Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis of 1,3-benzoxazines Based on 2,4,4-trimethyl-7,2’,4’-trihydroxy Flavan: Antibacterial, Anti-inflammatory, Cyclooxygenase-2 Inhibition and Molecular Modelling Studies

Author(s): Issam A. Mohammed*, Mahmood Ahmed*, Rabia Ikram, Muhammad Muddassar, Muhammad Abdul Qadir and Khalijah Binti Awang

Volume 16, Issue 1, 2019

Page: [58 - 65] Pages: 8

DOI: 10.2174/1570180815666180420100922

Price: $65

Abstract

Background: In the present study, the formation of 2, 4, 4-trimethyl-7,2’4’-trihydroxy flavan has been used as the key feature for the formation of new 1,3-benzoxazines. This reaction was carried out via Mannich-condensation reaction, the 7-hydroxy group of flavan was reacted with different primary amines in the presence of formaldehyde.

Methods: All the synthesized compounds were characterized on the basis of FT-IR, NMR, MS and elemental analysis (CHN). Disk diffusion and 96-well plate assay methods were employed for the zone of inhibition and minimum inhibitory concentration determination, respectively to investigate the antibacterial activities.

Results and Conclusion: Our studies showed that compound with electron withdrawing group on the benzene ring of 1,3-benzoxazines has promising antibacterial activities. An oral dose of 10 mg/kg body weight was administered to albino mice for acute toxicity of synthesized compounds. In vivo anti-inflammatory and in-vitro cyclooxygenase-2 (COX-2) studies showed that compound 11 was the most potent anti-inflammatory agent which inhibited induced edema by 62.7% while 68.7% inhibition of COX-2 was observed. The plausible binding mode of this compound in COX-2 enzyme was also determined using molecular docking simulations.

Keywords: Flavan, antibacterial, mannich condensation, COX-2 enzyme, molecular docking.

Graphical Abstract
[1]
Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry, 3rd ed; Elsevier: Amsterdam, Netherlands, 2010.
[2]
David, G.S.; Silva, R.J. Health and environment in aquaculture; Carvalho, E.D., Ed.; Carvalho, E.D., Ed.; InTech: 2012.
[3]
Al-Qahtani, A.A.; Al-Turki, T.M.; Mousa, A.A.; Al-Mazroa, S.A.; Khan, M.; Alkhathlan, H.Z. Simple and selective synthesis of 1, 3-benzoxazine derivatives. Orient. J. Chem., 2012, 28(1), 287-295.
[4]
Indorkar, D.; Chourasia, A.P.O.; Limaye, S. PC-model computational studies of 4′, 6-bis-(2, 4-dinitro-aniline)-(2′-aryl-amine)-s-triazine and biological activity studies. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2(10), 283-292.
[5]
Chylińska, J.; Janowiec, M.; Urbański, T. Antibacterial activity of dihydro‐1, 3‐oxazine derivatives condensed with aromatic rings in positions 5, 6. Br. J. Pharmacol., 1971, 43(3), 649-657.
[6]
Waisser, K.; Gregor, J.; Dostál, H.; Kuneš, J.; Kubicová, L.; Klimešová, V.; Kaustová, J. Influence of the replacement of the oxo function with the thioxo group on the antimycobacterial activity of 3-aryl-6, 8-dichloro-2H-1, 3-benzoxazine-2, 4 (3H)-diones and 3-arylquinazoline-2, 4 (1H, 3H)-diones. Farmaco, 2001, 56(10), 803-807.
[7]
Shukla, D.K.; Rani, M.; Khan, A.A.; Tiwari, K.; Gupta, R.K. Synthesis and biological activity of some 3-aryl-3, 4-dihydro-2h-benz [e]-1, 3-oxazines/6-bromo-3-aryl-3, 4-dihydro-2h-benz [e]-1, 3-oxazines. Asian J. Chem., 2013, 25(11), 5921.
[8]
Mathew, B.P.; Kumar, A.; Sharma, S.; Shukla, P.; Nath, M. An eco-friendly synthesis and antimicrobial activities of dihydro-2H-benzo-and naphtho-1, 3-oxazine derivatives. Eur. J. Med. Chem., 2010, 45(4), 1502-1507.
[9]
Akhter, M.; Husain, A.; Akhter, N.; Khan, M.Y. Synthesis, antiinflammatory and antimicrobial activity of some new 1-(3-phenyl-3, 4-dihydro-2h-1, 3-benzoxazin-6-yl)-ethanone derivatives. Indian J. Pharm. Sci., 2011, 73(1), 101.
[10]
Tang, Z.; Zhu, Z.; Xia, Z.; Liu, H.; Chen, J.; Xiao, W.; Ou, X. Synthesis and fungicidal activity of novel 2, 3-disubstituted-1, 3-benzoxazines. Molecules, 2012, 17(7), 8174-8185.
[11]
Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. Synthesis of 2, 3‐diaryl‐3, 4‐dihydro‐2H‐1, 3‐benzoxazines and their fungicidal activities. J. Heterocycl. Chem., 2011, 48(2), 255-260.
[12]
Akhter, M.; Habibullah, S.; Hasan, S.M.; Alam, M.M.; Akhter, N.; Shaquiquzzaman, M. Synthesis of some new 3, 4-dihydro-2H-1, 3-benzoxazines under microwave irradiation in solvent-free conditions and their biological activity. Med. Chem. Res., 2011, 20(8), 1147-1153.
[13]
Duffin, W.; Rollo, I. Antimalarial activity of hydroxy‐substituted naphthalene compounds. Br. J. Pharmacol., 1957, 12(2), 171-175.
[14]
Benameur, L.; Bouaziz, Z.; Nebois, P.; Bartoli, M-H.; Boitard, M.; Fillion, H. Synthesis of furnaphth [1, 3] oxazine and furo [1, 3] oxazinoquinoline derivatives as precursors for an o-quinonemethide structure and potential antitumor agents. Chem. Pharm. Bull. (Tokyo), 1996, 44(3), 605-608.
[15]
Chylińska, J.; Urbański, T.; Mordarski, M. Dihydro-1, 3-oxazine derivatives and their antitumor activity. J. Med. Chem., 1963, 6(5), 484-487.
[16]
Mizufune, H.; Irie, H.; Katsube, S.; Okada, T.; Mizuno, Y.; Arita, M. Process development of potassium channel opener, TCV-295, based on convenient ring formation of 2H-1, 3-benzoxazine and selective N-oxidation of the pyridyl moiety. Tetrahedron, 2001, 57(35), 7501-7506.
[17]
Yamamoto, S.; Hashiguchi, S.; Miki, S.; Igata, Y.; Watanabe, T.; Shiraishi, M. Synthesis and biological activity of novel 1, 3-Benzoxazine derivatives as K+ channel openers. Chem. Pharm. Bull. (Tokyo), 1996, 44(4), 734-745.
[18]
Hammerstone, J.F.; Lazarus, S.A.; Schmitz, H.H. Procyanidin content and variation in some commonly consumed foods. J. Nutr., 2000, 130(8), 2086S-2092S.
[19]
Spinelli, F.; Speakman, J-B.; Rademacher, W.; Halbwirth, H.; Stich, K.; Costa, G. Luteoforol, a flavan 4-ol, is induced in pome fruits by prohexadione-calciumand shows phytoalexin-like properties against Erwinia amylovora and other plant pathogens. Eur. J. Plant Pathol., 2005, 112(2), 133-142.
[20]
Hwang, B.Y.; Kim, H.S.; Lee, J.H.; Hong, Y.S.; Ro, J.S.; Lee, K.S.; Lee, J.J. Antioxidant benzoylated flavan-3-ol glycoside from Celastrus orbiculatus. J. Nat. Prod., 2001, 64(1), 82-84.
[21]
Afsar, T.; Khan, M.R.; Razak, S.; Ullah, S.; Mirza, B. Antipyretic, anti-inflammatory and analgesic activity of Acacia hydaspica R. Parker and its phytochemical analysis. BMC Complement. Altern. Med., 2015, 15(1), 136.
[22]
Mena, P.; Domínguez‐Perles, R.; Gironés‐Vilaplana, A.; Baenas, N.; García‐Viguera, C.; Villaño, D. Flavan‐3‐ols, anthocyanins, and inflammation. IUBMB Life, 2014, 66(11), 745-758.
[23]
Durairaj, R.B. Resorcinol: Chemistry, technology and applications; Springer Science & Business Media: Berlin, Germany, 2005.
[24]
Ahmed, M.; Qadir, M.A.; Shafiq, M.I.; Muddassar, M.; Samra, Z.Q.; Hameed, A. Synthesis, characterization, biological activities and molecular modeling of Schiff bases of benzene sulfonamides bearing curcumin scaffold. Arab. J. Chem., In Press
[25]
Ahmed, M.; Qadir, M.A.; Shafiq, M.I. Diazotized curcumin containing sulfonamides: Synthesis, characterization and antibacterial activities. Lat. Am. J. Pharm., 2017, 36(9), 1789-1795.
[26]
Bhowmick, R.; Sarwar, M.S. RahmanDewan, S.M.; Das, A.; Das, B.; NasirUddin, M.M.; Islam, M.S.; Islam, M.S. In vivo analgesic, antipyretic, and anti-inflammatory potential in Swiss albino mice and in vitro thrombolytic activity of hydroalcoholic extract from Litsea glutinosa leaves. Biol. Res., 2014, 47(1), 56.
[27]
Zangrando, E.; Islam, M.; Islam, M.A-A.A.; Sheikh, M.; Tarafder, M.; Miyatake, R.; Zahan, R.; Hossain, M. Synthesis, characterization and bio-activity of nickel (II) and copper (II) complexes of a bidentate NS Schiff base of S-benzyl dithiocarbazate. Inorg. Chim. Acta, 2015, 427, 278-284.
[28]
Rauf, A.; Uddin, G.; Siddiqui, B.S.; Khan, A.; Khan, H.; Arfan, M.; Muhammad, N.; Wadood, A. In-vivo antinociceptive, anti-inflammatory and antipyretic activity of pistagremic acid isolated from Pistacia integerrima. Phytomedicine, 2014, 21(12), 1509-1515.
[29]
Ahmed, M.; Qadir, M.A.; Hameed, A.; Imran, M.; Muddassar, M. Screening of curcumin-derived isoxazole, pyrazoles, and pyrimidines for their anti-inflammatory, antinociceptive, and cyclooxygenase-2 inhibition. Chem. Biol. Drug Des., 2018, 91(1), 338-343.
[30]
Firke, S.D.; Bari, S.B. Synthesis, biological evaluation and docking study of maleimide derivatives bearing benzenesulfonamide as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg. Med. Chem., 2015, 23(17), 5273-5281.
[31]
Alaa, A-M.; El-Azab, A.S.; Abou-Zeid, L.A.; ElTahir, K.E.H.; Abdel-Aziz, N.I.; Ayyad, R.R.; Al-Obaid, A.M. Synthesis, anti-inflammatory, analgesic and COX-1/2 inhibition activities of anilides based on 5, 5-diphenylimidazolidine-2, 4-dione scaffold: Molecular docking studies. Eur. J. Med. Chem., 2016, 115, 121-131.
[32]
Iwalewa, E.; Oyedapo, O.; Adewunmi, C.; Makunja, V. Analgesic, antioxidant and anti-inflammatory related activities of 2 1-hydroxy-2, 4 1-dimethoxychalcone and 4-hydroxychalcone in mice. J. Biol. Sci., 2008, 8, 131-136.
[33]
Singh, P.; Kaur, S.; Kaur, J.; Singh, G.; Bhatti, R. Rational design of small peptides for optimal inhibition of cyclooxygenase-2: Development of a highly effective anti-inflammatory agent. J. Med. Chem., 2016, 59(8), 3920-3934.
[34]
Undare, S.S.; Valekar, N.J.; Patravale, A.A.; Jamale, D.K.; Vibhute, S.S.; Walekar, L.S.; Kolekar, G.B.; Deshmukh, M.; Anbhule, P.V. Synthesis, anti-inflammatory, ulcerogenic and cyclooxygenase activities of indenopyrimidine derivatives. Bioorg. Med. Chem. Lett., 2016, 26(3), 814-818.
[35]
Abdel-Sayed, M.A.; Bayomi, S.M.; El-Sherbeny, M.A.; Abdel-Aziz, N.I.; ElTahir, K.E.H.; Shehatou, G.S.; Alaa, A-M. Synthesis, anti-inflammatory, analgesic, COX-1/2 inhibition activities and molecular docking study of pyrazoline derivatives. Bioorg. Med. Chem., 2016, 24(9), 2032-2042.
[36]
Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J., 1998, 12(12), 1063-1073.
[37]
Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Penning, T.D.; Seibert, K.; Isakson, P.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature, 1996, 384(6610), 644.
[38]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy