Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Microwave-assisted Synthesis of Polymethoxychalcone Mannich Bases and Their Antiproliferative Activity

Author(s): Peipei Han, Wenhua Zhou, Mingxia Chen and Qiuan Wang*

Volume 16, Issue 2, 2019

Page: [117 - 121] Pages: 5

DOI: 10.2174/1570178615666180627110223

Price: $65

Abstract

A series of eight polymethoxychalcone Mannich base derivatives 2a-2h was synthesized via the microwave-assisted Mannich reaction of natural product 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1) with various secondary amines and formaldehyde. Compared to conventional heating method (80°C), the microwave-assisted method (700W, 65°C) is efficient with short reaction time (0.5-1 h) and good yields (74-88%). The antiproliferative activities of eight Mannich base derivatives were evaluated in vitro on a panel of three human cancer cell lines (Hela, HCC1954 and SK-OV-3) by CCK-8 assay. The results showed that all of the Mannich base derivatives exhibited potential antiproliferative activities on tested cancer cell lines with the IC50 values of 9.13-48.51 µM. Some active compounds exhibited more activity as compared to positive control cis-Platin. Among them, compound 2b revealed to have the strongest antiproliferative activity against all the three cancer cell lines with IC50 values ranging from 9.13 to 11.24 µM.

Keywords: Polymethoxychalcone, mannich base derivatives, microwave-assisted synthesis, antiproliferative activity, cancer cells, formaldehyde.

Graphical Abstract
[1]
El-Meligie, S.; Taher, A.T.; Kamal, A.M.; Youssef, A. Eur. J. Med. Chem., 2017, 126, 52-60.
[2]
Mateeva, N.; Eyunni, S.V.; Redda, K.K.; Ononuju, U.; Hansberry, T.D.; Aikens, C.; Nag, A. Bioorg. Med. Chem. Lett., 2017, 27, 2350-2356.
[3]
Lin, Y.P.; Hu, C.Y.; Zheng, X.; Wang, X.L.; Wan, C.P.; Mao, Z.W. Chin. J. Org. Chem, 2017, 37, 237-241.
[4]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Eur. J. Med. Chem., 2017, 142, 213-228.
[5]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Eur. J. Med. Chem., 2015, 98, 69-114.
[6]
Sahu, N.; Balbhadra, S.; Choudhary, J.; Kohli, D. Curr. Med. Chem., 2012, 19, 209-225.
[7]
Boumendjel, A.; Boccard, J.; Carrupt, P.A.; Nicolle, E.; Blanc, M.; Geze, A.; Dumontet, C. J. Med. Chem., 2008, 51, 2307-2310.
[8]
Zhang, J.Y.; Zhang, Q.; Zhang, H.X.; Ma, Q.; Lu, J.Q.; Qiao, Y.J. J. Agric. Food Chem., 2012, 60, 9023-9034.
[9]
Liu, X.L.; Tee, H.W.; Go, M.L. Bioorg. Med. Chem., 2008, 16, 171-180.
[10]
Olyaei, A.; Zarnegar, M.; Sadeghpour, M.; Rezaei, M. Lett. Org. Chem., 2012, 9, 451-456.
[11]
Roman, G. Eur. J. Med. Chem., 2015, 89, 743-816.
[12]
Erdogan, T.; Erdogan, F.O. Lett. Org. Chem., 2018, 15(2), 99-110.
[13]
Mehta, V.; Appukkuttan, P.; Van der Eycken, E. Curr. Org. Chem., 2011, 15(2), 265-283.
[14]
Mermer, A.; Demirci, S.; Ozdemir, S.B.; Demirbas, A.; Ulker, S.; Ayaz, F.A.; Demirbas, N. Chin. Chem. Lett., 2017, 28, 995-1005.
[15]
Xiao, M.; Ye, J.; Lian, W.; Zhang, M.; Li, B.; Liu, A.; Hu, A. Med. Chem. Res., 2017, 26, 3216-3227.
[16]
Yıldırım, M.; Celikel, D.; Dürüst, Y.; Knight, D.W.; Kariuki, B.M. Tetrahedron, 2014, 70, 2122-2128.
[17]
Szatmári, I.; Lázár, L.; Fülöp, F. Tetrahedron Lett., 2016, 47, 3881-3883.
[18]
Nguyen, V.S.; Dong, L.P.; Wang, S.C.; Wang, Q.A. Eur. J. Org. Chem., 2015, 10, 2297-2302.
[19]
Nguyen, V.S.; Shi, L.; Wang, S.C.; Wang, Q.A. Anticancer. Agents Med. Chem., 2017, 17, 137-142.
[20]
Chen, M.X.; Shi, L.; Tang, J.Q.; Wang, Q.A. Chem. Res. Chin. Univ., 2016, 32, 754-759.
[21]
Wilhelem, A.; Kendrekar, P.; Noreljaleel, A.E.; Abay, E.T.; Bonnet, S.L.; Wiesner, L. J. Nat. Prod., 2015, 78, 1848-1858.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy