Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

The Effect of Donor Molecular Structure on Power Conversion Efficiency of Small-Molecule-Based Organic Solar Cells

Author(s): Hui Zhang, Yibing Ma, Youyi Sun*, Jialei Liu, Yaqing Liu* and Guizhe Zhao

Volume 16, Issue 3, 2019

Page: [236 - 243] Pages: 8

DOI: 10.2174/1570193X15666180627145325

Price: $65

Abstract

In this review, small-molecule donors for application in organic solar cells reported in the last three years are highlighted. Especially, the effect of donor molecular structure on power conversion efficiency of organic solar cells is reported in detail. Furthermore, the mechanism is proposed and discussed for explaining the relationship between structure and power conversion efficiency. These results and discussions draw some rules for rational donor molecular design, which is very important for further improving the power conversion efficiency of organic solar cells based on the small-molecule donor.

Keywords: Organic solar cells, small-molecule donor, power conversion efficiency, molecular structure, mechanism, donor molecular structure.

Graphical Abstract
[1]
Jung, M.; Seo, D.; Kwak, K.; Kim, A.; Cha, W.; Kim, H.; Yoon, Y.; Ko, M.J.; Lee, D.; Kim, J.Y.; Son, H.J.; Kim, B. Structural and morphological tuning of dithienobenzodithiophene-core small molecules for efficient solution processed organic solar cells. Dyes Pigm, 2015, 115, 23-34.
[2]
Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency. Adv. Mater., 2006, 18, 789-794.
[3]
Zhang, X.; Lu, Z.H.; Ye, L.; Zhan, C.L.; Hou, J.H.; Zhang, S.Q.; Jiang, B.; Zhao, Y.; Huang, J.H.; Zhang, S.L.; Liu, Y.; Shi, Q.; Liu, Y.Q.; Yao, J.N. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater., 2013, 25, 5791-5797.
[4]
Hiramoto, M.; Fujiwara, H.; Yokoyama, M. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett., 1991, 58(10), 1062-1064.
[5]
Wu, J.B.; Becerril, H.A.; Bao, Z.N.; Liu, Z.F.; Chen, Y.S.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett., 2008, 92, 263302.
[6]
Fan, Q.; Li, M.; Yang, P.; Liu, Y.; Xiao, M.; Wang, X.; Tan, H.; Wang, Y.; Yang, R.; Zhu, W. Acceptor-donor-acceptor small molecules containing benzo[1,2-b:4,5-b′]dithiophene and rhodanine units for solution processed organic solar cells. Dyes Pigm., 2015, 116, 13-19.
[7]
Fan, L.; Cui, R.; Jiang, L.; Zou, Y.; Li, Y.; Qian, D. A new small molecule with indolone chromophore as the electron accepting unit for efficient organic solar cells. Dyes Pigm., 2015, 113, 458-464.
[8]
Do, K.; Cho, N.; Siddiqui, S.A.; Singh, S.P.; Sharma, G.D.; Ko, J. New D-A-D-A-D push-pull organic semiconductors with different benzo[1,2-b:4, 5-b′]dithiophene cores for solution processed bulk heterojunction solar cells. Dyes Pigm., 2015, 120, 126-4135.
[9]
Chen, Y.; Du, Z.; Chen, W.; Liu, Q.; Sun, L.; Sun, M.; Yang, R. Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Org. Electron., 2014, 15(2), 405-413.
[10]
Ni, W.; Li, M.; Wan, X.; Zuo, Y.; Kan, B.; Feng, H.; Zhang, Q.; Chen, Y. A new oligobenzodithiophene end-capped with 3-ethyl-rhodanine groups for organic solar cells with high open-circuit voltage. Sci. China Chem., 2014, 58(2), 339-346.
[11]
Kumar, C.V.; Cabau, L.; Viterisi, A.; Biswas, S.; Sharma, G.D.; Palomares, E. Solvent annealing control of bulk heterojunction organic solar cells with 6.6% efficiency based on a benzodithiophene donor core and dicyano acceptor units. J. Phys. Chem. C, 2015, 119, 20871-20879.
[12]
Kumar, C.V.; Cabau, L.; Koukaras, E.N.; Viterisi, A.; Sharma, G.D.; Palomares, E. Solution processed organic solar cells based on A-D-D’-D-A small molecule with benzo[1,2-b:4,5-b′]dithiophene donor (D’) unit, cyclopentadithiophene donor (D) and ethylrhodanine acceptor unit having 6% light to energy conversion efficiency. J. Mater. Chem. A, 2015, 3(9), 4892-4902.
[13]
Kim, Y.J.; Baek, J.Y.; Ha, J.; Chung, D.S.; Kwon, S.; Park, C.E.; Kim, Y. A high-performance solution-processed small molecule: alkylselenophene-substituted benzodithiophene organic solar cell. J. Mater. Chem. C, 2014, 2(25), 4937-4946.
[14]
Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc., 2014, 136(44), 15529-15532.
[15]
Fan, H.; Zhu, X. Development of small-molecule materials for high-performance organic solar cells. Sci. China Chem., 2015, 58(6), 922-936.
[16]
Kozma, E.; Catellani, M. Perylene diimides based materials for organic solar cells. Dyes Pigm, 2013, 98(1), 160-179.
[17]
Li, M.; Ni, W.; Wan, X.; Zhang, Q.; Kan, B.; Chen, Y. Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based small molecules for solution processed organic solar cells. J. Mater. Chem. A, 2015, 3(9), 4765-4776.
[18]
Gautam, P.; Misra, R.; Biswas, S.; Sharma, G.D. AD-π-A1-π-A2 push-pull small molecule donor for solution processed bulk heterojunction organic solar cells. Phys. Chem. Chem. Phys., 2016, 18(20), 13918-13926.
[19]
Chen, Y.F.; Liu, J.M.; Huang, J.F.; Tan, L.L.; Shen, Y.; Xiao, L.M.; Kuang, D.B.; Su, C.Y. Stable organic dyes based on the benzo[1,2-b:4,5-b′]dithiophene donor for efficient dye-sensitized solar cells. J. Mater. Chem. A, 2015, 3(15), 8083-8090.
[20]
Liao, X.; Wu, F.; Zhang, L.; Chen, L.; Chen, Y. Solution-processed small molecules based on benzodithiophene and difluorobenzothiadiazole for inverted organic solar cells. Polym. Chem., 2015, 6(44), 7726-7736.
[21]
Bagde, S.S.; Park, H.; Lee, S.M.; Lee, S.H. Influence of the terminal donor on the performance of 4,8-dialkoxybenzo[1,2-b:4,5′]dithiophene based small molecules for efficient solution-processed organic solar cells. New J. Chem., 2016, 40(3), 2063-2070.
[22]
Du, Z.; Chen, W.; Qiu, M.; Chen, Y.; Wang, N.; Wang, T.; Sun, M.; Yu, D.; Yang, R. Utilizing alkoxyphenyl substituents for side-chain engineering of efficient benzo[1,2-b:4,5-b′]dithiophene-based small molecule organic solar cells. Phys. Chem. Chem. Phys., 2015, 17(26), 17391-17398.
[23]
Tang, A.; Zhan, C.; Yao, J. Series of quinoidal methyl-dioxocyano-pyridine based π-extended narrow-bandgap oligomers for solution-processed small-molecule organic solar cells. Chem. Mater., 2015, 27, 4719-4730.
[24]
Liao, J.; Zhao, H.; Xu, Y.; Cai, Z.; Peng, Z.; Zhang, W.; Zhou, W.; Li, B.; Zong, Q.; Yang, X. Novel D-A-D type dyes based on BODIPY platform for solution processed organic solar cells. Dyes Pigm., 2016, 128, 131-140.
[25]
Jadhav, T.; Misra, R.; Biswas, S.; Sharma, G.D. Bulk heterojunction organic solar cells based on carbazole-BODIPY conjugate small molecules as donors with high open circuit voltage. Phys. Chem. Chem. Phys., 2015, 17(40), 26580-26588.
[26]
Lu, H.I.; Lu, C.W.; Lee, Y.C.; Lin, H.W.; Lin, L.Y.; Lin, F.; Chang, J.H.; Wu, C.I.; Wong, K.T. New molecular donors with dithienopyrrole as the electron-donating group for efficient small-molecule organic solar cells. Chem. Mater., 2014, 26(15), 4361-4367.
[27]
Mercier, L.G.; Mishra, A.; Ishigaki, Y.; Henne, F.; Schulz, G.; Bauerle, P. Acceptor-donor-acceptor oligomers containing dithieno[3,2-b:2′,3′-d]pyrrole and thieno[2,3-c]pyrrole-4,6-dione units for solution-processed organic solar cells. Org. Lett., 2014, 16, 2642-2645.
[28]
Chung, C.L.; Chen, C.Y.; Kang, H.W.; Lin, H.W.; Tsai, W.l.; Hsu, C.C.; Wong, K.T. A-D-A type organic donors employing coplanar heterocyclic cores for efficient small molecule organic solar cells. Org. Electron., 2016, 28, 229-238.
[29]
Luponosov, Y.N.; Min, J.; Bakirov, A.V.; Dmitryakov, P.V.; Chvalun, S.N.; Peregudova, S.M.; Ameri, T.; Brabec, C.J.; Ponomarenko, S.A. Effects of bridging atom and π-bridge length on physical and photovoltaic properties of A-π-D-π-A oligomers for solution-processed organic solar cells. Dyes Pigm, 2015, 122, 212-223.
[30]
Ni, W.; Li, M.; Liu, F.; Wan, X.; Feng, H.; Kan, B.; Zhang, Q.; Zhang, H.; Chen, Y. Dithienosilole-based small-molecule organic solar cells with an efficiency over 8%: Investigation of the relationship between the molecular structure and photovoltaic performance. Chem. Mater., 2015, 27(17), 6077-6084.
[31]
Bai, H.; Wang, Y.; Cheng, P.; Li, Y.; Zhu, D.; Zhan, X. Acceptor-donor-acceptor small molecules based on indacenodithiophene for efficient organic solar cells. ACS Appl. Mater. Interfaces, 2014, 6, 8426-8433.
[32]
Bai, H.; Cheng, P.; Wang, Y.; Ma, L.; Li, Y.; Zhu, D.; Zhan, X. A bipolar small molecule based on indacenodithiophene and diketopyrrolopyrrole for solution processed organic solar cells. J. Mater. Chem. A, 2014, 2(3), 778-784.
[33]
Sharma, G.D.; Zervaki, G.E.; Angaridis, P.A.; Kitsopoulos, T.N.; Goutsolelos, A.G. Triazine-bridged porphyrin triad as electron donor for solution-processed bulk hetero-junction organic solar cells. J. Phys. Chem. C, 2014, 118(11), 5968-5977.
[34]
Liang, T.; Xiao, L.; Liu, C.; Gao, K.; Qin, H.; Cao, Y.; Peng, X. Porphyrin small molecules containing furan- and selenophene-substituted diketopyrrolopyrrole for bulk heterojunction organic solar cells. Org. Electron., 2016, 29, 127-134.
[35]
Arrechea, S.; Molina-Ontoria, A.; Aljarilla, A.; Cruz, P.; Langa, F.; Echegoyen, L. New acceptor-π-porphyrin-π-acceptor systems for solution-processed small molecule organic solar cells. Dyes Pigm., 2015, 121, 109-117.
[36]
Gautam, P.; Misra, R.; Siddiqui, S.A.; Sharma, G.D. Unsymmetrical Donor-acceptor-acceptor-π-donor type benzothiadiazole-based small molecule for a solution processed bulk heterojunction organic solar cell. ACS Appl. Mater. Interfaces, 2015, 7(19), 10283-10292.
[37]
Chen, Y.; Du, Z.; Chen, W.; Wen, S.; Sun, L. liu, Q.; Sun M.; Yang, R. New small molecules with thiazolothiazole and benzothiadiazole acceptors for solution-processed organic solar cells. New J. Chem., 2014, 38(4), 1559-1564.
[38]
Gautam, P.; Misra, R.; Siddiqui, S.A.; Sharma, G.D. Donor-acceptor-π-acceptor based charge transfer chromophore as electron donors for solution processed small molecule organic bulk heterojunction solar cells. Org. Electron., 2015, 19, 76-82.
[39]
Jeon, Y.; Kim, T.; Kim, J.J.; Hong, J.I. Vacuum-depositable thiophene- and benzothiadiazole-based donor materials for organic solar cells. New J. Chem., 2015, 39(12), 9591-9595.
[40]
Huang, X.; Zhang, G.; Zhou, C.; Liu, S.; Zhang, J.; Ying, L.; Huang, F.; Cao, Y. Tailoring π-conjugated dithienosilole-benzothiadiazole oligomers for organic solar cells. New J. Chem., 2015, 39(5), 3658-3664.
[41]
Zhou, R.; Li, Q.D.; Li, X.C.; Lu, S.M.; Wang, L.P.; Zhang, C.H.; Huang, J.; Chen, P.; Li, F.; Zhu, X.H.; Choy, W.C.H.; Peng, J.; Cao, Y.; Gong, X. A solution-processable diketopyrrolopyrrole dye molecule with (fluoronaphthyl)thienyl endgroups for organic solar cells. Dyes Pigm., 2014, 101(101), 51-57.
[42]
Bagde, S.S.; Park, H.; Yang, S.; Jin, S.H.; Lee, S.H. Diketopyrrolopyrrole-based narrow band gap donors for efficient solution-processed organic solar cells. Chem. Phys. Lett., 2015, 630, 37-43.
[43]
Narayanaswamy, K.; Venkateswararao, A.; Gupta, V.; Chand, S.; Singh, S.P. NIR absorbing D-π-A-π-D structured diketopyrrolopyrrole-dithiafulvalene based small molecule for solution processed organic solar cells. Chem. Commun., 2016, 52, 210-213.
[44]
Reddy, M.A.; Kumar, C.P.; Ashok, A.; Sharma, A.; Sharma, G.D.; Chandrasekharam, M. Hetero aromatic donors as effective terminal groups for DPP based organic solar cells. RSC Advances, 2016, 6(11), 9023-9036.
[45]
Zhang, H.; Qiu, N.; Ni, W.; Kan, B.; Li, M.; Zhang, Q.; Wan, X.; Chen, Y. Diketopyrrolopyrrole based small molecules with near infrared absorption for solution processed organic solar cells. Dyes Pigm., 2015, 126, 173-178.
[46]
Lee, J.W.; Choi, Y.S.; Ahn, H.; Jo, W.H. Ternary blend composed of two organic donors and one acceptor for active layer of high-performance organic solar cells. ACS Appl. Mater. Interfaces, 2016, 8, 10961-10967.
[47]
Qian, D.; Liu, B.; Wang, S.; Himmelberger, S.; Linares, M.; Vagin, M.; Muller, C.; Ma, Z.; Fabiano, S.; Berggren, M.; Salleo, A.; Inganas, O.; Zou, Y.; Zhang, F. Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. J. Mater. Chem. A, 2015, 3(48), 24349-24357.
[48]
Xia, Y.; Tan, W.Y.; Wang, L.P.; Zhang, C.H.; Peng, L.; Zhu, X.H.; Peng, J.; Cao, Y. Soluble acetylenic molecular glasses based on dithienyldiketopyrrolopyrrole for organic solar cells. Dyes Pigm., 2015, 126, 96-103.
[49]
Feng, G.; Xu, Y.; Zhang, J.; Wang, Z.; Zhou, Y.; Li, Y.; Wei, Z.; Li, C.; Li, W. All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units. J. Mater. Chem. A, 2016, 4(16), 6056-6063.
[50]
Bulut, I.; Chavez, P.; Fall, S.; Mery, S.; Heinrich, B.; Rault-Berthelot, J.; Poriel, C.; Leveque, P.; Leclerc, N. Incorporation of spirobifluorene regioisomers in electron-donating molecular systems for organic solar cells. RSC Advances, 2016, 6(31), 25952-25959.
[51]
Zhang, Y.; Tan, H.; Xiao, M.; Bao, X.; Tao, Q.; Wang, Y.; Liu, Y.; Yang, R.; Zhu, W. D-A-Ar-type small molecules with enlarged π-system of phenanthrene at terminal for high-performance solution processed organic solar cells. Org. Electron., 2014, 15(6), 1173-1183.
[52]
Lim, F.J.; Krishnamoorthy, A.; Ho, G.W. All-in-one solar cell: Stable, light-soaking free, solution processed and efficient diketopyrrolopyrrole based small molecule inverted organic solar cells. Sol. Energy Mater. Sol. Cells, 2016, 150, 19-31.
[53]
Zhang, C.H.; Wang, L.P.; Tan, W.Y.; Wu, S.P.; Liu, X.P.; Yu, P.P.; Huang, J.; Zhu, X.H.; Wu, H.B.; Zhao, C.Y.; Peng, J.; Cao, Y. Effective modulation of an aryl acetylenic molecular system based on dithienyldiketopyrrolopyrrole for organic solar cells. J. Mater. Chem. C, 2016, 4(17), 3757-3764.
[54]
Yang, D.; Yang, Q.; Yang, L.; Luo, Q.; Chen, Y.; Zhu, Y.; Huang, Y.; Lu, Z.; Zhao, S. A low bandgap asymmetrical squaraine for high-performance solution-processed small molecule organic solar cells. Chem. Commun., 2014, 50(66), 9346-9348.
[55]
Yang, D.; Jiao, Y.; Huang, Ya.; Zhuang, T.; Yang, L.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Two different donor subunits substituted unsymmetrical squaraines for solution-processed small molecule organic solar cells. Org. Electron., 2016, 32, 179-186.
[56]
Yang, D.; Yang, L.; Huang, Y.; Jiao, Y.; Igarashi, T.; Chen, Y.; Lu, Z.; Pu, X.; Sasabe, H.; Kido, J. Asymmetrical squaraines bearing fluorine-substituted indoline moieties for high-performance solution-processed small-molecule organic solar cells. ACS Appl. Mater. Interfaces, 2015, 7(24), 13675-13684.
[57]
Yang, D.; Jiao, Y. Yang, Lin.; Chen, Y.; Mizoi, S.; Huang, Y.; Pu, X.; Lu, Z.; Sasabe, H.; Kido, J. Cyano-substitution on the end-capping group: facile access toward asymmetrical squaraine showing strong dipole-dipole interactions as a high performance small molecular organic solar cells material. J. Mater. Chem. A, 2015, 3(34), 17704-17712.
[58]
Cui, C.; Zhang, Y.; Choy, W.C.H.; Li, H.; Wong, W.Y. Metallated conjugation in small-sized-molecular donors for solution-processed organic solar cells. Sci. China Chem., 2015, 58(2), 347-356.
[59]
Wu, J.; Ma, Y.; Wu, N.; Lin, Y.; Lin, J.; Wang, L.; Ma, C.Q. 2,2-Dicyanovinyl-end-capped oligothiophenes as electron acceptor in solution processed bulk-heterojunction organic solar cells. Org. Electron., 2015, 23, 28-38.
[60]
Kim, Y.J.; Cheon, Y.R.; Jang, J.W.; Kim, Y.H.; Park, C.E. A potential naphtho[2,1-b:3,4-b′]dithiophene-based polymer with large open circuit voltage for efficient use in organic solar cells. J. Mater. Chem. C, 2015, 3(9), 1904-1912.
[61]
Zhu, X.; Xia, B.; Lu, K.; Li, H.; Zhou, R.; Zhang, J.; Zhang, Y.; Shuai, Z.; Wei, Z. Naphtho[1,2-b:5,6-b′]dithiophene-based small molecules for thick-film organic solar cells with high fill factors. Chem. Mater., 2016, 28(3), 943-950.
[62]
Lee, J.; Ko, H.; Song, E.; Kim, H.G.; Cho, K. Naphthodithiophene-based conjugated polymer with linear, planar backbone conformation and strong intermolecular packing for efficient organic solar cells. ACS Appl. Mater. Interfaces, 2015, 7(38), 21159-21169.
[63]
Zhen, H.; Peng, Z.; Hou, L.; Jia, Y.; Li, Q.; Hou, Q. Comparative study on triphenylamine-based bi-armed and four-armed small molecule donors for solution processed organic solar cells. Dyes Pigm., 2015, 113, 451-457.
[64]
Zhang, J.; Li, G.; Kang, C.; Lu, H.; Zhao, X.; Li, C.; Li, W.; Bo, Z. Synthesis of star-shaped small molecules carrying peripheral 1,8-naphthalimide functional groups and their applications in organic solar cells. Dyes Pigm., 2015, 115(1), 181-189.
[65]
Karamshuk, S.; Caramori, S.; Manfredi, N.; Salamone, M.; Ruffo, R.; Carli, S.; Bignozzi, C.A.; Abbotto, A. Molecular level factors affecting the efficiency of organic chromophores for p-type dye sensitized solar cells. Energies, 2016, 9(1), 1-17.
[66]
Jiang, Y.; Cabanetos, C.; Allain, M.; Liu, P.; Roncali, J. Manipulation of the band gap and efficiency of a minimalist push-pull molecular donor for organic solar cells. J. Mater. Chem., 2015, 3(20), 5145-5151.
[67]
Wang, S.; Yang, J.; Zhang, Z.; Hu, Y.; Cao, X.; Li, H.; Tao, Y.; Li, Y.; Huang, W. A new V-shaped triphenylamine/diketo-pyrrolopyrrole containing donor material for small molecule organic solar cells. RSC Advances, 2015, 5(83), 68192-68199.
[68]
Meira, R.; Costa, P.M.M.; Paolo, R.E.D.; Morgado, J.; Alcacer, L.; Bastos, J.P.; Cheyns, D.; Charas, A. Synthesis and optical properties of a new triphenylamine-p-phenylenevinylene-small molecule with applications in high open-circuit voltage organic solar cells. New J. Chem., 2015, 39(9), 7389-7396.
[69]
Lim, K.; Lee, S.Y.; Song, K.; Sharma, G.D.; Ko, J. Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3]3 and DMM-TPA[DTS-PyBTTh3]3 for solution-processed bulk heterojunction organic solar cells. J. Mater. Chem. C, 2014, 2(39), 8412-8422.
[70]
Min, J.; Luponosov, Y.N.; Solodukhin, A.N.; Kausch-Busies, N.; Ponomarenko, S.A.; Ameri, T.; Brabec, C.J. A star-shaped D-π-A small molecule based on a tris(2-methoxyphenyl) amine core for highly efficient solution-processed organic solar cells. J. Mater. Chem. C, 2014, 2(39), 7614-7620.
[71]
Jia, T.; Peng, Z.; Li, Qi.; Zhu, T.; Hou, Q.; Hou, L. Synthesis of four-armed triphenylamine-based molecules and their applications in organic solar cells. New J. Chem., 2015, 39(2), 994-1000.
[72]
Zhou, Y.; Chen, W.; Du, Z.; Zhu, D.; Ouyang, D.; Han, L.; Yang, R. High open-circuit voltage solution-processed organic solar cells based on a star-shaped small molecule end-capped with a new rhodanine derivative. Sci. China Chem., 2015, 58(2), 357-363.
[73]
Jia, T.; Peng, Z.; Li, Qi.; Xie, Y.; Hou, Q.; Hou, L. Synthesis of triphenylamine-based molecules with cyan terminals and their application for organic solar cells. Synth. Met., 2015, 199, 14-20.
[74]
Somasundaram, S.; Jeon, S.; Park, S. Triphenylamine and benzothiadiazole-based D-A-A’ and A′-A-D-D-A-A’ type small molecules for solution-processed organic solar cells. Macromol. Res., 2016, 24(3), 226-234.
[75]
Ouhib, F.; Tomassetti, M.; Dierckx, W.; Verstappen, P.; Wislez, A.; Duwez, A.S.; Lemaur, V.; Lazzaroni, R.; Manca, J.; Maes, W.; Jerome, C.; Detrembleur, C. Linear and propeller-like fluoro-isoindigo based donor-acceptor small molecules for organic solar cells. Org. Electron., 2015, 20, 76-88.
[76]
Ren, Y.; Hiszpanski, A.M.; Whittaker-Brooks, L.; Loo, Y.L. Structure-property relationship study of substitution effects on Isoindigo-based model compounds as electron donors in organic solar cells. ACS Appl. Mater. Interfaces, 2014, 6(16), 14533-14542.
[77]
Areephong, J.; Juan, R.R.S.; Payne, A.J.; Welch, G.C. A narrow band gap isoindigo based molecular donor for solution processed organic solar cells. New J. Chem., 2015, 39(7), 5075-5079.
[78]
Tomassetti, M.; Ouhib, F.; Cardinaletti, I.; Verstappen, P.; Salleo, A.; Jerome, C.; Manca, J.; Maes, W.; Detrembleur, C. Branched and linear A2-D-A1-D-A2 Isoindigo-based solution-processable small molecules for organic field-effect transistors and solar cells. RSC Advances, 2015, 5(104), 85460-85469.
[79]
Vybornyi, O.; Jiang, Y.; Baert, F.; Demeter, D.; Roncali, J.; Blanchard, P.; Cabanetos, C. Solution-processable thienoisoindigo-based molecular donors for organic solar cells with high open-circuit voltage. Dyes Pigm., 2015, 115, 17-22.
[80]
Randell, N.M.; Douglas, A.F.; Kelly, T.L. 7-Azaisoindigo as a new electron deficient component of small molecule chromophores for organic solar cells. J. Mater. Chem. A, 2014, 2, 1085-1092.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy