Abstract
Cancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the “Warburg effect”, has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.
Keywords: Cancer, glycolysis, glutaminolysis, hexokinase, glucose transporters, pyruvate kinase M2, glutaminase, isocitrate dehydrogenase.
Current Topics in Medicinal Chemistry
Title:Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer
Volume: 18 Issue: 6
Author(s): Nicholas S. Akins, Tanner C. Nielson and Hoang V. Le*
Affiliation:
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Mississippi 38677,United States
Keywords: Cancer, glycolysis, glutaminolysis, hexokinase, glucose transporters, pyruvate kinase M2, glutaminase, isocitrate dehydrogenase.
Abstract: Cancer cells have a very different metabolism from that of normal cells from which they are derived. Their metabolism is elevated, which allows them to sustain higher proliferative rate and resist some cell death signals. This phenomenon, known as the “Warburg effect”, has become the focus of intensive efforts in the discovery of new therapeutic targets and new cancer drugs. Both glycolysis and glutaminolysis pathways are enhanced in cancer cells. While glycolysis is enhanced to satisfy the increasing energy demand of cancer cells, glutaminolysis is enhanced to provide biosynthetic precursors for cancer cells. It was recently discovered that there is a tyrosine phosphorylation of a specific isoform of pyruvate kinase, the M2 isoform, that is preferentially expressed in all cancer cells, which results in the generation of pyruvate through a unique enzymatic mechanism that is uncoupled from ATP production. Pyruvate produced through this unique enzymatic mechanism is converted primarily into lactic acid, rather than acetyl-CoA for the synthesis of citrate, which would normally then enter the citric acid cycle. Inhibition of key enzymes in glycolysis and glutaminolysis pathways with small molecules has provided a novel but emerging area of cancer research and has been proven effective in slowing the proliferation of cancer cells, with several inhibitors being in clinical trials. This review paper will cover recent advances in the development of chemotherapeutic agents against several metabolic targets for cancer therapy, including glucose transporters, hexokinase, pyruvate kinase M2, glutaminase, and isocitrate dehydrogenase.
Export Options
About this article
Cite this article as:
Akins S. Nicholas , Nielson C. Tanner and Le V. Hoang *, Inhibition of Glycolysis and Glutaminolysis: An Emerging Drug Discovery Approach to Combat Cancer, Current Topics in Medicinal Chemistry 2018; 18 (6) . https://dx.doi.org/10.2174/1568026618666180523111351
DOI https://dx.doi.org/10.2174/1568026618666180523111351 |
Print ISSN 1568-0266 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4294 |
Call for Papers in Thematic Issues
Adaptogens—History and Future Perspectives
Adaptogens are pharmacologically active compounds or plant extracts that are associated with the ability to enhance the body’s stability against stress. The intake of adaptogens is associated not only with a better ability to adapt to stress and maintain or normalise metabolic functions but also with better mental and physical ...read more
AlphaFold in Medicinal Chemistry: Opportunities and Challenges
AlphaFold, a groundbreaking AI tool for protein structure prediction, is revolutionizing drug discovery. Its near-atomic accuracy unlocks new avenues for designing targeted drugs and performing efficient virtual screening. However, AlphaFold's static predictions lack the dynamic nature of proteins, crucial for understanding drug action. This is especially true for multi-domain proteins, ...read more
Challenges, Consequences and Possible Treatments of Anticancer Drug Discovery ll
The use of several compounds has been the subject of increasing interest in phytochemistry, biochemistry, and other fields of research at the chemistry-biology-ecosystems interface. In spite of the continued search for new anticancer drugs, cancer remains a leading cause of death. Cancer mortalities are expected to increase to 12.9 million, ...read more
Chronic Kidney Disease
The scope of the special thematic issue includes but not limited to the mechanism of chronic kidney disease (CKD), the treatment of renal fibrosis and early diagnosis of CKD and so on. We also welcome manuscripts from other scientific research area with respect to internal medicine. Cell death has been ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Human ABC Transporters at blood-CNS Interfaces as Determinants of CNS Drug Penetration
Current Pharmaceutical Design Making the Most of Pathological Specimens: Molecular Diagnosis in Formalin-Fixed, Paraffin Embedded Tissue
Current Drug Targets EGFR-Targeting Monoclonal Antibodies in Head and Neck Cancer
Current Cancer Drug Targets Melatonin in the Biliary Tract and Liver: Health Implications
Current Pharmaceutical Design Tumor Protein p63/microRNA Network in Epithelial Cancer Cells
Current Genomics The Monoaminergic Tripartite Synapse: A Putative Target for Currently Available Antidepressant Drugs
Current Drug Targets Update on Pharmacologic Retinal Vascular Toxicity
Current Pharmaceutical Design Brain Tumor Detection from MR Images Employing Fuzzy Graph Cut Technique
Recent Advances in Computer Science and Communications PREFACE
Anti-Cancer Agents in Medicinal Chemistry Cognitive, Psychological and Psychiatric Effects of Ionizing Radiation Exposure
Current Medicinal Chemistry Specific Targeting of Akt Kinase Isoforms: Taking the Precise Path for Prevention and Treatment of Cancer
Current Drug Targets Natural Products as Anti-Cancerous Therapeutic Molecules Targeted towards Topoisomerases
Current Protein & Peptide Science The Potential for Substance P Antagonists as Anti-Cancer Agents in Brain Tumours
Recent Patents on CNS Drug Discovery (Discontinued) <sup>177</sup>Lu-Labeled Agents for Neuroendocrine Tumor Therapy and Bone Pain Palliation in Uruguay
Current Radiopharmaceuticals cAMP-Mediated Regulation of CYP Enzymes and Its Application in Chemotherapy
Drug Metabolism Letters Context-dependent Action of Transforming Growth Factor β Family Members on Normal and Cancer Stem Cells
Current Pharmaceutical Design PET Tracers for Mapping Adenosine Receptors as Probes for Diagnosis of CNS Disorders
Central Nervous System Agents in Medicinal Chemistry Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94
Current Topics in Medicinal Chemistry A Simple Protein Extraction Method for Proteomic Analysis of Diverse Biological Specimens
Current Proteomics A Review on Nanostructured Lipid Carriers as Promising Drug Delivery Vehicle to Target Various Cancers <i>via</i> Oral Route: A Step towards “Chemotherapy at Home”
Current Nanomedicine