Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

A Review on Free Radicals and Antioxidants

Author(s): Hourieh Alkadi*

Volume 20, Issue 1, 2020

Page: [16 - 26] Pages: 11

DOI: 10.2174/1871526518666180628124323

Price: $65

conference banner
Abstract

Free radicals are generated in our body by several systems. A balance among free radicals and antioxidants is an important matter for appropriate physiological function. If free radicals become greater than the ability of the body to control them, a case known as oxidative stress appears, as a result of that, a number of human diseases spread in the body. Antioxidants can contribute to facingthis oxidative stress. The present review provides a brief overview of free radicals, oxidative stress, some natural antioxidants and the relationship between them.

Keywords: Free radicals, ROS, oxidative stress, antioxidant vitamins, antioxidant peptides, antioxidant flavonoids.

Graphical Abstract
[1]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[2]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[PMID: 25774178]
[3]
Ewa, N.; Irena, S.; Maciej, G.; Andrzej, M.; Piotr, S.; Joanna, P.; Małgorzata, F. Oxidative stress in neuro-degenerative diseases. Mol. Neurobiol. J., 2016, 53(6), 4094-4125.
[http://dx.doi.org/10.1007/s12035-015-9337-5]
[4]
Xie, Y.; Chen, Y. microRNAs: Emerging targets regulating oxidative stress in the models of Parkinson’s disease. Front. Neurosci., 2016, 10, 298.
[http://dx.doi.org/10.3389/fnins.2016.00298] [PMID: 27445669]
[5]
Zemlan, F.P.; Thienhaus, O.J.; Bosmann, H.B. Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res., 1989, 476(1), 160-162.
[http://dx.doi.org/10.1016/0006-8993(89)91550-3] [PMID: 2521568]
[6]
Taibur, R.; Ismail, H.; Towhidul, I.M.M.; Hossain, U.S. Oxidative stress and human health. Adv. Biosci. Biotechnol., 2012, 3, 997-1019.
[http://dx.doi.org/10.4236/abb.2012.327123]
[7]
Torricelli, P.; Antonelli, F.; Ferorelli, P.; De Marti-no, A.; Shevchenko, A.; Siciliano, A.; Beninati, S. Organ culture model of liver for the study of cancer treatment for hepatocellular carcinoma. Cancer Res. J. (N. Y. N. Y.), 2016, 4(2), 37-42.
[http://dx.doi.org/10.11648/j.crj.20160402.13]
[8]
Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med., 2010, 49(11), 1603-1616.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
[9]
Saha, S.K.; Lee, S.B.; Won, J.; Choi, H.Y.; Kim, K.; Yang, G.M.; Dayem, A.A.; Cho, S.G. Correlation between oxidative stress, nutrition, and cancer initiation. Int. J. Mol. Sci., 2017, 18(7), 1-30.
[http://dx.doi.org/10.3390/ijms18071544] [PMID: 28714931]
[10]
Loliger, J. Use of Antioxidants in Food. Free Radials and Food Additives; Aruoma, O.I; Halliwell, B., Ed.; Taylor and Francis: London, 1991, pp. 121-150.
[11]
Frie, B.; Stocker, R.; Ames, B.N. Antioxidant defences and lipid peroxidiation in human blood plasma. Proc. Natl. Acad. Sci. USA, 1988, 37, 569-571.
[12]
Utlara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidadtive stress and neurodegenerative diseases: a review of upstream and aownstream anti-oxidant therapeutic options. Curr. Neuro. Pharmacol. J., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823]
[13]
Mohammed, A.A.; Ibrahim, A.A. Pathological of reactive oxygen species and their de-fence mechanism. Saudi Pharm. J., 2004, 12, 1-18.
[14]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[15]
Hancock, J.T.; Desikan, R.; Neill, S.J. Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans., 2001, 29(Pt 2), 345-350.
[http://dx.doi.org/10.1042/bst0290345] [PMID: 11356180]
[16]
Kumar, H.; Lim, H.W.; More, S.V.; Kim, B.W.; Koppula, S.; Kim, I.S.; Choi, D.K. The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int. J. Mol. Sci., 2012, 13(8), 10478-10504.
[http://dx.doi.org/10.3390/ijms130810478] [PMID: 22949875]
[17]
Gutowski, M.; Kowalczyk, S. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim. Pol., 2013, 60(1), 1-16.
[http://dx.doi.org/10.18388/abp.2013_1944] [PMID: 23513192]
[18]
Augusto, O.; Miyamoto, S. Oxygen Radicals and Related Species. Principles of Free Radical Biomedicine; Pantopoulos, K; Schipper, H.M., Ed.; Nova Science Publishers, Inc., 2011, pp. 1-23.
[19]
Hanna-Riikka, T.; Ylermi, S.; Peeter, K. Reactive Oxygen Species-Mediated Mechanisms of Action of Targeted Cancer Therapy. Oxid. Med. Cell. Longev., 2017.
[20]
Bagchi, K.; Puri, S. Free radicals and antioxidants in health and disease. East. Mediterr. Health J., 1998, 4, 350-360.
[21]
Ebadi, M. Antioxidants and Free Radicals in Health and Disease: An Introduction to Reactive Oxygen Species, Oxidative Injury, Neuronal Cell Death and Therapy in Neurodegenerative Diseases; Prominent Press: Arizona, 2001.
[22]
Richard, C.P. Free-radicals and advanced chemistries involved in cell membrane organization influence oxygen diffusion and pathology treatment. HHS Public Access., 2017, 4(2), 240-283.
[23]
Lui, T.; Stern, A.; Roberts, L.J. The isoprostanes: novel prostanglandin like products of the free radical catalyzed peroxidation of arachidonic acid. Biomed Sci J., 1999, 6, 226-235.
[http://dx.doi.org/10.1007/BF02253564]
[24]
Chryssostomos, C.; Carla, F.; Annalisa, M.; Michele, M.; Anna, S.; Michael, A.T.; Armida, T. Free radicals in chemical biology: from chemical behavior to biomarker development. J. Vis. Exp., 2013, 74, 1-10.
[25]
Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed; New York, Oxford, 1999.
[26]
Cadenas, E.; Davies, K.J. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med., 2000, 29(3-4), 222-230.
[http://dx.doi.org/10.1016/S0891-5849(00)00317-8] [PMID: 11035250]
[27]
Matsuzaki, S.; Szweda, P.A.; Szweda, L.I.; Humphries, K.M. Regulated production of free radicals by the mitochondrial electron transport chain: Cardiac ischemic preconditioning. Adv. Drug Deliv. Rev., 2009, 61(14), 1324-1331.
[http://dx.doi.org/10.1016/j.addr.2009.05.008] [PMID: 19716389]
[28]
Joel, D.T.; Ryan, M.B.; Russell, S.R. Regulation of Exercise Blood Flow: Role of Free Radicals. Free Radic. Biol. Medi. J., 2016, 98, 90-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.01.017]
[29]
Viña, J.; Gomez-Cabrera, M.C.; Lloret, A.; Marquez, R.; Miñana, J.B.; Pallardó, F.V.; Sastre, J. Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life J., 2000, 50(4-5), 271-277.
[30]
Marcio, C.; Isabel, C.F. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. J., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021]
[31]
Slater, T.F. Free-radical mechanisms in tissue injury. Biochem. J., 1984, 222(1), 1-15.
[http://dx.doi.org/10.1042/bj2220001] [PMID: 6383353]
[32]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[33]
Scandalios, J.G. Genomic Responses to Oxidative Stress.Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2nd ed; Meyers, R.A., Ed.; Wiley-VCH: Weinheim, Germany, 2004, Vol. 5, pp. 489-512.
[34]
Cabello-Verrugio, C.; Simon, F.; Trollet, C.; San-tibañez, J.F. Oxidative Stress in Disease and Aging: Mechanisms and Therapies 2016. Oxid. Med. Cell. Longev., 2017.
[35]
Anna, M.M.; Stefania, M. Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxid. Med. Cell Longev. J., 2016, 2016, 6475624
[36]
Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H. LLeonart, M.E. Oxidative stress and cancer: an overview. Ageing Res. Rev., 2013, 12(1), 376-390.
[http://dx.doi.org/10.1016/j.arr.2012.10.004] [PMID: 23123177]
[37]
Murata, M.; Thanan, R.; Ma, N.; Kawanishi, S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol., 2012, 2012, 623019
[http://dx.doi.org/10.1155/2012/623019] [PMID: 22363173]
[38]
Alexander, V.I.; Vladimir, T.V.; Daria, A.T.; Olga, N.I.; Sergey, N.K.; Birke, B.; Maria, G.I. Oxidative stress, trigger of hepatitis c and b virus-induced liver carcinogenesis. Oncotarget J., 2017, 8(3), 3895-3932.
[39]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16(11), 26087-26124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[40]
Matough, F.A.; Budin, S.B.; Hamid, Z.A.; Alwahaibi, N.; Mohamed, J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ. Med. J., 2012, 12(1), 5-18.
[http://dx.doi.org/10.12816/0003082] [PMID: 22375253]
[41]
Styskal, J.; Van Remmen, H.; Richardson, A.; Salmon, A.B. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic. Biol. Med., 2012, 52(1), 46-58.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.441] [PMID: 22056908]
[42]
Pessin, J.E.; Saltiel, A.R. Signaling pathways in insulin action: molecular targets of insulin resistance. J. Clin. Invest., 2000, 106(2), 165-169.
[http://dx.doi.org/10.1172/JCI10582] [PMID: 10903329]
[43]
Smith, J.A.; Park, S.; Krause, J.S.; Banik, N.L. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration. Neurochem. Int., 2013, 62(5), 764-775.
[http://dx.doi.org/10.1016/j.neuint.2013.02.013] [PMID: 23422879]
[44]
Dayem, A.A.; Choi, H.Y.; Kim, J.H.; Cho, S.G. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel), 2010, 2(2), 859-884.
[http://dx.doi.org/10.3390/cancers2020859] [PMID: 24281098]
[45]
Nita, M.; Grzybowski, A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid. Med. Cell. Longev., 2016, 2016, 3164734
[http://dx.doi.org/10.1155/2016/3164734] [PMID: 26881021]
[46]
Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J.L.; Liew, G.; White, A.J.R. Oxidative stress and reactive oxygen species: a review of their role in ocular disease. Clin. Sci. (Lond.), 2017, 131(24), 2865-2883.
[http://dx.doi.org/10.1042/CS20171246] [PMID: 29203723]
[47]
Chandler, H.L.; Reuter, K.S.; Sinnott, L.T.; Nichols, J.J. Prevention of UV-induced damage to the anterior segment using class I UV-absorbing hydrogel contact lenses. Invest. Ophthalmol. Vis. Sci., 2010, 51(1), 172-178.
[http://dx.doi.org/10.1167/iovs.09-3996] [PMID: 19710408]
[48]
Shoham, A.; Hadziahmetovic, M.; Dunaief, J.L.; Mydlarski, M.B.; Schipper, H.M. Oxidative stress in diseases of the human cornea. Free Radic. Biol. Med., 2008, 45(8), 1047-1055.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.021] [PMID: 18718524]
[49]
Suh, M.H.; Kwon, J.W.; Wee, W.R.; Han, Y.K.; Kim, J.H.; Lee, J.H. Protective effect of ascorbic Acid against corneal damage by ultraviolet B irradiation: a pilot study. Cornea, 2008, 27(8), 916-922.
[http://dx.doi.org/10.1097/ICO.0b013e31816f7068] [PMID: 18724154]
[50]
Dina, J.; Larry, B.A. Targeted approach toward more accurate assessment of hypertension. Egypt. J. Chest Dis. Tuberc., 2017, 66(3), 517-536.
[http://dx.doi.org/10.1016/j.ejcdt.2017.01.002]
[51]
Vichova, T.; Motovska, Z. Oxidative stress: Predictive marker for coronary artery disease. Exp. Clin. Cardiol., 2013, 18(2), e88-e91.
[PMID: 23940453]
[52]
Laurikka, A.; Vuolteenaho, K.; Toikkanen, V.; Rinne, T.; Leppänen, T.; Tarkka, M.; Laurikka, J.; Moilanen, E. Adipocytokine resistin correlates with oxidative stress and myocardial injury in patients undergoing cardiac surgery. Eur. J. Cardiothorac. Surg., 2014, 46(4), 729-736.
[http://dx.doi.org/10.1093/ejcts/ezt634] [PMID: 24482385]
[53]
Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging, 2007, 2(2), 219-236.
[PMID: 18044138]
[54]
Shi, H.; Noguchi, N.; Niki, E. Comparative study on dynamics of antioxidative action of α-tocopheryl hydroquinone, ubiquinol, and α-tocopherol against lipid peroxidation. Free Radic. Biol. Med., 1999, 27(3-4), 334-346.
[http://dx.doi.org/10.1016/S0891-5849(99)00053-2] [PMID: 10468207]
[55]
Song, W.; Derito, C.M.; Liu, M.K.; He, X.; Dong, M.; Liu, R.H. Cellular antioxidant activity of common vegetables. J. Agric. Food Chem., 2010, 58(11), 6621-6629.
[http://dx.doi.org/10.1021/jf9035832] [PMID: 20462192]
[56]
Abebe, W. An overview of herbal supplement utilization with particular emphasis on possible interactions with dental drugs and oral manifestations. J. Dent. Hyg., 2003, 77(1), 37-46.
[57]
Milda, E.E. Spices and herbs: natural sources of antioxidants - a mini review. J. Funct. Foods, 2015, 18, 811-819.
[http://dx.doi.org/10.1016/j.jff.2015.03.005]
[58]
Shahidi, F.; Zhong, Y. Novel antioxidants in food preservation and health promotion. European Tournal of Lipid Science and Technology, 2010, 112, 930-940.
[http://dx.doi.org/10.1002/ejlt.201000044]
[59]
Chapple, I.L.C.; Matthews, J.B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol. 2000, 2007, 43(1), 160-232.
[http://dx.doi.org/10.1111/j.1600-0757.2006.00178.x] [PMID: 17214840]
[60]
Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod., 2000, 63(7), 1035-1042.
[http://dx.doi.org/10.1021/np9904509] [PMID: 10924197]
[61]
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, N.M.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015]
[62]
Goodman, M.; Bostick, R.M.; Kucuk, O.; Jones, D.P. Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic. Biol. Med., 2011, 51(5), 1068-1084.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.018] [PMID: 21683786]
[63]
Abheri, D.S.; Anisur, R.M.; Ghosh, A.K. Free radicals and their role in different clinical conditions: an overview. Int. J. Pharm. Sci. Res., 2010, 1(3), 185-192.
[64]
Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of nutrition for development (BOND)-vitamin a review. J. Nutr., 2016, 146(9), 1816S-1848S.
[http://dx.doi.org/10.3945/jn.115.229708] [PMID: 27511929]
[65]
Ross, A. Vitamin A and Carotenoids.Shike, M.; Ross, A.; Caballero, B.; Cousins, R. Modern Nutrition in Health and Disease, 10th ed; Shils, M., Ed.; Lippincott Williams & Wilkins: Baltimore, MD, 2006, pp. 351-375.
[66]
Rank order of vitamin A content in foods per 100 g USDA National Nutrient Database, 2017.
[67]
Tanumihardjo, S.A.; Vitamin, A. biomarkers of nutrition for development. Am. J. Clin. Nutr., 2011, 94(2), 658S-665S.
[http://dx.doi.org/10.3945/ajcn.110.005777] [PMID: 21715511]
[68]
Groff, J.L.; Gropper, S.S.; Hunt, S.M. The Fat Soluble Vitamins.Advanced Nutrition and Human Metabolism; West Publishing Company: Minneapolis, 1995, pp. 284-324.
[69]
Saari, J.C. Vitamin A and vision. Subcell. Biochem., 2016, 81, 231-259.
[http://dx.doi.org/10.1007/978-94-024-0945-1_9] [PMID: 27830507]
[70]
Brigelius-Flohé, R.; Traber, M.G.; Vitamin, E. Vitamin E: function and metabolism. FASEB J., 1999, 13(10), 1145-1155.
[http://dx.doi.org/10.1096/fasebj.13.10.1145] [PMID: 10385606]
[71]
Bell, E.F. History of vitamin E in infant nutrition. Am. J. Clin. Nutr., 1987, 46(1)(Suppl.), 183-186.
[http://dx.doi.org/10.1093/ajcn/46.1.183] [PMID: 3300257]
[72]
Azzi, A. Molecular mechanism of alpha-tocopherol action. Free Radic. Biol. Med., 2007, 43(1), 16-21.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.03.013] [PMID: 17561089]
[73]
Traber, M.G.; Stevens, J.F. Free radical biology and medicine - vitamins c and e: beneficial effects from a mechanistic perspective. Free Radic. Biol. Med., 2011, 51(5), 1000-1013.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.017] [PMID: 21664268]
[74]
Ryo, Y.; Vitamin, E. Mechanism of its antioxidant activity. Food Sci. Technol. Int., 1997, 3(4), 301-309.
[75]
Wilson, J.X. Mechanism of action of vitamin C in sepsis: ascorbate modulates redox signaling in endothelium. Biofactors, 2009, 35(1), 5-13.
[http://dx.doi.org/10.1002/biof.7] [PMID: 19319840]
[76]
Wilson, J.X. Regulation of vitamin C transport. Annu. Rev. Nutr., 2005, 25, 105-125.
[http://dx.doi.org/10.1146/annurev.nutr.25.050304.092647] [PMID: 16011461]
[77]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[78]
Satish, B.N.; Dilipkumar, P. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5, 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[79]
Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.K.; Levine, M. Vitamin C as an antioxidant: evaluation of its role in disease prevention. J. Am. Coll. Nutr., 2003, 22(1), 18-35.
[http://dx.doi.org/10.1080/07315724.2003.10719272] [PMID: 12569111]
[80]
Shigeoka, S.; Ishikawa, T.; Tamoi, M.; Miyagawa, Y.; Takeda, T.; Yabuta, Y.; Yoshimura, K. Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot., 2002, 53(372), 1305-1319.
[http://dx.doi.org/10.1093/jexbot/53.372.1305] [PMID: 11997377]
[81]
Liu, R.; Xing, L.; Fu, Q.; Zhou, G.H.; Zhang, W.G. A Review of antioxidant peptides derived from meat muscle and by-products. Antioxidants, 2016, 5(3), 32.
[http://dx.doi.org/10.3390/antiox5030032] [PMID: 27657142]
[82]
Adrián, S.; Alfredo, V. Bioactive peptides: A review. Food Quality and Safety Journal., 2017, 1, 29-46.
[http://dx.doi.org/10.1093/fqs/fyx006]
[83]
Monique, J. F.; Robert, J. R.; Aswini, K. P. Visual detection of denatured glutathione peptides: A facile method to visibly detect heat stressed biomolecules. Scientific Reports journal, 2017, 1-11.
[84]
Sen, C.K. Glutathione Homeostasis in Response to Exercise Training and Nutritional Supplements. Mol. Cell. Biochem. J., 1999, 196(1-2), 31-42.
[85]
Vidyarthi, N. Mazumdar. A. Oxidative Stress and Antioxidant Enzymes. Pharmacophore J., 2014, 5(6), 889-894.
[86]
Kromidas, L.; Trombetta, L.D.; Jamall, I.S. The protective effects of glutathione against methylmercury cytotoxicity. Toxicol. Lett., 1990, 51(1), 67-80.
[http://dx.doi.org/10.1016/0378-4274(90)90226-C] [PMID: 2315960]
[87]
Gohil, K.; Viguie, C.; Stanley, W.C.; Brooks, G.A.; Packer, L. Blood glutathione oxidation during human exercise. J. Appl. Physiol., 1988, 64(1), 115-119.
[http://dx.doi.org/10.1152/jappl.1988.64.1.115] [PMID: 3356628]
[88]
Lee, J.; Clarkson, P.M. Plasma creatine kinase activity and glutathione after eccentric exercise. Med. Sci. Sports Exerc., 2003, 35(6), 930-936.
[http://dx.doi.org/10.1249/01.MSS.0000069553.47739.36] [PMID: 12783040]
[89]
Kerksick, C.; Willoughby, D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J. Int. Soc. Sports Nutr., 2005, 2(2), 38-44.
[http://dx.doi.org/10.1186/1550-2783-2-2-38] [PMID: 18500954]
[90]
Guiotto, A.; Calderan, A.; Ruzza, P.; Borin, G. Carnosine and carnosine-related antioxidants: a review. Curr. Med. Chem., 2005, 12(20), 2293-2315.
[http://dx.doi.org/10.2174/0929867054864796] [PMID: 16181134]
[91]
Yan, H.; Guo, Y.; Zhang, J.; Ding, Z.; Ha, W.; Harding, J.J. Effect of carnosine, aminoguanidine, and aspirin drops on the prevention of cataracts in diabetic rats. Mol. Vis., 2008, 14, 2282-2291.
[PMID: 19081783]
[92]
Attanasio, F.; Cataldo, S.; Fisichella, S.; Nicoletti, S.; Nicoletti, V.G.; Pignataro, B.; Savarino, A.; Rizzarelli, E. Protective effects of L- and D-carnosine on alpha-crystallin amyloid fibril formation: implications for cataract disease. Biochemistry, 2009, 48(27), 6522-6531.
[http://dx.doi.org/10.1021/bi900343n] [PMID: 19441807]
[93]
Babizhayev, M.A. New concept in nutrition for the maintenance of the aging eye redox regulation and therapeutic treatment of cataract disease; synergism of natural antioxidant imidazole-containing amino acid-based compounds, chaperone, and glutathione boosting agents: a systemic perspective on aging and longevity emerged from studies in humans. Am. J. Ther., 2010, 17(4), 373-389.
[PMID: 20463577]
[94]
Zaloga, G.P.; Roberts, P.R.; Black, K.W.; Lin, M.; Zapata-Sudo, G.; Sudo, R.T.; Nelson, T.E. Carnosine is a novel peptide modulator of intracellular calcium and contractility in cardiac cells. Am. J. Physiol., 1997, 272(1 Pt 2), H462-H468.
[PMID: 9038968]
[95]
Petersen Shay, K.; Moreau, R.F.; Smith, E.J.; Hagen, T.M. Is alpha-lipoic acid a scavenger of reactive oxygen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity. IUBMB Life, 2008, 60(6), 362-367.
[http://dx.doi.org/10.1002/iub.40] [PMID: 18409172]
[96]
Packer, L.; Witt, E.H.; Tritschler, H.J. alpha-Lipoic acid as a biological antioxidant. Free Radic. Biol. Med., 1995, 19(2), 227-250.
[http://dx.doi.org/10.1016/0891-5849(95)00017-R] [PMID: 7649494]
[97]
Rochette, L.; Ghibu, S.; Richard, C.; Zeller, M.; Cottin, Y.; Vergely, C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol. Nutr. Food Res., 2013, 57(1), 114-125.
[http://dx.doi.org/10.1002/mnfr.201200608] [PMID: 23293044]
[98]
Ziegler, D. Thioctic acid for patients with symptomatic diabetic polyneuropathy: a critical review. Treat. Endocrinol., 2004, 3(3), 173-189.
[http://dx.doi.org/10.2165/00024677-200403030-00005] [PMID: 16026113]
[99]
Vasdev, S.; Gill, V.; Parai, S.; Gadag, V. Dietary lipoic acid supplementation attenuates hypertension in Dahl salt sensitive rats. Mol. Cell. Biochem., 2005, 275(1-2), 135-141.
[http://dx.doi.org/10.1007/s11010-005-1095-7] [PMID: 16335793]
[100]
Shashank, K.; Abhay, K.P. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J., 2013, 2013, 162750
[101]
Procházková, D.; Boušová, I.; Wilhelmová, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 2011, 82(4), 513-523.
[http://dx.doi.org/10.1016/j.fitote.2011.01.018] [PMID: 21277359]
[102]
Kelly, E.H.; Anthony, R.T.; Dennis, J.B. Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationships. Nutr. Biochem. J., 2002, 13, 10572-10584.
[103]
Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci., 2012, 196, 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[104]
Wolfe, K.L.; Liu, R.H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem., 2008, 56(18), 8404-8411.
[http://dx.doi.org/10.1021/jf8013074] [PMID: 18702468]
[105]
Dugas, A.J.J., Jr; Castañeda-Acosta, J.; Bonin, G.C.; Price, K.L.; Fischer, N.H.; Winston, G.W. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structure-activity relationships. J. Nat. Prod., 2000, 63(3), 327-331.
[http://dx.doi.org/10.1021/np990352n] [PMID: 10757712]
[106]
Sofna, D.S.B.; Nina, A. Antioxidant properties of flavonoids. Med. J. Indones., 2014, 23(4), 239-244.
[107]
Maleśev, D.; Kunti, V. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Serb Chem Soc., 2007, 72(10), 921-939.
[http://dx.doi.org/10.2298/JSC0710921M]
[108]
Liu, H.; Guo, X.; Chu, Y.; Lu, S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene, 2014, 545(1), 149-155.
[http://dx.doi.org/10.1016/j.gene.2014.04.043] [PMID: 24769323]
[109]
Weinreb, O.; Mandel, S.; Amit, T.; Youdim, M.B. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J. Nutr. Biochem., 2004, 15(9), 506-516.
[http://dx.doi.org/10.1016/j.jnutbio.2004.05.002] [PMID: 15350981]
[110]
Samy, R.P.; Gopalakrishnakone, P.; Ignacimuthu, S. Anti-tumor promoting potential of luteolin against 7,12-dimethylbenz(a) anthracene-induced mammary tumors in rats. Chem. Biol. Interact., 2006, 164(1-2), 1-14.
[http://dx.doi.org/10.1016/j.cbi.2006.08.018] [PMID: 17064676]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy