Abstract
Hexokinase II is often highly expressed in poorly differentiated and rapidly growing tumors that exhibit a high rate of aerobic glycolysis. Hexokinase II binds to the mitochondrial membrane through its interaction with the outer membrane voltage-dependent anion channel (VDAC), preferentially at contact sites between the outer and inner mitochondrial membrane. This location is thought to be important for the integration of glycolysis with mitochondrial energy metabolism. VDAC is a critical component of the mitochondrial phase of apoptosis and its interaction with Bcl-2 family proteins controls the rate of release of mitochondrial intermembrane space proteins that activate the execution phase of apoptosis. The proteins involved in the contact sites also constitute the mitochondrial permeability transition, one of the mechanisms by which mitochondrial protein release can be mediated. Hexokinase II binding to VDAC suppresses the release of intermembrane space proteins and inhibits apoptosis, thereby contributing to the survival advantage of tumor cells. This interaction places hexokinase II in a position to integrate glycolytic metabolism of the tumor cell with the control of apoptosis at the mitochondrial level. Mitochondrial binding of hexokinase II may constitute an attractive target for therapeutic intervention to suppress tumor growth.
Keywords: hexokinase II, energy metabolism, membrane voltage-dependent anion channel, vdac, apoptosis control
Current Medicinal Chemistry
Title: Hexokinase II: The Integration of Energy Metabolism and Control of Apoptosis
Volume: 10 Issue: 16
Author(s): John G. Pastorino and Jan B. Hoek
Affiliation:
Keywords: hexokinase II, energy metabolism, membrane voltage-dependent anion channel, vdac, apoptosis control
Abstract: Hexokinase II is often highly expressed in poorly differentiated and rapidly growing tumors that exhibit a high rate of aerobic glycolysis. Hexokinase II binds to the mitochondrial membrane through its interaction with the outer membrane voltage-dependent anion channel (VDAC), preferentially at contact sites between the outer and inner mitochondrial membrane. This location is thought to be important for the integration of glycolysis with mitochondrial energy metabolism. VDAC is a critical component of the mitochondrial phase of apoptosis and its interaction with Bcl-2 family proteins controls the rate of release of mitochondrial intermembrane space proteins that activate the execution phase of apoptosis. The proteins involved in the contact sites also constitute the mitochondrial permeability transition, one of the mechanisms by which mitochondrial protein release can be mediated. Hexokinase II binding to VDAC suppresses the release of intermembrane space proteins and inhibits apoptosis, thereby contributing to the survival advantage of tumor cells. This interaction places hexokinase II in a position to integrate glycolytic metabolism of the tumor cell with the control of apoptosis at the mitochondrial level. Mitochondrial binding of hexokinase II may constitute an attractive target for therapeutic intervention to suppress tumor growth.
Export Options
About this article
Cite this article as:
Pastorino G. John and Hoek B. Jan, Hexokinase II: The Integration of Energy Metabolism and Control of Apoptosis, Current Medicinal Chemistry 2003; 10 (16) . https://dx.doi.org/10.2174/0929867033457269
DOI https://dx.doi.org/10.2174/0929867033457269 |
Print ISSN 0929-8673 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-533X |
Call for Papers in Thematic Issues
Advances in Medicinal Chemistry: From Cancer to Chronic Diseases.
The broad spectrum of the issue will provide a comprehensive overview of emerging trends, novel therapeutic interventions, and translational insights that impact modern medicine. The primary focus will be diseases of global concern, including cancer, chronic pain, metabolic disorders, and autoimmune conditions, providing a broad overview of the advancements in ...read more
Approaches to the Treatment of Chronic Inflammation
Chronic inflammation is a hallmark of numerous diseases, significantly impacting global health. Although chronic inflammation is a hot topic, not much has been written about approaches to its treatment. This thematic issue aims to showcase the latest advancements in chronic inflammation treatment and foster discussion on future directions in this ...read more
Cellular and Molecular Mechanisms of Non-Infectious Inflammatory Diseases: Focus on Clinical Implications
The Special Issue covers the results of the studies on cellular and molecular mechanisms of non-infectious inflammatory diseases, in particular, autoimmune rheumatic diseases, atherosclerotic cardiovascular disease and other age-related disorders such as type II diabetes, cancer, neurodegenerative disorders, etc. Review and research articles as well as methodology papers that summarize ...read more
Chalcogen-modified nucleic acid analogues
Chalcogen-modified nucleosides, nucleotides and oligonucleotides have been of great interest to scientific research for many years. The replacement of oxygen in the nucleobase, sugar or phosphate backbone by chalcogen atoms (sulfur, selenium, tellurium) gives these biomolecules unique properties resulting from their altered physical and chemical properties. The continuing interest in ...read more
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
P2Y Receptor Activation Affects the Proliferation and Differentiation of Glial and Neuronal Cells: A Focus on Rat C6 Glioma Cells
Current Neuropharmacology Celecoxib and Dimethylcelecoxib Block Oxidative Phosphorylation, Epithelial-Mesenchymal Transition and Invasiveness in Breast Cancer Stem Cells
Current Medicinal Chemistry Conference Report: 183rd American Association for the Advancement of Science Annual Meeting, Boston MA, USA Feb 16-20, 2017: "Serving Society through Science Policy"
CNS & Neurological Disorders - Drug Targets The Holy Grail of Polymer Therapeutics for Cancer Therapy: An Overview on the Pharmacokinetics and Bio Distribution
Current Drug Metabolism Design and Synthesis of Novel Thioethers Derived from 1,5-Diphenyl-6- thioxo-6,7-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones as Antiangiogenic Agents
Letters in Drug Design & Discovery Role of GSK-3 in Cardiac Health: Focusing on Cardiac Remodeling and Heart Failure
Current Drug Targets Modulation of Photosensitization Processes for an Improved Targeted Photodynamic Therapy
Current Medicinal Chemistry HtrA Serine Proteases as Potential Therapeutic Targets in Cancer
Current Cancer Drug Targets Microarray: An Approach for Current Drug Targets
Current Drug Metabolism The Functions of Heparanase in Human Diseases
Mini-Reviews in Medicinal Chemistry Notch Inhibitors as a New Tool in the War on Cancer: A Pathway to Watch
Current Pharmaceutical Biotechnology Safety and Side Effects of Cannabidiol, a Cannabis sativa Constituent
Current Drug Safety Challenges in the Design of Clinically Useful Brain-targeted Drug Nanocarriers
Current Medicinal Chemistry Cancer Proteomics for Cellular Dysfunction: Insights and Trends
Current Pharmaceutical Design Role of Mitochondrial Translocator Protein (18 kDa) on Mitochondrial- Related Cell Death Processes
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) Cannabinoid Receptors as Therapeutic Targets
Current Pharmaceutical Design From the Design to the Clinical Application of Thromboxane Modulators
Current Pharmaceutical Design Anticancer and Antibacterial Activity of Hyperforin and Its Derivatives
Anti-Cancer Agents in Medicinal Chemistry Role of ncRNAs in Development, Diagnosis and Treatment of Human Cancer
Recent Patents on Anti-Cancer Drug Discovery The Scatter Factor Signaling Pathways as Therapeutic Associated Target in Cancer Treatment
Current Medicinal Chemistry