Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Advancements in C–PR2 (R = Alkyl or Aryl) Bond Formation Reactions Involving Palladium

Author(s): Jonathan E. Kukowski and Irina P. Smoliakova*

Volume 16, Issue 4, 2019

Page: [323 - 334] Pages: 12

DOI: 10.2174/1570193X15666180509120846

Price: $65

Abstract

This review covers recent approaches to the synthesis of tertiary phosphines through the C– PR2 (R = alkyl or aryl) bond formation reactions using palladium. The methods include Pd-catalyzed additions of HPR2 to double and triple bonds, substitution and dynamic kinetic resolution of diaryl (pseudo) halide compounds, reactions of cyclopalladated complexes with MPR2 (M = Li or K) or HPR2, intramolecular phosphination, and C–P+ bond cleavages. Together these methods allow for the preparation of diversely functionalized achiral or enantiopure tertiary phosphines for use in organo- and transition metal catalysis among other important applications.

Keywords: Phosphination, tertiary phosphines, C–P bond formation, C–P coupling, hydrophosphination, dynamic kinetic resolution, cyclopalladated complexes, phosphole synthesis.

Graphical Abstract
[1]
Haas, D.; Hammann, J.M.; Greiner, R.; Knochel, P. Recent developments in Negishi cross-coupling reactions. ACS Catal., 2016, 6, 1540-1552.
[2]
Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev., 2016, 116, 12564-12649.
[3]
Sawatzky, R.S.; Hargreaves, B.K.V.; Stradiotto, M. A comparative ancillary ligand survey in palladium-catalyzed C–O cross-coupling of primary and secondary aliphatic alcohols. Eur. J. Org. Chem., 2016, 2016(14), 2444-2449.
[4]
Sather, A.C.; Buchwald, S.L. The evolution of Pd0/PdII-catalyzed aromatic fluorination. Acc. Chem. Res., 2016, 49, 2146-2157.
[5]
Dutartre, M.; Bayardon, J.; Juge, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev., 2016, 45, 5771-5794.
[6]
Stepanova, V.A.; Smoliakova, I.P. Synthesis of aminophosphines and their applications in catalysis. Curr. Org. Chem., 2012, 16, 2893-2920.
[7]
Zhou, Z.; Wang, Y.; Tang, C. Nucleophilic tertiary phosphine organocatalysts in asymmetric reactions. Curr. Org. Chem., 2011, 15, 4083-4107.
[8]
Wang, Z.; Xu, X.; Kwon, O. Phosphine catalysis of allenes with electrophiles. Chem. Soc. Rev., 2014, 43, 2927-2940.
[9]
Voituriez, A.; Saleh, N. From phosphine-promoted to phosphine-catalyzed reactions by in situ phosphine oxide reduction. Tetrahedron Lett., 2016, 57, 4443-4451.
[10]
Duffy, M.P.; Delaunay, W.; Bouit, P.A.; Hissler, M. π-Conjugated phospholes and their incorporation into devices: Components with a great deal of potential. Chem. Soc. Rev., 2016, 45, 5296-5310.
[11]
Caminade, A.M. Inorganic dendrimers: Recent advances for catalysis, nanomaterials, and nanomedicine. Chem. Soc. Rev., 2016, 45, 5174-5186.
[12]
Smith, M.B. Platinum group metal chemistry of functionalised phosphines. Platin. Met. Rev., 2008, 52, 215-221.
[13]
Bigler, R.; Huber, R.; Mezzetti, A. Iron chemistry made easy: Chiral N2P2 ligands for asymmetric catalysis. Synlett, 2016, 27, 831-847.
[14]
Fard, M.A.; Kenaree, A.R.; Boyle, P.D.; Ragogna, P.J.; Gilroy, J.B.; Corrigan, J.F. Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines. Dalton Trans., 2016, 45, 2868-2880.
[15]
Swor, C.D.; Tyler, D.R. Synthesis and coordination chemistry of macrocyclic phosphine ligands. Coord. Chem. Rev., 2011, 255, 2860-2881.
[16]
Horsman, G.P.; Zechel, D.L. Phosphonate biochemistry. Chem. Rev., 2017, 117, 5704-5783.
[17]
Bayer, E.; Gugel, K.H.; Haegele, K.; Hagenmaier, H.; Esipov, S.E.; Koenig, W.A.; Zaehner, H. Metabolic products of microorganisms. 98. Phosphinothricin and phosphinothricylalanylanine. Helv. Chim. Acta, 1972, 55, 224-239.
[18]
Allen, D.W. Chapter 1 Phosphines and related P–C-bonded compounds. In: Organophosphorus Chemistry; Allen, D.W.; Tebby, J.C.; Loakes, D., Eds.; The Royal Society of Chemistry: Cambridge, 2014; Vol. 43, pp. 1-51.
[19]
Bange, C.A.; Waterman, R. Challenges in catalytic hydrophosphination. Chem. Eur. J., 2016, 22, 12598-12605.
[20]
Wauters, I.; Debrouwer, W.; Stevens, C.V. Preparation of phosphines through C–P bond formation. Beilstein J. Org. Chem., 2014, 10, 1064-1096.
[21]
Pullarkat, S. Recent progress in palladium-catalyzed asymmetric hydrophosphination. Synthesis, 2016, 48, 493-503.
[22]
Chew, R.J.; Leung, P.H. Our odyssey with functionalized chiral phosphines: From optical resolution to asymmetric synthesis to catalysis. Chem. Rec., 2016, 16, 141-158.
[23]
Feng, J.J.; Chen, X.F.; Shi, M.; Duan, W.L. Palladium-catalyzed asymmetric addition of diarylphosphines to enones toward the synthesis of chiral phosphines. J. Am. Chem. Soc., 2010, 132, 5562-5563.
[24]
Huang, Y.; Pullarkat, S.A.; Li, Y.; Leung, P.H. Palladium(II)-catalyzed asymmetric hydrophosphination of enones: Efficient access to chiral tertiary phosphines. Chem. Commun., 2010, 46, 6950-6952.
[25]
Feng, J.J.; Huang, M.; Lin, Z.Q.; Duan, W.L. Palladium-catalyzed asymmetric 1,4-addition of diarylphosphines to nitroalkenes for the synthesis of chiral P,N-compounds. Adv. Synth. Catal., 2012, 354, 3122-3126.
[26]
Huang, Y.; Chew, R.J.; Pullarkat, S.A.; Li, Y.; Leung, P.H. Asymmetric synthesis of enaminophosphines via palladacycle-catalyzed addition of Ph2PH to α,β-unsaturated imines. J. Org. Chem., 2012, 77, 6849-6854.
[27]
Kazankova, M.A.; Efimova, I.V.; Kochetkov, A.N.; Afanas’ev, V.V.; Beletskaya, I.P. Synthesis of vinylphosphines by hydrophosphination of alkynes in the presence of transition metal complexes. Russ. J. Org. Chem., 2002, 38, 1465-1474.
[28]
Lu, J.; Ye, J.; Duan, W.L. Palladium-catalyzed asymmetric 1,6-addition of diarylphosphines to α,β,γ,δ-unsaturated sulfonic esters: Controlling regioselectivity by rational selection of electron-withdrawing groups. Chem. Commun., 2014, 50, 698-700.
[29]
Huang, J.; Zhao, M.X.; Duan, W.L. Palladium-catalyzed asymmetric 1,6-addition of diphenylphosphine to (4-aryl-1,3-butadienylidene)bis(phosphonates) for the synthesis of chiral phosphines. Tetrahedron Lett., 2014, 55, 629-631.
[30]
Chew, R.J.; Huang, Y.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Enantioselective addition of diphenylphosphine to 3-methyl-4-nitro-5-alkenylisoxazoles. Adv. Synth. Catal., 2013, 355, 1403-1408.
[31]
Ng, J.K.P.; Tan, G.K.; Vittal, J.J.; Leung, P.H. Optical resolution and the study of ligand effects on the ortho-metalation reaction of resolved (±)-diphenyl[1-(1-naphthyl)ethyl]phosphine and its arsenic analogue. Inorg. Chem., 2003, 42, 7674-7682.
[32]
Huang, Y.; Chew, R.J.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Direct synthesis of chiral tertiary diphosphines via Pd(II)-catalyzed asymmetric hydrophosphination of dienones. Org. Lett., 2011, 13, 5862-5865.
[33]
Yang, X.Y.; Tay, W.S.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Versatile syntheses of optically pure PCE pincer ligands: Facile modifications of the pendant arms and ligand backbones. Organometallics, 2015, 34, 1582-1588.
[34]
Yap, J.S.; Li, B.B.; Wong, J.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Development of a novel chiral palladacycle and its application in asymmetric hydrophosphination reaction. Dalton Trans., 2014, 43, 5777-5784.
[35]
Jia, Y.X.; Renta, J.C.; Li, B.B.; Zhu, P.; Li, Y.; Pullarkat, S.A.; Tan, N.S.; Leung, P.H. Palladacycle promoted base controlled regio- and enantioselective hydrophosphination of 2-pyridylacrylate/amide and the cytotoxicity of their gold complexes. Dalton Trans., 2015, 44, 17557-17564.
[36]
Liu, F.; Pullarkat, S.A.; Li, Y.; Chen, S.; Yuan, M.; Lee, Z.Y.; Leung, P.H. Highly enantioselective synthesis of (2-pyridyl)phosphine based C-chiral unsymmetrical P,N-ligands using a chiral palladium complex. Organometallics, 2009, 28, 3941-3946.
[37]
Yao, W.; Ma, M.; Zhang, N.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Palladacyclo-promoted asymmetric hydrophosphination reaction between diphenylphosphine and 2-ethynylpyridine. J. Organomet. Chem., 2016, 801, 1-5.
[38]
Song, Y.C.; Dai, G.F.; Xiao, F.; Duan, W.L. Palladium-catalyzed enantioselective hydrophosphination of enones for the synthesis of chiral P,N-compounds. Tetrahedron Lett., 2016, 57, 2990-2993.
[39]
Yang, X.Y.; Jia, Y.X.; Tay, W.; Li, Y.; Pullarkat, S.A.; Leung, P-H. Mechanistic insights into the role of PC- and PCP-type palladium catalysts in asymmetric hydrophosphination of activated alkenes incorporating potential coordinating heteroatoms. Dalton Trans., 2016, 45, 13449-13455.
[40]
Yang, X.Y.; Gan, J.H.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Palladium catalyzed asymmetric hydrophosphination of α,β- and α,β,γ,δ-unsaturated malonate esters-efficient control of reactivity, stereo- and regio-selectivity. Dalton Trans., 2015, 44, 1258-1263.
[41]
Wei, X.; Lu, J.; Duan, W.L. Palladium-catalyzed asymmetric 1,6-addition of diarylphosphines to allylidenemalonates for chiral phosphine synthesis. Synthesis, 2016, 48, 4155-4160.
[42]
Aw, B.H.; Selvaratnam, S.; Leung, P.H.; Rees, N.H.; McFarlane, W. NMR assignment of absolute configuration of a P-chiral diphosphine and mechanics of its stereoselective formation. Tetrahedron Asymmetry, 1996, 7, 1753-1762.
[43]
Li, X.R.; Yang, X.Y.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Efficient access to a designed phosphapalladacycle catalyst via enantioselective catalytic asymmetric hydrophosphination. Dalton Trans., 2017, 46, 1311-1316.
[44]
Gelman, D.; Musa, S. Coordination versatility of sp3-hybridized pincer ligands toward ligand-metal cooperative catalysis. ACS Catal., 2012, 2, 2456-2466.
[45]
Yang, X.Y.; Tay, W.S.; Li, Y.; Pullarkat, S.A.; Leung, P.H. The synthesis and efficient one-pot catalytic “self-breeding” of asymmetrical NC(sp3)E-hybridised pincer complexes. Chem. Commun., 2016, 52, 4211-4214.
[46]
Tay, W.S.; Yang, X.Y.; Li, Y.; Pullarkat, S.A.; Leung, P.H. Efficient and stereoselective synthesis of monomeric and bimetallic pincer complexes containing Pd-bonded stereogenic carbons. RSC Adv, 2016, 6, 75951-75959.
[47]
Pelissier, H. Chirality from Dynamic Kinetic Resolution; The Royal Society of Chemistry: Cambridge, 2011.
[48]
Bhat, V.; Wang, S.; Stoltz, B.M.; Virgil, S.C. Asymmetric synthesis of QUINAP via dynamic kinetic resolution. J. Am. Chem. Soc., 2013, 135, 16829-16832.
[49]
Ramírez-López, P.; Ros, A.; Estepa, B.; Fernández, R.; Fiser, B.; Gómez-Bengoa, E.; Lassaletta, J.M. A dynamic kinetic C–P cross–coupling for the asymmetric synthesis of axially chiral P, N ligands. ACS Catal., 2016, 6, 3955-3964.
[50]
Vila, J.; Pereira, M. The Pd–C building block of palladacycles: A cornerstone for stoichiometric C–C and C–X bond assemblage palladacycles: Synthesis, characterization and applications. In: Palladacycles: Synthesis, Characterization and Applications; Dupont, J.; Pfeffer, M., Eds.; Wiley-VCH: Weinheim, 2008; pp. 87-108.
[51]
Allen, D.W. Phosphines and related P-C-bonded compounds In: Organophosphorus Chemistry:; Volume 43; Allen, D.W.; Tebby J.C., Eds.; The Royal Society of Chemistry: Cambridge, 2009; pp. 13-63.
[52]
Dupont, J.; Pfeffer, M., Eds.; Palladacycles: Synthesis, Characterization and Applications; Dupont, J., Pfeffer, M., Eds.; Wiley-VCH: Weinheim,, 2008.
[53]
Sokolov, V.I.; Troitskaya, L.L.; Reutov, O.A. Alternative synthesis of enantiomeric 1-diphenylphosphino-2-dimethylamino-methylfer-rocene (Kumada’s ligand). J. Organomet. Chem., 1980, 202, C58-C60.
[54]
Troitskaya, L.L.; Starikova, Z.A.; Demeshchik, T.V.; Sokolov, V.I. Optically active (2-aminomethylferrocenyl) phosphines with the phosphorus chiral center. Russ. Chem. Bull., 1999, 48, 1738-1743.
[55]
Dunina, V.V.; Kuz’mina, L.G.; Howard, J.A.K.; Kataeva, N.A.; Rubina, M.Y.; Parfyonov, A.G.; Veits, Y.A.; Grishin, Y.K. In: Proceedings of the 10th IUPAC Symposium on Organo-Metallic Chemistry Directed toward Organic Synthesis (OMCOS-10); Versailles, France, 1999; p. 124.
[56]
Stepanova, V.A.; Dunina, V.V.; Smoliakova, I.P. Reactions of cyclopalladated complexes with lithium diphenylphosphide. Organometallics, 2009, 28, 6546-6558.
[57]
Bolm, C.; Wenz, K.; Raabe, G. Regioselective palladation of 2-oxazolinyl-[2.2]paracyclophanes. J. Organomet. Chem., 2002, 662, 23-33.
[58]
Stepanova, V.A.; Dunina, V.V.; Smoliakova, I.P. Chemoselectivity control in the reaction of a dinuclear chloro-bridged cyclopalladated complex with potassium diphenylphosphide. J. Organomet. Chem., 2011, 696, 871-878.
[59]
Korte, N.J.; Stepanova, V.A.; Smoliakova, I.P. Synthesis of N,P-, S,P-, P,P- and S,P,S-ligands using reactions of cyclopalladated complexes with KPPh2. J. Organomet. Chem., 2013, 745-746, 356-362.
[60]
Dickmu, G.C.; Korte, N.J.; Smoliakova, I.P. Reactivity of dimeric cyclopalladated complexes with an (sp3)C–Pd bond toward KPPh2. J. Organomet. Chem., 2015, 797, 13-20.
[61]
Kukowski, J.E.; Stepanova, V.A.; Smoliakova, I.P. Reactions of cyclopalladated complexes with HPPh2 resulting in ligand phosphination. J. Organomet. Chem., 2017, 830, 155-166.
[62]
Joly, D.; Bouit, P.A.; Hissler, M. Organophosphorus derivatives for electronic devices. J. Mater. Chem. C, 2016, 4, 3686-3698.
[63]
Szűcs, R.; Bouit, P.A.; Hissler, M.; Nyulászi, L. Edge modification of PAHs: The effect of embedded heterocycles on the aromaticity pattern. Struct. Chem., 2015, 26, 1351-1357.
[64]
Baumgartner, T.; Réau, R. Organophosphorus π-conjugated materials. Chem. Rev., 2006, 106, 4681-4727.
[65]
Fourmy, K.; Nguyen, D.H.; Dechy-Cabaret, O.; Gouygou, M. Phosphole-based ligands in catalysis. Catal. Sci. Tech., 2015, 5, 4289-4323.
[66]
Hibner-Kulicka, P.; Joule, J.A.; Skalik, J.; Balczewski, P. Recent studies of the synthesis, functionalization, optoelectronic properties and applications of dibenzophospholes. RSC Adv, 2017, 7, 9194-9236.
[67]
Matano, Y.; Imahori, H. Design and synthesis of phosphole-based π systems for novel organic materials. Org. Biomol. Chem., 2009, 7, 1258-1271.
[68]
Nakano, K.; Oyama, H.; Nishimura, Y.; Nakasako, S.; Nozaki, K. λ5-Phospha[7]helicenes: Synthesis, properties, and columnar aggregation with one-way chirality. Angew. Chem. Int. Ed., 2012, 51, 695-699.
[69]
Baba, K.; Tobisu, M.; Chatani, N. Palladium-catalyzed direct synthesis of phosphole derivatives from triarylphosphines through cleavage of carbon-hydrogen and carbon-phosphorus bonds. Angew. Chem. Int. Ed., 2013, 52, 11892-11895.
[70]
Ma, M.T.; Lu, J.M. Pd(II)-catalyzed oxidative heck-type reaction of triarylphosphines with alkenes via carbon-phosphorus bond cleavage. Tetrahedron, 2013, 69, 2102-2106.
[71]
Zhou, H.; Li, J.; Yang, H.; Xia, C.; Jiang, G. Triarylphosphines as aryl donors for Pd(II)-catalyzed aromatic coupling of oxabenzonorbornadienes. Org. Lett., 2015, 17, 4628-4631.
[72]
Li, Z.; Zhou, H.; Xu, J.; Wu, X.; Yao, H. Aryl-aryl coupling via palladium-catalyzed C–P/C–H bond cleavage. Tetrahedron, 2013, 69, 3281-3286.
[73]
Wang, Y.; Lai, C.W.; Kwong, F.Y.; Jia, W.; Chan, K.S. Synthesis of aryl phosphines via phosphination with triphenylphosphine by supported palladium catalysts. Tetrahedron, 2004, 60, 9433-9439.
[74]
Kwong, F.Y.; Lai, C.W.; Yu, M.; Tian, Y.; Chan, K.S. Palladium-catalyzed phosphination of functionalized aryl triflates. Tetrahedron, 2003, 59, 10295-10305.
[75]
Kwong, F.Y.; Chan, K.S. A novel synthesis of atropisomeric P,N ligands by catalytic phosphination using triarylphosphines. Organometallics, 2001, 20, 2570-2578.
[76]
Kwong, F.Y.; Chan, K.S. A general synthesis of aryl phosphines by palladium catalyzed phosphination of aryl bromides using triarylphosphines. Chem. Commun. , 2000, 2000(12), 1069-1070.
[77]
Baba, K.; Tobisu, M.; Chatani, N. Palladium-catalyzed synthesis of six-membered benzofuzed phosphacycles via carbon-phosphorus bond cleavage. Org. Lett., 2015, 17, 70-73.
[78]
Zhou, Y.; Gan, Z.; Su, B.; Li, J.; Duan, Z.; Mathey, F. Intramolecular, Pd/Cu-co-catalyzed P–C bond cleavage and addition onto an alkyne: A route to benzophospholes. Org. Lett., 2015, 17, 5722-5724.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy