Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Factorial Design Optimisation of Solid Phase Extraction for Preconcentration of Parabens in Wastewater Using Ultra-High Performance Liquid Chromatography Triple Quadrupole Mass Spectrometry

Author(s): Vallerie A. Muckoya, Philiswa N. Nomngongo and Jane C. Ngila*

Volume 16, Issue 4, 2020

Page: [436 - 446] Pages: 11

DOI: 10.2174/1573411014666180627150854

Price: $65

Abstract

Background: Parabens are synthetic esters used extensively as preservatives and/or bactericides in personal care personal products.

Objective: Development and validation of a novel robust chemometric assisted analytical technique with superior analytical performances for the determination of ethylparaben, methylparaben and propylparaben, using simulated wastewater matrix.

Methods: An automated Solid Phase Extraction (SPE) method coupled with liquid chromatographymass spectrometry was applied in this study. A gradient elution programme comprising of 0.1% formic acid in deionised water (A) and 0.1% formic acid in Methanol (B) was employed on a 100 x 2.1 mm, 3.0 μm a particle size biphenyl column. Two-level (2k) full factorial design coupled with response surface methodology was used for optimisation and investigation of SPE experimental variables that had the most significant outcome of the analytical response.

Results: According to the analysis of variance (ANOVA), sample pH and eluent volume were statistically the most significant parameters. The method developed was validated for accuracy, precision, Limits of Detection (LOD) and Limit of Quantification (LOQ) and linearity. The LOD and LOQ established under those optimised conditions varied between 0.04-0.12 μgL−1 and 0.14-0.40 μgL−1 respectively. The use of matrix-matched external calibration provided extraction recoveries between 78-128% with relative standard deviations at 2-11% for two spike levels (10 and 100 μgL-1) in three different water matrices (simulated wastewater, influent and effluent water).

Conclusion: The newly developed method was applied successfully to the analyses of parabens in wastewater samples at different sampling points of a wastewater treatment plant, revealing concentrations of up to 3 μgL−1.

Keywords: Ethylparaben, factorial design, methylparaben, propylparaben, solid phase extraction, UHPLC-MS/MS, wastewater.

Graphical Abstract
[1]
Ocaña-González, J.A.; Villar-Navarro, M.; Ramos-Payán, M.; Fernández-Torres, R.; Bello-López, M.A. New developments in the extraction and determination of parabens in cosmetics and environmental samples. A review. Anal. Chim. Acta, 2015, 858, 1-15.
[http://dx.doi.org/10.1016/j.aca.2014.07.002] [PMID: 25597796]
[2]
González-Mariño, I.; Quintana, J.B.; Rodríguez, I.; Cela, R. Simultaneous determination of parabens, triclosan and triclocarban in water by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom., 2009, 23(12), 1756-1766.
[http://dx.doi.org/10.1002/rcm.4069] [PMID: 19437429]
[3]
Darbre, P.D.; Harvey, P.W. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J. Appl. Toxicol., 2008, 28(5), 561-578.
[http://dx.doi.org/10.1002/jat.1358] [PMID: 18484575]
[4]
Albero, B.; Pérez, R.A.; Sánchez-Brunete, C.; Tadeo, J.L. Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain). J. Hazard. Mater., 2012, 239-240, 48-55.
[http://dx.doi.org/10.1016/j.jhazmat.2012.05.017] [PMID: 22640822]
[5]
Anumol, T.; Snyder, S.A. Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Talanta, 2015, 132, 77-86.
[http://dx.doi.org/10.1016/j.talanta.2014.08.011] [PMID: 25476282]
[6]
Xue, Y.; Chen, N.; Luo, C.; Wang, X.; Sun, C. Simultaneous determination of seven preservatives in cosmetics by dispersive liquid-liquid microextraction coupled with high performance capillary electrophoresis. Anal. Methods, 2013, 5(9), 2391-2397.
[http://dx.doi.org/10.1039/c3ay00069a]
[7]
López-Darias, J.; Pino, V.; Meng, Y.; Anderson, J.L.; Afonso, A.M. Utilization of a benzyl functionalized polymeric ionic liquid for the sensitive determination of polycyclic aromatic hydrocarbons; parabens and alkylphenols in waters using solid-phase microextraction coupled to gas chromatography-flame ionization detection. J. Chromatogr. A, 2010, 1217(46), 7189-7197.
[http://dx.doi.org/10.1016/j.chroma.2010.09.016] [PMID: 20933234]
[8]
Ma, T.; Li, Z.; Jia, Q.; Zhou, W. Ultrasound-assisted temperature-controlled ionic liquid emulsification microextraction coupled with capillary electrophoresis for the determination of parabens in personal care products. Electrophoresis, 2016, 37(12), 1624-1631.
[http://dx.doi.org/10.1002/elps.201500533] [PMID: 26990303]
[9]
Chen, Y.; Cao, S.; Zhang, L.; Xi, C.; Chen, Z. Modified QuEChERS combination with magnetic solid-phase extraction for the determination of 16 preservatives by gas chromatography–mass spectrometry. Food Anal. Methods, 2017, 10(3), 587-595.
[http://dx.doi.org/10.1007/s12161-016-0616-1]
[10]
Becerra-Herrera, M.; Miranda, V.; Arismendi, D.; Richter, P. Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta, 2018, 176, 551-557.
[http://dx.doi.org/10.1016/j.talanta.2017.08.071] [PMID: 28917789]
[11]
Piao, C. A review of the extraction and chromatographic determination methods for the analysis of parabens. J. Chromatogr. B, 2014, 969, 139-148
[12]
Pedrouzo, M.; Borrull, F.; Marcé, R.M.; Pocurull, E. Ultra-high-performance liquid chromatography-tandem mass spectrometry for determining the presence of eleven personal care products in surface and wastewaters. J. Chromatogr. A, 2009, 1216(42), 6994-7000.
[http://dx.doi.org/10.1016/j.chroma.2009.08.039] [PMID: 19747689]
[13]
Zgoła-Grześkowiak, A.; Jeszka-Skowron, M.; Czarczyńska-Goślińska, B.; Grześkowiak, T. Determination of parabens in polish river and lake water as a function of season. Anal. Lett., 2016, 49(11), 1734-1747.
[http://dx.doi.org/10.1080/00032719.2015.1120739]
[14]
Jaume, A.; Danie, R.; Bozo, Z.; Sandra, P.; Damià, B. Liquid Chromatography–Mass Spectrometry quantification and confirmation aspects. In Fast Liquid Chromatography–Mass Spectrometry Methods in Food and Environmental Analysis; Núñez, O.; Martins, C.P.B.; Lucci, P., Eds.; World Scientific Publishing Co.: Singapore, 2015, pp. 347-377.
[15]
Blanco, E.; Casais, Mdel.C.; Mejuto, Mdel.C.; Cela, R. Combination of off-line solid-phase extraction and on-column sample stacking for sensitive determination of parabens and p-hydroxybenzoic acid in waters by non-aqueous capillary electrophoresis. Anal. Chim. Acta, 2009, 647(1), 104-111.
[http://dx.doi.org/10.1016/j.aca.2009.05.024] [PMID: 19576393]
[16]
Gómez, M.J.; Gómez-Ramos, M.M.; Malato, O.; Mezcua, M.; Férnandez-Alba, A.R. Rapid automated screening, identification and quantification of organic micro-contaminants and their main transformation products in wastewater and river waters using liquid chromatography-quadrupole-time-of-flight mass spectrometry with an accurate-mass database. J. Chromatogr. A, 2010, 1217(45), 7038-7054.
[http://dx.doi.org/10.1016/j.chroma.2010.08.070] [PMID: 20926086]
[17]
Samaras, V.G.; Thomaidis, N.S.; Stasinakis, A.S.; Lekkas, T.D. An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography-mass spectrometry. Anal. Bioanal. Chem., 2011, 399(7), 2549-2561.
[http://dx.doi.org/10.1007/s00216-010-4607-6] [PMID: 21197532]
[18]
Kunkel, U.; Radke, M. Reactive tracer test to evaluate the fate of pharmaceuticals in rivers. Environ. Sci. Technol., 2011, 45(15), 6296-6302.
[http://dx.doi.org/10.1021/es104320n] [PMID: 21671643]
[19]
Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta, 2009, 652(1-2), 161-172.
[http://dx.doi.org/10.1016/j.aca.2009.06.015] [PMID: 19786177]
[20]
Gartiser, S.; Flach, F.; Nickel, C.; Stintz, M.; Damme, S.; Schaeffer, A.; Erdinger, L.; Kuhlbusch, T.A. Behavior of nanoscale titanium dioxide in laboratory wastewater treatment plants according to OECD 303 A. Chemosphere, 2014, 104, 197-204.
[http://dx.doi.org/10.1016/j.chemosphere.2013.11.015] [PMID: 24315180]
[21]
Nomngongo, P.N.; Ngila, J.C. Multivariate optimization of dual-bed solid phase extraction for preconcentration of Ag, Al, As and Cr in gasoline prior to inductively coupled plasma optical emission spectrometric determination. Fuel, 2015, 139, 285-291.
[http://dx.doi.org/10.1016/j.fuel.2014.08.046]
[22]
Abdelmajid, R.L. M.R.; Salah, E.S.; Mohammadine, E.H., Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species. Microchem. J., 2017, 130, 129-136.
[23]
Nomngongo, P.N.; Ngila, J.C.; Msagati, T.A.M.; Moodley, B. Chemometric optimization of hollow fiber-liquid phase microextraction for preconcentration of trace elements in diesel and gasoline prior to their ICP-OES determination. Microchem. J., 2014, 114, 141-147.
[http://dx.doi.org/10.1016/j.microc.2013.12.013]
[24]
Gbashi, S.; Njobeh, P.; Steenkamp, P.; Tutu, H.; Madala, N. The effect of temperature and methanol-water mixture on pressurized hot water extraction (PHWE) of anti-HIV analogoues from Bidens pilosa. Chem. Cent. J., 2016, 10(1), 37.
[http://dx.doi.org/10.1186/s13065-016-0182-z] [PMID: 30328564]
[25]
Hibbert, D.B. Experimental design in chromatography: a tutorial review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 910, 2-13.
[http://dx.doi.org/10.1016/j.jchromb.2012.01.020] [PMID: 22333438]
[26]
Msagati, T.A.M.; Barri, T.; Larsson, N.; Jönsson, J.A. Analysis and quantification of parabens in cosmetic products by utilizing hollow fibre-supported liquid membrane and high performance liquid chromatography with ultraviolet detection. Int. J. Cosmet. Sci., 2008, 30(4), 297-307.
[http://dx.doi.org/10.1111/j.1468-2494.2008.00449.x] [PMID: 18713076]
[27]
Han, F.; He, Y.Z.; Yu, C.Z. On-line pretreatment and determination of parabens in cosmetic products by combination of flow injection analysis, solid-phase extraction and micellar electrokinetic chromatography. Talanta, 2008, 74(5), 1371-1377.
[http://dx.doi.org/10.1016/j.talanta.2007.09.007] [PMID: 18371792]
[28]
Tran, N.H.; Chen, H.; Do, T.V.; Reinhard, M.; Ngo, H.H.; He, Y.; Gin, K.Y. Simultaneous analysis of multiple classes of antimicrobials in environmental water samples using SPE coupled with UHPLC-ESI-MS/MS and isotope dilution. Talanta, 2016, 159, 163-173.
[http://dx.doi.org/10.1016/j.talanta.2016.06.006] [PMID: 27474294]
[29]
Benijts, T.; Dams, R.; Lambert, W.; De Leenheer, A. Countering matrix effects in environmental liquid chromatography-electrospray ionization tandem mass spectrometry water analysis for endocrine disrupting chemicals. J. Chromatogr. A, 2004, 1029(1-2), 153-159.
[http://dx.doi.org/10.1016/j.chroma.2003.12.022] [PMID: 15032360]
[30]
Moreta, C.; Tena, M-T.; Kannan, K. Analytical method for the determination and a survey of parabens and their derivatives in pharmaceuticals. Environ. Res., 2015, 142, 452-460.
[http://dx.doi.org/10.1016/j.envres.2015.07.014] [PMID: 26252961]
[31]
Lehotay, S.J.; Son, K.A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A, 2010, 1217(16), 2548-2560.
[http://dx.doi.org/10.1016/j.chroma.2010.01.044] [PMID: 20144460]
[32]
Van de Steene, J.C.; Mortier, K.A.; Lambert, W.E. Tackling matrix effects during development of a liquid chromatographic-electrospray ionisation tandem mass spectrometric analysis of nine basic pharmaceuticals in aqueous environmental samples. J. Chromatogr. A, 2006, 1123(1), 71-81.
[http://dx.doi.org/10.1016/j.chroma.2006.05.013] [PMID: 16720025]
[33]
Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multiresidue methods for the analysis of pharmaceuticals, personal care products and illicit drugs in surface water and wastewater by solid-phase extraction and ultra performance liquid chromatography-electrospray tandem mass spectrometry. Anal. Bioanal. Chem., 2008, 391(4), 1293-1308.
[http://dx.doi.org/10.1007/s00216-008-1854-x] [PMID: 18253724]
[34]
Núñez, L.; Tadeo, J.L.; García-Valcárcel, A.I.; Turiel, E. Determination of parabens in environmental solid samples by ultrasonic-assisted extraction and liquid chromatography with triple quadrupole mass spectrometry. J. Chromatogr. A, 2008, 1214(1-2), 178-182.
[http://dx.doi.org/10.1016/j.chroma.2008.10.105] [PMID: 19010476]
[35]
Canosa, P.; Rodríguez, I.; Rubí, E.; Bollaín, M.H.; Cela, R. Optimisation of a solid-phase microextraction method for the determination of parabens in water samples at the low ng per litre level. J. Chromatogr. A, 2006, 1124(1-2), 3-10.
[http://dx.doi.org/10.1016/j.chroma.2006.03.045] [PMID: 16600260]
[36]
Ramos-Payan, M.; Maspoch, S.; Llobera, A. A simple and fast Double-Flow microfluidic device based liquid-phase microextraction (DF-µLPME) for the determination of parabens in water samples. Talanta, 2017, 165, 496-501.
[http://dx.doi.org/10.1016/j.talanta.2016.12.059] [PMID: 28153288]
[37]
Yin, Q.; Zhu, Y.; Yang, Y. Dispersive liquid-liquid microextraction followed by magnetic solid-phase extraction for determination of four parabens in beverage samples by ultra-performance liquid chromatography tandem mass spectrometry. Food Anal. Methods, 2018, 11(3), 797-807.
[http://dx.doi.org/10.1007/s12161-017-1051-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy