Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Preparation and physicochemical characterization of inclusion complexes derived from phytosterols and β-cyclodextrin

Author(s): Ana Lía Rossi, Eduardo Miguel Rustoy*, Gabriel Cases and Adriana Mabel Rosso

Volume 16, Issue 2, 2019

Page: [145 - 159] Pages: 15

DOI: 10.2174/1570178615666180629102223

Price: $65

Abstract

Phytosterols (PS), that is vegetable sterols, are compounds widely recognized for lowering the absorption of cholesterol and decreasing cancer risk, with βsitosterol, stigmasterol and campesterol being the most abundant. As PS is poorly soluble in aqueous solutions, many approaches have been proposed to increase their solubility and bioavailability. β-cyclodextrin (β-CD) could be used to increase PS aqueous solubility because of its capacity to entrap a variety of hydrophobic guest molecules in its cavity. In this work, the formation of β-CD/PS inclusion complexes was confirmed by Differential Scanning Calorimetry (DSC), Electrospray Ionization-High Resolution Mass Spectrometry (ESIHRMS) and Fourier Transform Infrared Spectroscopy (FT-IR), while structural characteristics were determined by one- and two-dimensional Nuclear Magnetic Resonance (NMR) techniques. Results confirmed 1:1 binding stoichiometry, which suggests the total inclusion of rings and chains of the different PS. The hypothesis of folding of the lateral chains into the cavity may be supported by the multiple correlations observed in the Nuclear Overhauser Effect Spectroscopy (NOESY) and rotatingframe Nuclear Overhauser Effect Spectroscopy (ROESY) spectra.

Keywords: Phytosterols, β-cyclodextrin, inclusion complex, NMR spectroscopy, ESI-HRMS, NOESY.

Graphical Abstract
[1]
Srigley, C.T.; Haile, E.A. J. Food Compos. Anal., 2015, 40, 163-176.
[2]
Laitinen, K.; Gylling, H. Lipids Health Dis., 2012, 11, 140-146.
[3]
Klingberg, S.; Ellegard, L.; Johansson, I.; Hallmans, G.; Weinehall, L.; Andersson, H. Am. J. Clin. Nutr, 2008. 87, 993-1001 (Erratum: https://academic.oup.com /ajcn/article /96 /3/680 / 4576921)
[4]
Plat, J.; Mensink, R.P. Am. J. Cardiol., 2005, 96, 15-22.
[5]
Moreau, R.A.; Whitaker, B.D.; Hicks, K.B. Prog. Lipid Res., 2002, 41, 457-500.
[6]
Grattan, B.J. Nutrients, 2013, 5, 359-387.
[7]
Awad, A.B.; Chinnam, M.; Fink, C.S.; Bradford, P.G. Phytomedicine, 2007, 14, 747-754.
[8]
Bin Sayeed, M.S.; Karim, S.M.R.; Sharmin, T.; Morshed, M.M. Medicines, 2016, 3, 29-53.
[9]
Meng, X.H.; Pan, Q.Y.; Yang, T.K. J. Am. Oil Chem. Soc., 2011, 88, 143-149.
[10]
Leong, W-F.; Lai, O-M.; Long, K.; Che , Man. Y.B.; Misran, M.; Tan, C.-P. Food Chem., 2011, 129, 77-83.
[11]
Engel, R.; Schubert, H. Innov. Food Sci. Emerg. Technol., 2005, 6, 233-237.
[12]
(a)Weber, N.; Weitkamp, P.; Mukherjee, K.D. Food Res. Int., 2002, 35, 177-181.
(b)Gonçalves, S.; Maria, A.V.; Silva, A.S.; Martins-Silva, J.; Saldanha, C. Clin. Hemorheol. Microcirc., 2006, 35, 251-255.
(c)Ruiu, G.; Pinach, S.; Veglia, F.; Gambino, R.; Marena, S.; Uberti, B.; Alemanno, N.; Burt, D.; Pagano, G.; Cassader, M. Lipids, 2009, 44, 153-160. (c) Saraiva, D.; da Conceição, C.M.; do Rosário, M.M.; da Silveira, M.I.N; Ramos, F. Food Anal. Methods, 2011, 4, 28-34.
[13]
Zhang, J.; Jiang, K.; An, K.; Ren, S-H.; Xie, X.; Jin, Y.; Lin, Y. Carbohydr. Res., 2015, 418, 20-28.
[14]
Silva, F.; Figueiras, A.; Gallardo, E.; Nerin, C.; Domingues, F.C. Food Chem., 2014, 145, 115-125.
[15]
Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Carbohydr. Polym., 2014, 101, 121-135.
[16]
Ciobanu, A.; Landy, D.; Fourmentin, S. Food Res. Int., 2013, 53, 110-114.
[17]
Kurkov, S.; Loftsson, T. Int. J. Pharm., 2013, 453, 167-180.
[18]
Astray, G.; Gonzalez-Barreiro, C.; Mejuto, J.C.; Rial-Otero, R.; Simal-Gándara, J. Food Hydrocoll., 2009, 23, 1631-1640.
[19]
(a) Meng, X.; Pan, Q.; Liu, Y. Eur. Food Res. Technol., 2012, 235, 1039-1047.
(b) Uekama, K.; Fujinaga, T.; Hirayama, F.; Otagiri, M.; Yamasaki, M. Int. J. Pharm., 1982, 10, 1-15.
(c) Liu, F-Y.; Kildsig, D.O.; Mitra, A.K. Pharm. Res., 1990, 7, 869-873.
[20]
Wang, X.; Luo, Z.; Xiao, Z. Carbohydr. Polym., 2014, 101, 1027-1032.
[21]
Pralhad, T.; Rajendrakumar, K. J. Pharm. Biomed. Anal., 2004, 34, 333-339.
[22]
Guo, M.; Zhang, S.; Song, F.; Wang, D.; Liu, Z. Liu; S. J. Mass Spectrom., 2003, 38, 723-731.
[23]
Guo, M.; Song, F.; Liu, Z.; Liu, S. J. Mass Spectrom., 2004, 39, 594-599.
[24]
Kwon, S.; Lee, W. Shin; H.-J.; Yoon, S.-I.; Kim, Y.T.; Kim, Y.-J.; Lee, K.; Lee, S. J. Mol. Struct., 2009, 938, 192-197.
[25]
Sagisaju, S.; Chen, K.; Cole, R.B.; Jursic, B.S. Carbohydr. Res., 2009, 344, 2167-2172.
[26]
Dipak, R.P.; Pravin, G.I.; Kripal, S.; Dipak, S.D. Res. J. Chem. Sci., 2012, 2, 60-63.
[27]
Li, N.; Liu, J.; Zhao, X.; Gao, Y.; Zheng, L.; Zhang, J. Yu. Colloids Surf. A Physicochem. Eng. Asp., 2007, 292, 196-201.
[28]
Li, W.; Lu, B.; Sheng, A.; Yang, F.; Wang, Z. J. Mol. Struct., 2010, 981, 194-203.
[29]
(a) Szejtli, J. Chem. Rev., 1998, 98, 1743-1754.
(b) Ikuta, N.; Tanaka, A.; Otsubo, A.; Ogawa, N.; Yamamoto, H.; Mizukami, T.; Arai, S.; Okuno, M.; Terao, K.; Matsugo, S. Int. J. Mol. Sci., 2014, 15, 20469-20485.
[30]
Crupi, V.; Majolino, D.; Venuti, V.; Guella, G.; Mancini, I.; Rossi, B.; Verrocchio, P.; Viliani, G.; Stancanelli, R. J. Phys. Chem. A, 2010, 114, 6811-6817. (b) Ikuta, N.; Tanaka, A.; Otsubo, A.; Ogawa.; Yamamoto, H.; Mizukami, T.; Arai, A.; Okuno, M.; Terao, K.; Matsugo, S. Int. J. Mol. Sci., 2014, 15(11), 20469-20485.
[31]
(a)Stothers, J.B. Carbon-13 NMR Spectroscopy: Organic Chemistry, A Series of Monographs; vol 24, Academic Press: New York. , 1972.
(b)Reichardt, C. Solvent Effects in Organic Chemistry; Verlag Chemie: New York, 1976.
(c)Ando, I.; Webb, G.A. Org. Magn. Reson., 1981, 15, 111-130.
(d)Castagne, D.; Dive, G.; Evrard, B.; Frédérich, M.; Piel, G. J. Pharm. Pharm. Sci., 2010, 13, 362-377.
(e) Yanghong Li, B.S. Stereochemical Studies on the Metabolism of Sterols by Saccharomyces cervisiae Strain GL7., Mgr. Thesis [Online], the Graduate Faculty of Texas Tech University. Lubbock, TX., January1996. https://ttu-ir.tdl.org/ttu-ir/ bitstream/handle/2346/17 003/31 295009804591.pdf?sequence=1 (accessed Feb 11, 2018)
(f) Chaturvedula, V.S.P.; Prakash, I. Int. Curr. Pharm. J., 2012, 1, 239-242. (f) Sright, J.L.C.; Mclnnes, A.G.; Shimuzu, S.; Smith, D.G.; Walter, J.A.; Idler, D.; Khalil, W. Can. J. Chem., 1978, 56, 1898-1903.
[32]
Thakkar, A.L.; Demarco, P.V. J. Pharm. Sci., 1971, 60, 652-653.
[33]
Greatbanks, D.; Pickford, R. Magn. Reson. Chem., 1987, 25, 208-215.
[34]
Pessine, F.B.T. ; Calderini, Alexandrino, L. Review: Magnetic Resonance Spectroscopy, Kim, D., Ed.; INTECH, 2012; Chapter 12 Available from: http://www.intechopen.com/books/magnetic- resonance-spectroscopy/review-study-of-inclusion-complexes with- cyclodextrins-by-mrs; and referen ces therein, (accessed, Feb 11,2018). (b) Schneider, H.-J.; Hacket, F; Rüdiger, V. Chem. Rev. 1998. 98, 1755-1785.
[35]
Xavier, C.R.; Silva, A.P.C.; Schwingel, L.C.; Borghetti, G.S.; Koester, L.S.; Mayorga, P.; Teixeira, H.F.; Bassani, V.L.; Lula, I.S.; Sinisterra, R.D. Quim. Nova, 2010, 33, 587-590.
[36]
Cobas, C.; Seoane, F.; Domínguez, S.; Sykora, S.; Davies, A.N. Spectrosc. Eur., 2010, 23, 26-30.
[37]
Airoldi, C.; Tripodi, F.; Guzzi, C.; Nicastro, R.; Coccetti, P. NMR analysis of budding yeast metabolomics: a rapid method for sample preparation. Mol. Biosyst., 2015, 11, 379-383.
[38]
Inoue, Y. Annu. Rep. NMR Spectrosc., 1993, 27, 59-101.
[39]
Gelb, R.I.; Schwartz, L.M.; Cardelino, B.; Fuhrman, H.S.; Johnson, R.F.; Laufer, D.A. J. Am. Chem. Soc., 1981, 103, 1750-1757.
[40]
Jiang, H.; Zhang, S.; Shi, Q.; Jia, Y. Wuhan Univ. J. Nat. Sci., 2011, 16, 79-82.
[41]
Cowins, J.; Abimbola, O.; Ananaba, G.; Wang, X-Q.; Khan, I. J. Incl. Phenom. Macrocycl. Chem., 2015, 83, 141-148.
[42]
Goel, A.; Nene, S.N. Starch/Starke, 1995, 47, 399-400.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy