Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Preparation and Characterization of Amine- and Carboxylic Acid-functionalized Superparamagnetic Iron Oxide Nanoparticles Through a One-step Facile Electrosynthesis Method

Author(s): Mustafa Aghazadeh*, Isa Karimzadeh and Mohammad Reza Ganjali

Volume 15, Issue 2, 2019

Page: [169 - 177] Pages: 9

DOI: 10.2174/1573413714666180622150216

Price: $65

Abstract

Background: Surface modified magnetite nanoparticles (MNPs), can act as interesting candidates for use in various biomedical areas. Coating MNPs with amino- or carboxylic acidfunctionalized groups can be used as a tool for covalently binding MNPs to biomolecules for medical uses. The conventionally used methods are also mostly multistep routes requiring purification processes.

Objective: Herein, we developed a simple and facile approach with potentials for the large-scale synthesis of bare and/or amine- and carboxylic acid-functionalized MNPs. The resulting product and similarly prepared bare MNPs were studied by XRD, FT-IR, DSC-TGA, TEM, FE-SEM, DLS and VSM analyses.

Method: The magnetite NPs were deposited on the steel cathode by a cathodic electrochemical deposition procedure. A galvanostatic mode was applied in the electrodeposition experiments at a dc current density for 30 min. The purification steps were done for the prepared samples. The obtained black powders were evaluated by characterization analyses.

Results: The XRD peaks are well-matched with a cubic spinel structure of magnetite and confirmed that the amino acid binding process did not result in a phase change in Fe3O4 during the electrodeposition. The presence of amine and carboxylic functional groups on the surface of the electrosynthesized MNPs was confirmed by FTIR. The size increases complicated the presence of the amino acid layer on the iron oxide nanoparticles as compared with bare MNPs.

Conclusion: We synthesized amine- and carboxylic acid-functionalized magnetite NPs through facile novel method, and compare with the deposited bare MNPs. Our findings confirmed that the aspartic acid and asparagine can be efficiently coated on the surface of MNPs during their CE electrodeposition. The functionalized MNPs were found to have favorable size and proper magnetic properties which are suitable for biomedical applications.

Keywords: Magnetite, nanoparticles, electrosynthesis, amino acid coating, surface functionalization, magnetization.

Graphical Abstract
[1]
Patra, S.; Roy, E.; Karfa, P.; Kumar, S.; Madhuri, R.; Sharma, P.K. Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl. Mater. Interfaces, 2015, 7(17), 9235-9246.
[2]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev., 2016, 116, 5338-5431.
[3]
Bagheri, S.; Julkapli, N.M. Modified iron oxide nanomaterials: Functionalization and application. J. Magn. Magn. Mater., 2016, 416, 117-133.
[4]
Wu, W.; Jiang, C.Z.; Roy, V.A.L. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, 8, 19421-19474.
[5]
Barrow, M.; Taylor, A.; Murray, P.; Rosseinsky, M.J.; Adams, D.J. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem. Soc. Rev., 2015, 44, 6733-6748.
[6]
Obaidat, I.M.; Issa, B.; Haik, Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials (Basel), 2015, 5, 63-89.
[7]
Shah, R.R.; Davis, T.P.; Glover, A.L.; Nikles, D.E.; Brazel, C.S. Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J. Magn. Magn. Mater., 2015, 387, 96-106.
[8]
Bohar, R.A.; Thorat, N.D.; Pawar, S.H. Role of functionalization: Strategies to explore potential nano-bio applications of magnetic nanoparticles. RSC Advances, 2016, 6, 43989-44012.
[9]
Issa, B.; Obaidat, I.M.; Albiss, B.A.; Haik, Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci., 2013, 14, 21266-21305.
[10]
Calero, M.; Chiappi, M.; Lazaro-Carrillo, A.; Rodriguez, M.J.; Chichon, F.J.; Crosbie-Staunton, K.; Prina-Mello, A.; Volkov, Y.; Villanueva, A.; Carrascosa, J.L. Characterization of interaction of magnetic nanoparticles with breast cancer cells. J. Nanobiotechnology, 2015, 13, 16-30.
[11]
Schladt, T.D.; Schneider, K.; Schild, H.; Tremel, W. Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans., 2011, 40, 6315-6343.
[12]
Rezayan, A.H.; Mosavi, M.; Kheirjou, S.; Amoabediny, G.; Shafiee Ardestani, M. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for thediagnosis of breast cancer by MRI method. J. Magn. Magn. Mater., 2016, 420, 210-217.
[13]
Ansari, F.; Sobhani, A.; Salavati-Niasari, M. Green synthesis of magnetic chitosan nanocomposites by a new sol-gel auto-combustion method. J. Magn. Magn. Mater., 2016, 410, 27-33.
[14]
Dolores, R.; Raquel, S.; Adianez, G.L. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: Effect of ultrasonic frequency. Ultrason. Sonochem., 2015, 23, 391-398.
[15]
Baykal, A.; Amir, Md.; Günerb, S.; Sözeri, H. Preparation and characterization of SPION functionalized via caffeic acid. J. Magn. Magn. Mater., 2015, 395, 199-204.
[16]
Man, Q.; Zhang, K.; Li, S.; Wu, J.; Pham-Huy, C.; Diao, X.; Xiao, D.; He, H. Superparamagnetic Fe3O4 nanoparticles: Synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J. Chem., 2016, 40, 4480-4491.
[17]
Patsula, V.; Kosinová, L.; Lovrić, M.; Hamzić, L.F.; Rabyk, M.; Konefal, R.; Paruzel, A.; Šlouf, M.; Herynek, V.; Gajović, S.; Horák, D. Superparamagnetic Fe3O4 nanoparticles: Synthesis by thermal decomposition of Iron(III) glucuronate and application in magnetic resonance imaging. ACS Appl. Mater. Interfaces, 2016, 8, 7238-7247.
[18]
Attallah, O.A.; Girgis, E.; Abdel-Mottale, M.M.S.A. Tailored supermagnetic nanoparticles synthesized via template-free hydrothermal technique. J. Magn. Magn. Mater., 2016, 397, 164-175.
[19]
Aghazadeh, M.; Ganjali, M.R. Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: Development of novel iron-based electrode. Ceram. Int., 2018, 44(1), 520-529.
[20]
Aghazadeh, M.; Barmi, A.A.M.; Hosseinifard, M. Nanoparticulates Zr(OH)4 and ZrO2 prepared by low-temperature cathodic electrodeposition. Mater. Lett., 2012, 73, 28-31.
[21]
Aghazadeh, M.; Ganjali, M.R.; Noruzi, P. Template-free preparation of vertically-aligned Mn3O4 nanorods as high supercapacitive performance electrode material. Thin Solid Films, 2017, 634, 24-32.
[22]
Khosrow-pour, F.; Aghazadeh, M.; Sabour, B.; Dalvand, S. Large-scale synthesis of uniform lanthanum oxide nanowires via template-free deposition followed by heat-treatment. Ceram. Int., 2013, 39(8), 9491-9498.
[23]
Abed, F.; Aghazadeh, M.; Arhami, B. Preparation of Gd2O3 coral-like nanostructures by pulse electrodeposition –heat-treatment method. Mater. Lett., 2013, 99, 11-13.
[24]
Aghazadeh, M.; Nozad, A.; Adelkhani, H.; Ghaemi, M. Synthesis of Y2O3 nanospheres via heat-treatment of cathodically grown Y(OH)3 in chloride medium. J. Electrochem. Soc., 2010, 157(10), D519-D522.
[25]
Aghazadeh, M.; Ghaemi, M.; Golikand, A.N.; Ahmadi, A. Porous network of Y2O3 nanorods prepared by electrogeneration of base in chloride medium. Mater. Lett., 2011, 65, 2545-2548.
[26]
Aghazadeh, M.; Hosseinifard, M. Electrochemical preparation of ZrO2 nanopowder: Impact of the pulse current on the crystal structure, composition and morphology. Ceram. Int., 2013, 39, 4427-4435.
[27]
Aghazadeh, M.; Barmi, A.A.M.; Gharailou, D.; Peyrovi, M.H.; Sabour, B. Cobalt hydroxide ultra-fine nanoparticles with excellent energy storage ability. Appl. Surf. Sci., 2014, 283, 871-875.
[28]
Barani, A.; Aghazadeh, M.; Ganjali, M.R.; Sabour, B.; Barmi, A.A.M.; Dalvand, S. Nanostructured nickel oxide ultrafine nanoparticles: Synthesis, characterization, and supercapacitive behavior. Mater. Sci. Semicond. Process., 2014, 23, 85-92.
[29]
Aghazadeh, M.; Ganjali, M.R.; Norouzi, P. Electrochemical preparation and supercapacitive performance of α-MnO2 nanospheres with secondary wall-like structures. J. Mater. Sci. Mater. Electron., 2016, 27(7), 7707-7714.
[30]
Aghazadeh, M.; Barmi, A.A.M.; Shiri, H.M.; Sedaghat, S. Cathodic electrodeposition of Y(OH)3 and Y2O3 nanostructures from chloride bath. Part II: Effect of the bath temperature on the crystal structure, composition and morphology. Ceram. Int., 2012, 39, 1045-1055.
[31]
Aghazadeh, M.; Ganjali, M.R. Electrosynthesis of highly porous NiO nanostructure through pulse cathodic electrochemical deposition—heat-treatment (PCED-HT) method with supercapacitive performance. J. Mater. Sci. Mater. Electron., 2017, 28(11), 8144-8154.
[32]
Aghazadeh, M.; Sabour, B.; Ganjali, M.R.; Dalvand, S. Preparation, characterization and electrochemical behavior of porous sphere-like α-Ni (OH)2 nanostructures. Appl. Surf. Sci., 2014, 313, 581-584.
[33]
Marques, R.F.C.; Garcia, C.; Lecante, P.; Ribeiro, S.J.L.; Noe, L.; Silva, N.J.O.; Amaral, V.S.; Millan, A.; Verelst, M. Electro-precipitation of Fe3O4 nanoparticles in ethanol. J. Magn. Magn. Mater., 2008, 320, 2311-2315.
[34]
Salamun, N.; Ni, H.X.; Triwahyono, S.; Abdul Jalil, A.; Hakimah Karim, A. Synthesis and characterization of Fe3O4 nanoparticles by electrodeposition and reduction methods. J. Fundam. Sci., 2011, 7, 89-92.
[35]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Norouzi, P.; Shirvani-Arani, S.; Doroudi, T.; Kolivand, P.H.; Marashi, S.A.; Gharailou, D. A novel method for preparation of bare and poly(vinylpyrrolidone) coated superparamagnetic iron oxide nanoparticles for biomedical applications. Mater. Lett., 2016, 179, 5-8.
[36]
Fajaroh, F.; Setyawan, H.; Widiyastuti, W.; Winardi, S. Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv. Powder Technol., 2012, 23, 328-333.
[37]
Karimzadeh, I.; Rezagolipour Dizaji, H.; Aghazadeh, M. Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Mater. Res. Express, 2016, 3, 095022.
[38]
Karimzadeh, I.; Aghazadeh, M.; Ganjali, M.R.; Norouzi, P.; Doroudi, T. Saccharide-coated superparamagnetic Fe3O4 nanoparticles (SPIONs) for biomedical applications: An efficient and scalable route for preparation and in situ surface through cathodic electrochemical deposition (CED). Mater. Lett., 2017, 189, 290-294.
[39]
Aghazadeh, M.; Karimzadeh, I. One-pot electro-synthesis and characterization of chitosan capped superparamagnetic iron oxide nanoparticles (SPIONs) from ethanol media. Curr. Nanosci., 2018, 14(1), 42-49.
[40]
Karimzadeh, I.; Aghazadeh, M.; Doroudi, T.; Ganjali, M.R.; Kolivand, P.H. Effective preparation, characterization and in situ surface coating of superparamagnetic Fe3O4 nanoparticles with polyethyleneimine through cathodic electrochemical Deposition (CED). Curr. Nanosci., 2017, 13(2), 167-174.
[41]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R.; Behzad, A. Mn2+-doped Fe3O4 nanoparticles: A novel preparation method, structural, magnetic and electrochemical characterizations. J. Mater. Sci. Mater. Electron., 2017, 28(23), 18121-18129.
[42]
Salunkhe, A.B.; Khot, V.M.; Rusoc, J.M.; Patil, S.I. Synthesis and magnetostructural studies of amine functionalized superparamagnetic iron oxide nanoparticles. RSC Advances, 2015, 5, 18420-18428.
[43]
Theerdhala, S.; Bahadur, D.; Vitta, S.; Perkas, N.; Zhong, Z.; Gedanken, A. Sonochemical stabilization of ultrafine colloidal biocompatible magnetite, nanoparticles using amino acid, L-arginine, for possible bio applications. Ultrason. Sonochem., 2010, 17, 730-737.
[44]
Ebrahiminezhad, A.; Amini, S.R.; Kouhpayeh, A.; Davaran, S.; Barar, J.; Ghasemi, Y. Impacts of amine functionalized iron oxide nanoparticles on HepG2 cell line. Curr. Nanosci., 2015, 11(1), 113-119.
[45]
Aghazadeh, M. One-step cathodic electrosynthesis of surface capped Fe3O4 ultra-fine nanoparticles from ethanol medium without using coating agent. Mater. Lett., 2018, 211, 225-229.
[46]
Patel, D.; Chang, Y.; Lee, G.H. Amino acid functionalized magnetite nanoparticles in saline solution. Curr. Appl. Phys., 2009, 9, S32-S34.
[47]
Ebrahiminezhad, A.; Amini, S.R.; Davaran, S.; Barar, J.; Ghasemi, Y. Impact of amino-acid coating on the synthesis and characteristics of iron-oxide nanoparticles (IONs). Bull. Korean Chem. Soc., 2012, 33, 3957-3962.
[48]
Ebrahiminezhad, A.; Ghasemi, Y.; Rasoul-Amini, S.; Barar, J.; Davaran, S. Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf. B, 2013, 102, 534-539.
[49]
Aghazadeh, M.; Karimzadeh, I.; Doroudi, T.; Ganjali, M.R.; Kolivand, P.H.; Gharailou, D. Superparamagnetic iron oxide nanoparticles modified with alanine and leucine for biomedical applications: Development of a novel efficient preparation method. Curr. Nanosci., 2017, 13(1), 274-280.
[50]
Wang, Z.; Zhu, H.; Wang, X.; Yang, F.; Yang, X. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. Nanotechnology, 2009, 20, 465-606.
[51]
Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol., 2000, 74, 141-173.
[52]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R.; Mohebi Morad, M. A novel preparation method for surface coated superparamagnetic Fe3O4 nanoparticles with vitamin C and sucrose. Mater. Lett., 2017, 196, 392-395.
[53]
Aghazadeh, M.; Karimzadeh, I.; Ganjali, M.R. Improvement of supercapacitive and superparamagnetic capabilities of iron oxide through electrochemically grown La3+ doped Fe3O4 nanoparticles. J. Mater. Sci. Mater. Electron., 2017, 28(24), 19061-19070.
[54]
Aghazadeh, M.; Ganjali, M.R. Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: A novel preparation strategy and characterization. J. Mater. Sci., 2018, 53(1), 295-308.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy