P.; Sreekanth, T.V.M.; Kim, D.H.; Shim, J. Green synthesis: In vitro anticancer activity of copper oxide nanoparticles against human cervical carcino, a cells. Arabian. J. Chem., 2017, 10, 215-225.
Thounaojam, M.C.; Jadeja, R.N.; Valodkar, M.; Nagar, P.S.; Devkar, R.V.; Thakore, S. Oxidative stress induced apoptosis of human lung carcinoma (A549) cells by a novel copper nanorod formulation. Food Chem. Toxicol., 2011, 49(11), 2990-2996.
Kamble, S.; Utage, B.; Mogle, P.; Kamble, R.; Hese, S.; Dawane, B.; Gacche, R. Evaluation of curcumin capped copper nanoparticles as possible inhibitors of human breast cancer cells and angiogenesis: A comparative study with native curcumin. AAPS Pharm.Sci.Tech, 2016, 17(5), 1030-1041.
Roopan, S.M.; Surendra, T.V.; Elango, G.; Kumar, S.H.S. Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl. Microbiol. Biotechnol., 2014, 98(12), 5289-5300.
Ghosh, S.; Nitnavare, R.; Dewle, A.; Tomar, G.B.; Chippalkatti, R.; More, P.; Kitture, R.; Kale, S.; Bellare, J.; Chopade, B.A. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea Bulbifera: Anticancer and antioxidant activities. Int. J. Nanomed., 2015, 10(34), 7477-7490.
Mittal, A.K.; Kumar, S.; Banerjee, U.C. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J. Colloid Interface Sci., 2014, 431, 194-199.
Alshatwi, A.A.; Athinarayanan, J.; Periasamy, V.S. Green synthesis of bimetallic Au@Pt nanostructures and their application for proliferation inhibition and apoptosis induction in human cervical cancer cell. J. Mater. Sci. Mater. Med., 2015, 26(3), 9.
Zhan, G.; Huang, J.; Du, M.; Abdul-Rauf, I.; Ma, Y.; Li, Q. Green synthesis of Au-Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract. Mater. Lett., 2011, 65, 2989-2991.
Han, L.; Li, S.; Yang, Y.; Zhao, F.; Huang, J.; Chang, J. Comparison of magnetite nanocrystals formed by biomineralization and chemosynthesis. J. Mag. Mag. Mat., 2007, 313, 236-242.
Wu, H.; Yin, J-J.; Wamer, W.G.; Zeng, M.; Lo, Y.M. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J. Food Drug Anal, 2014, 22, 86-94.
Cho, W-S.; Duffin, R.; Bradley, M.; Megson, I.L.; MacNee, W.; Lee, J.K.; Jeong, J.; Donaldson, K. Predictive value of in vitro assays depends on the mechanism of toxicity of metaloxide nanoparticles. Part. Fibre Toxiol., 2013, 10, 10-55.
Karlsson, H.L.; Cronholm, P.; Gustafsson, J.; Möller, L. Copper oxide nanoparticles are highly toxic: A comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol., 2008, 21(9), 1726-1732.
Baek, Y.W.; An, Y-J. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci. Total Environ., 2011, 409, 1603-1608.
Yaaghoobi, M.; Emtiazi, G.; Roghanian, R.A. novel approach for aerobic construction of iron oxide nanoparticles by Acinetobacter radioresistens and their effects on red blood cells. Curr. Nanosci., 2012, 8, 286-291.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy