Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Terpenes, Phenylpropanoids, Sulfur and Other Essential Oil Constituents as Inhibitors of Cholinesterases

Author(s): Franko Burčul, Ivica Blažević, Mila Radan and Olivera Politeo*

Volume 27, Issue 26, 2020

Page: [4297 - 4343] Pages: 47

DOI: 10.2174/0929867325666180330092607

Price: $65

Abstract

Essential oils constituents are a diverse family of low molecular weight organic compounds with comprehensive biological activity. According to their chemical structure, these active compounds can be divided into four major groups: terpenes, terpenoids, phenylpropenes, and "others". In addition, they may contain diverse functional groups according to which they can be classified as hydrocarbons (monoterpenes, sesquiterpenes, and aliphatic hydrocarbons); oxygenated compounds (monoterpene and sesquiterpene alcohols, aldehydes, ketones, esters, and other oxygenated compounds); and sulfur and/or nitrogen containing compounds (thioesters, sulfides, isothiocyanates, nitriles, and others).

Compounds that act as cholinesterase inhibitors still represent the only pharmacological treatment of Alzheimer´s disease. Numerous in vitro studies showed that some compounds, found in essential oils, have a promising cholinesterase inhibitory activity, such as α-pinene, δ-3-carene, 1,8-cineole, carvacrol, thymohydroquinone, α- and β-asarone, anethole, etc.

This review summarizes the most relevant research published to date on essential oil constituents and their acetylcholinesterase/butyrylcholinesterase inhibitory potential as well as their structure related activity, synergistic and antagonistic effects.

Keywords: Terpenes, phenylpropanoids, sulfur volatiles, acetylcholinesterase, butyrylcholinesterase, structureactivity relationship, synergism.

[1]
Kukull, W.A.; Higdon, R.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Schellenberg, G.D.; van Belle, G.; Jolley, L.; Larson, E.B. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch. Neurol., 2002, 59(11), 1737-1746.
[http://dx.doi.org/10.1001/archneur.59.11.1737] [PMID: 12433261]
[2]
Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med., 2012, 2(5) a006148
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[3]
Dalai, M.K.; Bhadra, S.; Chaudhary, S.K.; Bandyopadhyay, A.; Mukherjee, P.K. Anti-cholinesterase activity of the standardized extract of Syzygium aromaticum L. Pharmacogn. Mag., 2014, 10(Suppl. 2), S276-S282.
[http://dx.doi.org/10.4103/0973-1296.133275] [PMID: 24991103]
[4]
Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol. Appl. Neurobiol., 1978, 4(4), 273-277.
[http://dx.doi.org/10.1111/j.1365-2990.1978.tb00545.x] [PMID: 703927]
[5]
Giacobini, E.; Spiegel, R.; Enz, A.; Veroff, A.E.; Cutler, N.R. Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J. Neural Transm. (Vienna), 2002, 109(7-8), 1053-1065.
[http://dx.doi.org/10.1007/s007020200089] [PMID: 12111443]
[6]
Triggle, D.J.; Mitchell, J.M.; Filler, R. The Pharmacology of Physostigmine. CNS Drug Rev., 1998, 4(2), 87-136.
[http://dx.doi.org/10.1111/j.1527-3458.1998.tb00059.x]
[7]
Oh, M.H.; Houghton, P.J.; Whang, W.K.; Cho, J.H. Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine, 2004, 11(6), 544-548.
[http://dx.doi.org/10.1016/j.phymed.2004.03.001] [PMID: 15500267]
[8]
Giacobini, E. Drugs that target cholinesterases in.Cognitive Enhancing Drugs; Buccafusco, J.J., Ed.; Birkhäuser Basel: Basel, 2004, pp. 11-36.
[http://dx.doi.org/10.1007/978-3-0348-7867-8_2]
[9]
Schulz, V. Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine, 2003, 10(Suppl. 4), 74-79.
[http://dx.doi.org/10.1078/1433-187X-00302] [PMID: 12807348]
[10]
Iranshahi, M. A review of volatile sulfur-containing compounds from terrestrial plants: biosynthesis, distribution and analytical methods. J. Essent. Oil Res., 2012, 24(4), 393-434.
[http://dx.doi.org/10.1080/10412905.2012.692918]
[11]
Satyal, P.; Craft, J.D.; Dosoky, N.S.; Setzer, W.N. The Chemical Compositions of the Volatile Oils of Garlic (Allium sativum) and Wild Garlic (Allium vineale). Foods, 2017, 6(8), 63.
[http://dx.doi.org/10.3390/foods6080063] [PMID: 28783070]
[12]
Aguilar-González, A.E.; Palou, E.; López-Malo, A. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innov. Food Sci. Emerg. Technol., 2015, 32, 181-185.
[http://dx.doi.org/10.1016/j.ifset.2015.09.003]
[13]
Savelev, S.U.; Okello, E.J.; Perry, E.K. Butyryl- and acetylcholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother. Res., 2004, 18(4), 315-324.
[http://dx.doi.org/10.1002/ptr.1451] [PMID: 15162368]
[14]
Cioanca, O.; Hritcu, L.; Mihasan, M.; Hancianu, M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1-42) rat model of Alzheimer’s disease. Physiol. Behav., 2013, 120, 193-202.
[http://dx.doi.org/10.1016/j.physbeh.2013.08.006] [PMID: 23958472]
[15]
Cioanca, O.; Hritcu, L.; Mihasan, M.; Trifan, A.; Hancianu, M. Inhalation of coriander volatile oil increased anxiolytic-antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer’s disease. Physiol. Behav., 2014, 131, 68-74.
[http://dx.doi.org/10.1016/j.physbeh.2014.04.021] [PMID: 24747275]
[16]
Cioanca, O.; Mircea, C.; Trifan, A.; Aprotosoaie, A.C.; Hritcu, L.; Hăncianu, M. Improvement of amyloid-β-induced memory deficits by Juniperus communis L. volatile oil in a rat model of Alzheimer’s disease. Farmacia, 2014, 62(3), 514-520.
[17]
Hritcu, L.; Cioanca, O.; Hancianu, M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine, 2012, 19(6), 529-534.
[http://dx.doi.org/10.1016/j.phymed.2012.02.002] [PMID: 22402245]
[18]
Xu, P.; Wang, K.; Lu, C.; Dong, L.; Gao, L.; Yan, M.; Aibai, S.; Yang, Y.; Liu, X. The Protective Effect of Lavender Essential Oil and Its Main Component Linalool against the Cognitive Deficits Induced by D-Galactose and Aluminum Trichloride in Mice. Evid. Based Complement. Alternat. Med., 2017, 2017, 7426538
[http://dx.doi.org/10.1155/2017/7426538] [PMID: 28529531]
[19]
Gradinariu, V.; Cioanca, O.; Hritcu, L.; Trifan, A.; Gille, E.; Hancianu, M. Comparative efficacy of Ocimum sanctum L. and Ocimum basilicum L. essential oils against amyloid beta (1–42)-induced anxiety and depression in laboratory rats. Phytochem. Rev., 2015, 14(4), 567-575.
[http://dx.doi.org/10.1007/s11101-014-9389-6]
[20]
Aydin, E.; Hritcu, L.; Dogan, G.; Hayta, S.; Bagci, E. The Effects of Inhaled Pimpinella peregrina Essential Oil on Scopolamine-Induced Memory Impairment, Anxiety, and Depression in Laboratory Rats. Mol. Neurobiol., 2016, 53(9), 6557-6567.
[http://dx.doi.org/10.1007/s12035-016-9693-9] [PMID: 26768430]
[21]
Satou, T.; Hanashima, Y.; Mizutani, I.; Koike, K. The effect of inhalation of essential oil from Rosmarinus officinalis on scopolamine-induced Alzheimer’s type dementia model mice. Flavour Frag. J., 2018, 33(3), 1-5.
[http://dx.doi.org/10.1002/ffj.3435]
[22]
Liu, S.J.; Yang, C.; Zhang, Y.; Su, R.Y.; Chen, J.L.; Jiao, M.M.; Chen, H.F.; Zheng, N.; Luo, S.; Chen, Y.B.; Quan, S.J.; Wang, Q. Neuroprotective effect of β-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des. Devel. Ther., 2016, 10, 1461-1469.
[http://dx.doi.org/10.2147/DDDT.S93559] [PMID: 27143853]
[23]
Khan, A.; Vaibhav, K.; Javed, H.; Tabassum, R.; Ahmed, M.E.; Khan, M.M.; Khan, M.B.; Shrivastava, P.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; Islam, F. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer’s disease. Neurochem. Res., 2014, 39(2), 344-352.
[http://dx.doi.org/10.1007/s11064-013-1231-9] [PMID: 24379109]
[24]
Sabogal-Guáqueta, A.M.; Osorio, E.; Cardona-Gómez, G.P. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacology, 2016, 102, 111-120.
[http://dx.doi.org/10.1016/j.neuropharm.2015.11.002] [PMID: 26549854]
[25]
Zhou, W.; Fukumoto, S.; Yokogoshi, H. Components of lemon essential oil attenuate dementia induced by scopolamine. Nutr. Neurosci., 2009, 12(2), 57-64.
[http://dx.doi.org/10.1179/147683009X388832] [PMID: 19356307]
[26]
Alhebshi, A.H.; Gotoh, M.; Suzuki, I. Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem. Biophys. Res. Commun., 2013, 433(4), 362-367.
[http://dx.doi.org/10.1016/j.bbrc.2012.11.139] [PMID: 23537659]
[27]
Ballard, C.G.; O’Brien, J.T.; Reichelt, K.; Perry, E.K. Aromatherapy as a safe and effective treatment for the management of agitation in severe dementia: the results of a double-blind, placebo-controlled trial with Melissa. J. Clin. Psychiatry, 2002, 63(7), 553-558.
[http://dx.doi.org/10.4088/JCP.v63n0703] [PMID: 12143909]
[28]
Holmes, C.; Hopkins, V.; Hensford, C.; MacLaughlin, V.; Wilkinson, D.; Rosenvinge, H. Lavender oil as a treatment for agitated behaviour in severe dementia: a placebo controlled study. Int. J. Geriatr. Psychiatry, 2002, 17(4), 305-308.
[http://dx.doi.org/10.1002/gps.593] [PMID: 11994882]
[29]
Jimbo, D.; Kimura, Y.; Taniguchi, M.; Inoue, M.; Urakami, K. Effect of aromatherapy on patients with Alzheimer’s disease. Psychogeriatrics, 2009, 9(4), 173-179.
[http://dx.doi.org/10.1111/j.1479-8301.2009.00299.x] [PMID: 20377818]
[30]
Lin, P.W.; Chan, W.C.; Ng, B.F.; Lam, L.C. Efficacy of aromatherapy (Lavandula angustifolia) as an intervention for agitated behaviours in Chinese older persons with dementia: a cross-over randomized trial. Int. J. Geriatr. Psychiatry, 2007, 22(5), 405-410.
[http://dx.doi.org/10.1002/gps.1688] [PMID: 17342790]
[31]
Burčul, F.; Radan, M.; Politeo, O.; Blažević, I. Cholinesterase-inhibitory activity of essential oils in.Advances in Chemistry Research; Taylor, J.C., Ed.; Nova Science Publishers Inc.: New York, 2017, Vol. 37, pp. 15-86.
[32]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[33]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[34]
Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules, 2011, 16(9), 7672-7690.
[http://dx.doi.org/10.3390/molecules16097672] [PMID: 21900869]
[35]
López, M.D.; Campoy, F.J.; Pascual-Villalobos, M.J.; Muñoz-Delgado, E.; Vidal, C.J. Acetylcholinesterase activity of electric eel is increased or decreased by selected monoterpenoids and phenylpropanoids in a concentration-dependent manner. Chem. Biol. Interact., 2015, 229, 36-43.
[http://dx.doi.org/10.1016/j.cbi.2015.01.006] [PMID: 25636489]
[36]
Lomarat, P.; Sripha, K.; Phanthong, P.; Kitphati, W.; Thirapanmethee, K.; Bunyapraphatsara, N. In vitro biological activities of black pepper essential oil and its major components relevant to the prevention of Alzheimer’s disease. Thaiphesatchasan, 2015, 39(3), 94-101.
[37]
Dohi, S.; Terasaki, M.; Makino, M. Acetylcholinesterase inhibitory activity and chemical composition of commercial essential oils. J. Agric. Food Chem., 2009, 57(10), 4313-4318.
[http://dx.doi.org/10.1021/jf804013j] [PMID: 19358605]
[38]
Arruda, M.; Viana, H.; Rainha, N.; Neng, N.R.; Rosa, J.S.; Nogueira, J.M.F.; Barreto, Mdo.C. Anti-acetylcholinesterase and antioxidant activity of essential oils from Hedychium gardnerianum Sheppard ex Ker-Gawl. Molecules, 2012, 17(3), 3082-3092.
[http://dx.doi.org/10.3390/molecules17033082] [PMID: 22410418]
[39]
Kivrak, İ.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem., 2009, 116(2), 470-479.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.069]
[40]
Costa, P.; Gonçalves, S.; Grosso, C.; Andrade, P.B.; Valentão, P.; Bernardo-Gil, M.G.; Romano, A. Chemical profiling and biological screening of Thymus lotocephalus extracts obtained by supercritical fluid extraction and hydrodistillation. Ind. Crops Prod., 2012, 36(1), 246-256.
[http://dx.doi.org/10.1016/j.indcrop.2011.09.014]
[41]
Costa, P.; Grosso, C.; Gonçalves, S.; Andrade, P.B.; Valentão, P.; Gabriela Bernardo-Gil, M.; Romano, A. Supercritical fluid extraction and hydrodistillation for the recovery of bioactive compounds from Lavandula viridis L’Hér. Food Chem., 2012, 135(1), 112-121.
[http://dx.doi.org/10.1016/j.foodchem.2012.04.108] [PMID: 26434270]
[42]
Radulović, N.S.; Mladenović, M.Z.; Randjelovic, P.J.; Stojanović, N.M.; Dekić, M.S.; Blagojević, P.D. Toxic essential oils. Part IV: The essential oil of Achillea falcata L. as a source of biologically/pharmacologically active trans-sabinyl esters. Food Chem. Toxicol., 2015, 80, 114-129.
[http://dx.doi.org/10.1016/j.fct.2015.03.001] [PMID: 25765752]
[43]
Gómez-Rincón, C.; Langa, E.; Murillo, P.; Valero, M.S.; Berzosa, C.; López, V. Activity of tea tree (Melaleuca alternifolia) essential oil against L3 larvae of Anisakis simplex. BioMed Res. Int., 2014, 2014 549510
[http://dx.doi.org/10.1155/2014/549510] [PMID: 24967378]
[44]
Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-arami, S.A.A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol., 2009, 35(5), 518-525.
[http://dx.doi.org/10.1007/s10886-009-9635-3] [PMID: 19412756]
[45]
Kang, J.S.; Kim, E.; Lee, S.H.; Park, I-K. Inhibition of acetylcholinesterases of the pinewood nematode, Bursaphelenchus xylophilus, by phytochemicals from plant essential oils. Pestic. Biochem. Physiol., 2013, 105(1), 50-56.
[http://dx.doi.org/10.1016/j.pestbp.2012.11.007] [PMID: 24238290]
[46]
Park, I-K. Fumigant toxicity of Oriental sweetgum (Liquidambar orientalis) and valerian (Valeriana wallichii) essential oils and their components, including their acetylcholinesterase inhibitory activity, against Japanese termites (Reticulitermes speratus). Molecules, 2014, 19(8), 12547-12558.
[http://dx.doi.org/10.3390/molecules190812547] [PMID: 25153870]
[47]
Lee, D.C.; Ahn, Y-J. Laboratory and Simulated Field Bioassays to Evaluate Larvicidal Activity of Pinus densiflora Hydrodistillate, Its Constituents and Structurally Related Compounds against Aedes albopictus, Aedes aegypti and Culex pipiens pallens in Relation to Their Inhibitory Effects on Acetylcholinesterase Activity. Insects, 2013, 4(2), 217-229.
[http://dx.doi.org/10.3390/insects4020217] [PMID: 26464387]
[48]
Yeom, H-J.; Kang, J.S.; Kim, G-H.; Park, I-K. Insecticidal and acetylcholine esterase inhibition activity of Apiaceae plant essential oils and their constituents against adults of German cockroach (Blattella germanica). J. Agric. Food Chem., 2012, 60(29), 7194-7203.
[http://dx.doi.org/10.1021/jf302009w] [PMID: 22746406]
[49]
Seo, S-M.; Kim, J.; Kang, J.; Koh, S-H.; Ahn, Y-J.; Kang, K-S.; Park, I-K. Fumigant toxicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol., 2014, 113, 55-61.
[http://dx.doi.org/10.1016/j.pestbp.2014.06.001] [PMID: 25052527]
[50]
Arduini, F.; Ricci, F.; Bourais, I.; Amine, A.; Moscone, D.; Palleschi, G. Extraction and Detection of Pesticides by Cholinesterase Inhibition in a Two-Phase System: a Strategy to Avoid Heavy Metal Interference. Anal. Lett., 2005, 38(11), 1703-1719.
[http://dx.doi.org/10.1080/00032710500206970]
[51]
Obregon, A.D.C.; Schetinger, M.R.C.; Correa, M.M.; Morsch, V.M.; da Silva, J.E.; Martins, M.A.P.; Bonacorso, H.G.; Zanatta, N. Effects per se of organic solvents in the cerebral acetylcholinesterase of rats. Neurochem. Res., 2005, 30(3), 379-384.
[http://dx.doi.org/10.1007/s11064-005-2612-5] [PMID: 16018582]
[52]
Di Giovanni, S.; Borloz, A.; Urbain, A.; Marston, A.; Hostettmann, K.; Carrupt, P-A.; Reist, M. In vitro screening assays to identify natural or synthetic acetylcholinesterase inhibitors: thin layer chromatography versus microplate methods. Eur. J. Pharm. Sci., 2008, 33(2), 109-119.
[http://dx.doi.org/10.1016/j.ejps.2007.10.004] [PMID: 18082383]
[53]
Plummer, J.M.; Greenberg, M.J.; Lehman, H.K.; Watts, J.A. Competitive inhibition by dimethylsulfoxide of molluscan and vertebrate acetylcholinesterase. Biochem. Pharmacol., 1983, 32(1), 151-158.
[http://dx.doi.org/10.1016/0006-2952(83)90668-8] [PMID: 6830611]
[54]
Generalić Mekinić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M.; Katalinić, V. Sea fennel (Crithmum maritimum L.): phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. J. Food Sci. Technol., 2016, 53(7), 3104-3112.
[http://dx.doi.org/10.1007/s13197-016-2283-z] [PMID: 27765981]
[55]
Das, A.; Dikshit, M.; Nath, C. Profile of acetylcholinesterase in brain areas of male and female rats of adult and old age. Life Sci., 2001, 68(13), 1545-1555.
[http://dx.doi.org/10.1016/S0024-3205(01)00950-X] [PMID: 11253171]
[56]
Di, L.; Kerns, E.H. Biological assay challenges from compound solubility: strategies for bioassay optimization. Drug Discov. Today, 2006, 11(9-10), 446-451.
[http://dx.doi.org/10.1016/j.drudis.2006.03.004] [PMID: 16635808]
[57]
Neubig, R.R.; Spedding, M.; Kenakin, T.; Christopoulos, A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol. Rev., 2003, 55(4), 597-606.
[http://dx.doi.org/10.1124/pr.55.4.4] [PMID: 14657418]
[58]
Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem., 2005, 53(5), 1765-1768.
[http://dx.doi.org/10.1021/jf040019b] [PMID: 15740071]
[59]
Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by tea tree oil and constituent terpenoids. Flavour Fragrance J., 2006, 21(2), 198-201.
[http://dx.doi.org/10.1002/ffj.1580]
[60]
Miyazawa, M.; Watanabe, H.; Kameoka, H. Inhibition of Acetylcholinesterase Activity by Monoterpenoids with a p-Menthane Skeleton. J. Agric. Food Chem., 1997, 45(3), 677-679.
[http://dx.doi.org/10.1021/jf960398b]
[61]
Zarrad, K.; Hamouda, A.B.; Chaieb, I.; Laarif, A.; Jemâa, J.M-B. Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium L. essential oils. Ind. Crops Prod., 2015, 76, 121-127.
[http://dx.doi.org/10.1016/j.indcrop.2015.06.039]
[62]
Grundy, D.L.; Still, C.C. Inhibition of acetylcholinesterases by pulegone-1,2-epoxide. Pestic. Biochem. Physiol., 1985, 23(3), 383-388.
[http://dx.doi.org/10.1016/0048-3575(85)90100-2]
[63]
Perry, N.S.L.; Houghton, P.J.; Theobald, A.; Jenner, P.; Perry, E.K. In-vitro inhibition of human erythrocyte acetylcholinesterase by salvia lavandulaefolia essential oil and constituent terpenes. J. Pharm. Pharmacol., 2000, 52(7), 895-902.
[http://dx.doi.org/10.1211/0022357001774598] [PMID: 10933142]
[64]
López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod., 2010, 31(2), 284-288.
[http://dx.doi.org/10.1016/j.indcrop.2009.11.005]
[65]
Keane, S.; Ryan, M.F. Purification, characterisation, and inhibition by monoterpenes of acetylcholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol., 1999, 29(12), 1097-1104.
[http://dx.doi.org/10.1016/S0965-1748(99)00088-0]
[66]
Ryan, M.F.; Byrne, O. Plant-insect coevolution and inhibition of acetylcholinesterase. J. Chem. Ecol., 1988, 14(10), 1965-1975.
[http://dx.doi.org/10.1007/BF01013489] [PMID: 24277106]
[67]
Mills, C.; Cleary, B.J.; Gilmer, J.F.; Walsh, J.J. Inhibition of acetylcholinesterase by Tea Tree oil. J. Pharm. Pharmacol., 2004, 56(3), 375-379.
[http://dx.doi.org/10.1211/0022357022773] [PMID: 15025863]
[68]
Cer, R.Z.; Mudunuri, U.; Stephens, R.; Lebeda, F.J. IC(50)-to-K(i): a web-based tool for converting IC(50) to K(i) values for inhibitors of enzyme activity and ligand binding. Nucleic Acids Res, 2009, 37(Web Server issue), W441-W445.
[http://dx.doi.org/10.1093/nar/gkp253] [PMID: 19395593]
[69]
Yang, Z.; Zhang, X.; Duan, D.; Song, Z.; Yang, M.; Li, S. Modified TLC bioautographic method for screening acetylcholinesterase inhibitors from plant extracts. J. Sep. Sci., 2009, 32(18), 3257-3259.
[http://dx.doi.org/10.1002/jssc.200900266] [PMID: 19697313]
[70]
Kiely, J.S.; Moos, W.H.; Pavia, M.R.; Schwarz, R.D.; Woodard, G.L. A silica gel plate-based qualitative assay for acetylcholinesterase activity: a mass method to screen for potential inhibitors. Anal. Biochem., 1991, 196(2), 439-442.
[http://dx.doi.org/10.1016/0003-2697(91)90491-B] [PMID: 1663710]
[71]
Rhee, I.K.; van de Meent, M.; Ingkaninan, K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A, 2001, 915(1-2), 217-223.
[http://dx.doi.org/10.1016/S0021-9673(01)00624-0] [PMID: 11358251]
[72]
Rhee, I.K.; van Rijn, R.M.; Verpoorte, R. Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem. Anal., 2003, 14(3), 127-131.
[http://dx.doi.org/10.1002/pca.675] [PMID: 12793457]
[73]
Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal., 2002, 13(1), 51-54.
[http://dx.doi.org/10.1002/pca.623] [PMID: 11899607]
[74]
Bhadra, S.; Mukherjee, P.K.; Kumar, N.S.; Bandyopadhyay, A. Anticholinesterase activity of standardized extract of Illicium verum Hook. f. fruits. Fitoterapia, 2011, 82(3), 342-346.
[http://dx.doi.org/10.1016/j.fitote.2010.11.003] [PMID: 21075180]
[75]
Santos, H.S.; Furtado, E.F.; Bertini, L.M.; Bandeira, P.N.; Albuquerque, M.R.J.R.; Menezes, J.E.S.A.; Trevisan, M.T.S.; Lemos, T.L.G. Chemical composition and cholinesterase inhibition of essential oils of three chemotypes from Croton zehntneri. Rev. Latinoam. Quím., 2010, 38(1), 45-51.
[76]
Loizzo, M.R.; Menichini, F.; Tundis, R.; Bonesi, M.; Conforti, F.; Nadjafi, F.; Statti, G.A.; Frega, N.G.; Menichini, F. In vitro biological activity of Salvia leriifolia benth essential oil relevant to the treatment of Alzheimer’s disease. J. Oleo Sci., 2009, 58(8), 443-446.
[http://dx.doi.org/10.5650/jos.58.443] [PMID: 19584571]
[77]
Anderson, J.A.; Coats, J.R. Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic. Biochem. Physiol., 2012, 102(2), 124-128.
[http://dx.doi.org/10.1016/j.pestbp.2011.12.002]
[78]
Senol, F.S.; Orhan, I.E.; Kurkcuoglu, M.; Khan, M.T.H.; Altintas, A.; Sener, B.; Baser, K.H.C. A mechanistic investigation on anticholinesterase and antioxidant effects of rose (Rosa damascena Mill.). Food Res. Int., 2013, 53(1), 502-509.
[http://dx.doi.org/10.1016/j.foodres.2013.05.031]
[79]
Orhan, I.; Kartal, M.; Kan, Y.; Şener, B. Activity of essential oils and individual components against acetyl- and butyrylcholinesterase. Z. Natforsch. C J. Biosci., 2008, 63(7-8), 547-553.
[http://dx.doi.org/10.1515/znc-2008-7-813] [PMID: 18810999]
[80]
Kitphati, W.; Wattanakamolkul, K.; Lomarat, P.; Phanthong, P.; Anantachoke, N.; Nukoolkarn, V.; Thirapanmethee, K.; Bunyapraphatsara, N. Anticholinesterase of essential oils and their constituents from Thai medicinal plants on purified and cellular enzymes. J. Asian Assoc. Schools Pharm., 2012, 1(1), 58-67.
[81]
Fujiwara, M.; Yagi, N.; Miyazawa, M. Acetylcholinesterase inhibitory activity of volatile oil from Peltophorum dasyrachis Kurz ex Bakar (yellow batai) and Bisabolane-type sesquiterpenoids. J. Agric. Food Chem., 2010, 58(5), 2824-2829.
[http://dx.doi.org/10.1021/jf9042387] [PMID: 20146521]
[82]
Dalai, M.K.; Bhadra, S.; Chaudhary, S.K.; Bandyopadhyay, A.; Mukherjee, P.K. Anti-cholinesterase potential of Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm. leaves. Indian J. Tradit. Knowl., 2014, 13(4), 691-697.
[83]
Orhan, I.; Şenol, F.S.; Gülpinar, A.R.; Kartal, M.; Şekeroglu, N.; Deveci, M.; Kan, Y.; Şener, B. Acetylcholinesterase inhibitory and antioxidant properties of Cyclotrichium niveum, Thymus praecox subsp. caucasicus var. caucasicus, Echinacea purpurea and E. pallida. Food Chem. Toxicol., 2009, 47(6), 1304-1310.
[http://dx.doi.org/10.1016/j.fct.2009.03.004] [PMID: 19285534]
[84]
Fathy, M.M.; Eid, H.H.; Hussein, M.A.; Ahmed, H.H.; Hussein, A.A. The role of Zingiber officinale in the treatment of Alzheimer’s disease: in-vitro and in-vivo evidences. Res. J. Pharm. Biol. Chem. Sci., 2015, 6(5), 735-749.
[85]
Xiang, C-P.; Han, J-X.; Li, X-C.; Li, Y-H.; Zhang, Y.; Chen, L.; Qu, Y.; Hao, C-Y.; Li, H-Z.; Yang, C-R.; Zhao, S-J.; Xu, M. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species. J. Agric. Food Chem., 2017, 65(18), 3702-3710.
[http://dx.doi.org/10.1021/acs.jafc.7b01350] [PMID: 28436658]
[86]
Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 622-628.
[http://dx.doi.org/10.3109/14756360903389856] [PMID: 20429778]
[87]
Sevindik, H.G.; Özek, T.; Yerdelen, K.Ö.; Önal, M.; Özbek, H.; Güvenalp, Z.; Demirezer, L.Ö. Chemical Composition, Antioxidant Capacity, Acetyl- and Butyrylcholinesterase Inhibitory Activities of the Essential Oil of Thymus haussknechtii Velen. Rec. Nat. Prod., 2016, 10(4), 503-507.
[88]
Menichini, F.; Tundis, R.; Loizzo, M.R.; Bonesi, M.; Marrelli, M.; Statti, G.A.; Menichini, F.; Conforti, F. Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia, 2009, 80(5), 297-300.
[http://dx.doi.org/10.1016/j.fitote.2009.03.008] [PMID: 19351555]
[89]
Picollo, M.I.; Toloza, A.C.; Mougabure Cueto, G.; Zygadlo, J.; Zerba, E. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia, 2008, 79(4), 271-278.
[http://dx.doi.org/10.1016/j.fitote.2008.01.005] [PMID: 18321657]
[90]
Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. In vitro acetylcholinesterase inhibitory activity of the essential oil from Acorus calamus and its main constituents. Planta Med., 2007, 73(3), 283-285.
[http://dx.doi.org/10.1055/s-2007-967114] [PMID: 17286241]
[91]
Kuźma, Ł.; Wysokińska, H.; Sikora, J.; Olszewska, P.; Mikiciuk-Olasik, E.; Szymański, P. Taxodione and Extracts from Salvia austriaca Roots as Human Cholinesterase Inhibitors. Phytother. Res., 2016, 30(2), 234-242.
[http://dx.doi.org/10.1002/ptr.5521] [PMID: 26621777]
[92]
Öztürk, M. Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chem., 2012, 134(1), 48-54.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.054] [PMID: 23265454]
[93]
Phrompittayarat, W.; Hongratanaworakit, T.; Tadtong, S.; Sareedenchai, V.; Ingkaninan, K. Survey of acetylcholinesterase inhibitory activity in essential oil derived from aromatic plants. Int. J. Med. Arom. Plants, 2014, 4(1), 1-5.
[http://dx.doi.org/10.2174/2210289201304010084]
[94]
Jukić, M.; Politeo, O.; Maksimović, M.; Miloš, M.; Miloš, M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother. Res., 2007, 21(3), 259-261.
[http://dx.doi.org/10.1002/ptr.2063] [PMID: 17186491]
[95]
Carrasco, A.; Perez, E.; Cutillas, A.B.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Origanum vulgare and Thymbra capitata Essential Oils from Spain: Determination of Aromatic Profile and Bioactivities. Nat. Prod. Commun., 2016, 11(1), 113-120.
[http://dx.doi.org/10.1177/1934578X1601100133] [PMID: 26996035]
[96]
Mata, A.T.; Proença, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem., 2007, 103(3), 778-786.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.017]
[97]
López, M.D.; Pascual-Villalobos, M.J. Are monoterpenoids and phenylpropanoids efficient inhibitors of acetylcholinesterase from stored product insect strains? Flavour Fragrance J., 2015, 30(1), 108-112.
[http://dx.doi.org/10.1002/ffj.3220]
[98]
Savelev, S.; Okello, E.; Perry, N.S.; Wilkins, R.M.; Perry, E.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav., 2003, 75(3), 661-668.
[http://dx.doi.org/10.1016/S0091-3057(03)00125-4] [PMID: 12895684]
[99]
Miyazawa, M.; Watanabe, H.; Umemoto, K.; Kameoka, H. Inhibition of Acetylcholinesterase Activity by Essential Oils of Mentha Species. J. Agric. Food Chem., 1998, 46(9), 3431-3434.
[http://dx.doi.org/10.1021/jf9707041]
[100]
Abou-Taleb, H.K.; Mohamed, M.I.E.; Shawir, M.S.; Abdelgaleil, S.A.M. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Nat. Prod. Res., 2016, 30(6), 710-714.
[http://dx.doi.org/10.1080/14786419.2015.1038999] [PMID: 25978134]
[101]
Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Shawir, M.S.; Abou-Taleb, H.K. Chemical composition, insecticidal and biochemical effects of essential oils of different plant species from Northern Egypt on the rice weevil, Sitophilus oryzae L. J. Pest Sci., 2016, 89(1), 219-229.
[http://dx.doi.org/10.1007/s10340-015-0665-z]
[102]
Politeo, O.; Botica, I.; Bilušić, T.; Jukić, M.; Carev, I.; Burčul, F.; Miloš, M. Chemical composition and evaluation of acetylcholinesterase inhibition and antioxidant activity of essential oil from Dalmatian endemic species Pinus nigra Arnold ssp. dalmatica (Vis.) Franco. J. Med. Plants Res., 2011, 5(30), 6590-6596.
[103]
Miyazawa, M.; Tougo, H.; Ishihara, M. Inhibition of acetylcholinesterase activity by essential oil from Citrus paradisi. Nat. Prod. Lett., 2001, 15(3), 205-210.
[http://dx.doi.org/10.1080/10575630108041281] [PMID: 11858553]
[104]
Lee, B.H.; Nam, T.G.; Park, W.J.; Kang, H.; Heo, H.J.; Chung, D.K.; Kim, G.H.; Kim, D-O. Antioxidative and neuroprotective effects of volatile components in essential oils from Chrysanthemum indicum Linné flowers. Food Sci. Biotechnol., 2015, 24(2), 717-723.
[http://dx.doi.org/10.1007/s10068-015-0093-0]
[105]
Alza, N.P.; Murray, A.P. Chemical Constituents and Acetylcholinesterase Inhibition of Senecio ventanensis Cabrera (Asteraceae). Rec. Nat. Prod., 2016, 10(4), 513-518.
[106]
Miyazawa, M.; Kakiuchi, A.; Watanabe, H.; Kameoka, H. Inhibition of Acetylcholinesterase Activity by Volatile α, β-Unsaturated Ketones. Nat. Prod. Lett., 1998, 12(2), 131-134.
[http://dx.doi.org/10.1080/10575639808048281]
[107]
Ren, Y.; Houghton, P.J.; Hider, R.C.; Howes, M.J. Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorhiza. Planta Med., 2004, 70(3), 201-204.
[http://dx.doi.org/10.1055/s-2004-815535] [PMID: 15114495]
[108]
Silva, N.N.S.; Silva, J.R.A.; Alves, C.N.; Andrade, E.H.A.; da Silva, J.K.R.; Maia, J.G.S. Acetylcholinesterase inhibitory activity and molecular docking study of 1-nitro-2-phenylethane, the main constituent of Aniba canelilla essential oil. Chem. Biol. Drug Des., 2014, 84(2), 192-198.
[http://dx.doi.org/10.1111/cbdd.12304] [PMID: 24661632]
[109]
Okello, E.J.; Dimaki, C.; Howes, M.J.R.; Houghton, P.J.; Perry, E.K. In vitro inhibition of human acetyl- and butyrylcholinesterase by Narcissus poeticus L. (Amaryllidaceae) flower absolute. Int. J. Essent. Oil Therapeutics, 2008, 2(3), 105-110.
[110]
Tanaka, R. Effect of benzyl alcohol on adenosine triphosphatase, p-nitrophenylphosphatase and acetylcholinesterase in rat erythrocyte membrane. J. Toxicol. Sci., 1984, 9(2), 109-116.
[http://dx.doi.org/10.2131/jts.9.109] [PMID: 6090685]
[111]
Kovarik, Z.; Bosak, A.; Šinko, G.; Latas, T. Exploring the Active Sites of Cholinesterases by Inhibition with Bambuterol and Haloxon. Croat. Chem. Acta, 2003, 76(1), 63-67.
[112]
Bosak, A.; Katalinić, M.; Kovarik, Z. [Cholinesterases: structure, role, and inhibition]. Arh. Hig. Rada Toksikol., 2011, 62(2), 175-190.
[http://dx.doi.org/10.2478/10004-1254-62-2011-2107] [PMID: 21705306]
[113]
Saxena, A.; Redman, A.M.G.; Jiang, X.; Lockridge, O.; Doctor, B.P. Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry, 1997, 36(48), 14642-14651.
[http://dx.doi.org/10.1021/bi971425+] [PMID: 9398183]
[114]
Miyazawa, M.; Nakahashi, H.; Usami, A.; Matsuda, N. Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC. J. Nat. Med., 2016, 70(2), 282-289.
[http://dx.doi.org/10.1007/s11418-015-0961-1] [PMID: 26758617]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy