Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Research Article

Synthesis and Antitumor Activity of Novel [1,2,4,5]-tetrazepino[6,7-b] indole Derivatives: Marine Natural Product Hyrtioreticuline C and D Analogues

Author(s): Zeinab A. Muhammad, Mohamed A.A. Radwan*, Thoraya A. Farghaly*, Hatem M. Gaber and Mahmuod M. Elaasser

Volume 19, Issue 1, 2019

Page: [79 - 86] Pages: 8

DOI: 10.2174/1389557518666180724094244

Price: $65

Abstract

Background: Several biologically active indole alkaloids have been isolated from marine organisms over the previous few years. Many scientsts interested in synthesis of the marine azepinoindole alkaloids due to their wide range of bioliogical activies.

Objective: We interested herein to synthesize a new series of some analogues of new naturally occurring azepinoindole alkaloids.

Method: A novel series of [1,2,4,5]tetrazepino[6,7-b]indoles, Marine natural product Hyrtioreticuline C and D analogues, were synthesized via the reaction of 3-hydrazonoindolin-2-one with hydrzaonoyl chlorides in basic medium.

Results: The spectral data of the products proved their structure. All new derivatives were tested against two carcinoma cell lines ((A-549 & HepG2)) in comparison with the well-known anticancer standard drug (cisplatin) and two derivatives from the tested compounds showed activity more potent than the reference drug.

Conclusion: We succeeded in synthesis of new antitumor active azepinoindole alkaloids.

Keywords: Hydrazonoyl halides, isatin, [1, 2, 4, 5]tetrazepino[6, 7-b]indoles, Hyrtioreticuline, antitumor agents, SAR study.

« Previous
Graphical Abstract
[1]
(a) Faulkner, D. Marine natural products. J. Nat. Prod. Rep, 1999, 16, 155-198.
(b) Wipf, P. Synthetic Studies of Biologically Active Marine Cyclopeptides. Chem. Rev., 1995, 95, 2115.
(c) Alvarez, M.; Salas, M. Marine, Nitrogen-containing heterocyclic natural products - structures and syntheses of compounds containing indole units. Heterocycles, 1991, 32, 1391.
(d) Faulkner, D. Marine natural products. J. Nat. Prod. Rep., 2001, 19, 1.
(e) Hibino, S.; Choshi, T. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2002, 19(2), 148-180.
[2]
(a) Wright, A.E.; Pomponi, S.A.; Cross, S.S.; McCarthy, P. A new bis-(indole) alkaloid from a deep-water marine sponge of the genus Spongosorites. J. Org. Chem., 1992, 57, 4772.
(b) Capon, R.J.; Rooney, F.; Murray, L.M.; Collins, E.; Sim, A.T.R.; Rostas, J.A.P.; Butler, M.S.; Carroll, A.R. Dragmacidins: New protein phosphatase inhibitors from a southern australian deep-water marine sponge, spongosorites sp. J. Nat. Prod., 1998, 61(5), 660-662.
[3]
Kohmoto, S.; Kashman, Y.; McConnell, O.J.; Rinehart, K.L.; Wright, A., Jr; Koehn, F. Dragmacidin, a new cytotoxic bis(indole) alkaloid from a deep water marine sponge, Dragmacidon sp. J. Org. Chem., 1988, 53, 3116.
[4]
Sakemi, S.; Sun, H.H. Cytotoxic and antifungal imidazolediylbis[indoles] from the sponge Spongosorites ruetzleri. J. Org. Chem., 1991, 56, 4304-4307.
[5]
Kozlovski, A.G.; Soloveva, T.F.; Sakharovskii, V.G.; Adanin, V.M. Biosynthesis of “unusual” ergot alkaloids by the fungus Penicillium aurantio-virens. Dokl. Akad. Nauk SSSR, 1981, 260, 230-233.
[6]
King, G.S.; Waight, E.S.; Mantle, P.G.; Szcyrbak, C.A. The structure of clavicipitic acid, an azepinoindole derivative from Claviceps fusiformis. J. Chem. Soc. Perkin Trans., 1977, 1, 2099-2103.
[7]
Yamanokuchi, R.; Imada, K.; Miyazaki, M.; Kato, H.; Watanabe, T.; Fujimuro, M.; Saeki, Y.; Yoshinaga, S.; Terasawa, H.; Iwasaki, N.; Rotinsulu, H.; Losung, F.; Mangindaan, R.E.P.; Namikoshi, M.; de Voogd, N.J.; Yokosawa, H.; Tsukamoto, S. Hyrtioreticulins A-E, indole alkaloids inhibiting the ubiquitin-activating enzyme, from the marine sponge Hyrtios reticulatus. Bioorg. Med. Chem., 2012, 20(14), 4437-4442.
[8]
Qu, S.J.; Liu, Q.W.; Tan, C.H.; Jiang, S.H.; Zhu, D.Y. New indole N-oxide alkaloids from Evodia fargesii. Planta Med., 2006, 72(3), 264-266.
[9]
Nikolić, D.; Gödecke, T.; Chen, S-N.; White, J.; Lankin, D.C.; Pauli, G.F.; van Breemen, R.B. Mass spectrometric dereplication of nitrogen-containing constituents of black cohosh (Cimicifuga racemosa L.). Fitoterapia, 2012, 83(3), 441-460.
[10]
Radwan, M.A.A.; El-Sherbiny, M. Synthesis and antitumor activity of indolylpyrimidines: Marine natural product meridianin D analogues. Bioorg. Med. Chem., 2007, 15(3), 1206-1211.
[11]
Radwan, M.A.A.; Ragab, E.A.; Shaaban, M.R.; El-Nezhawy, A.O.H. ARKIVOC, 2009, (vii), 281.
[12]
Radwan, M.A.A.; Ragab, E.A.; Sabry, N.M.; El-Shenawy, S.M. Synthesis and biological evaluation of new 3-substituted indole derivatives as potential anti-inflammatory and analgesic agents. Bioorg. Med. Chem., 2007, 15(11), 3832-3841.
[13]
Dawood, D. H.; Batran, R. Z.; Farghaly, T. A.; Khedr, M. A.; Abdulla, M. M. New Coumarin Derivatives as Potent Selective COX- 2 Inhibi-tors; Synthesis, Anti-inflammatory, QSAR and Molecular Modeling Studies. Arch. Pharm. Chem. Life Sci., 2015, 875-888.
[14]
Farghaly, T.A.; Gomha, S.M.; Sayed, A.R.; Khedr, M.A. Hydrazonoyl halides as precursors for synthesis of bioactive thiazole and thiadiazole derivatives: Synthesis, Molecular docking and pharmacological study. Curr. Org. Synth., 2016, 13(3), 445-455.
[15]
Farghaly, T.A.; Abdallah, M.A.; Mahmoud, H.K. Synthesis of novel 1,2,4-Triazoles and Triazolo-thiadiazines as anticancer agents. Turk. J. Chem., 2015, 39, 955-969.
[16]
Fakhr, I.M.I.; Radwan, M.A.A.; el-Batran, S.; Abd el-Salam, O.M.; el-Shenawy, S.M. Synthesis and pharmacological evaluation of 2-substituted benzo[b]thiophenes as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1718-1725.
[17]
Fakhr, I.M.I.; Hamdy, N.A.; Radwan, M.A.A.; Ahmed, Y.M. Egypt. J. Chem., 2004, 201.
[18]
Farghaly, T.A.; Abdallah, M.A.; Masaret, G.S.; Muhammad, Z.A. New and efficient approach for synthesis of novel bioactive [1,3,4]thiadiazoles incorporated with 1,3-thiazole moiety. Eur. J. Med. Chem., 2015, 97, 320-333.
[19]
Farghaly, T.A.; Hassaneen, H.M.E.; Elzahabi, H.S.A. Eco-friendly synthesis and 2D-QSAR study of novel pyrazolines as potential anticolon cancer agents. Med. Chem. Res., 2015, 24, 652-668.
[20]
Abdel Hafez, N.A.; Farghaly, T.A.; Al-Omar, M.A.; Abdalla, M.M. Synthesis of bioactive polyheterocyclic ring systems as 5α-reductase inhibitors. Eur. J. Med. Chem., 2010, 45(11), 4838-4844.
[21]
Gholamzdeh, P.; Ziarani, G.M.; Badiei, A. Application of SBA-Pr-SO3H in the green synthesis of isatinhydrazone derivatives: Characterization, UV-Vis investigation and computational studies. J. Chil. Chem. Soc., 2016, 61, 2935-2939.
[22]
Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A.; Elaasser, M.M. Synthesis and anticancer activities of thiazoles, 1,3-Thiazines, and thiazolidine using chitosan-grafted-Poly(vinylpyridine) as basic catalyst. Heterocycles, 2015, 91(6), 1227-1243.
[23]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[24]
Ibrahim, H.S.; Abou-Seri, S.M.; Tanc, M.; Elaasser, M.M.; Abdel-Aziz, H.A.; Supuran, C.T. Isatin-pyrazole benzenesulfonamide hybrids potently inhibit tumor-associated carbonic anhydrase isoforms IX and XII. Eur. J. Med. Chem., 2015, 103, 583-593.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy