Generic placeholder image

Current Neuropharmacology


ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson’s Disease

Author(s): Agostinho Lemos, Rita Melo, Antonio Jose Preto, Jose Guilherme Almeida, Irina Sousa Moreira* and Maria Natalia Dias Soeiro Cordeiro*

Volume 16, Issue 6, 2018

Page: [786 - 848] Pages: 63

DOI: 10.2174/1570159X16666180308161642

Price: $65


Parkinson's Disease (PD) is a long-term neurodegenerative brain disorder that mainly affects the motor system. The causes are still unknown, and even though currently there is no cure, several therapeutic options are available to manage its symptoms. The development of novel antiparkinsonian agents and an understanding of their proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard therapy for the symptomatic treatment of motor dysfunctions associated to PD. However, the development of dyskinesias and motor fluctuations (wearing-off and on-off phenomena) associated with long-term L-DOPA replacement therapy have limited its antiparkinsonian efficacy. The investigation for non-dopaminergic therapies has been largely explored as an attempt to counteract the motor side effects associated with dopamine replacement therapy. Being one of the largest cell membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a relevant target for drug discovery focused on a wide range of therapeutic areas, including Central Nervous System (CNS) diseases. The modulation of specific GPCRs potentially implicated in PD, excluding dopamine receptors, may provide promising non-dopaminergic therapeutic alternatives for symptomatic treatment of PD. In this review, we focused on the impact of specific GPCR subclasses, including dopamine receptors, adenosine receptors, muscarinic acetylcholine receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine receptors, on the pathophysiology of PD and the importance of structure- and ligand-based in silico approaches for the development of small molecules to target these receptors.

Keywords: Parkinson's disease, G-protein-coupled receptors, drug design, ligand-docking, quantitative structure-activity relationships, pharmacophore.

Graphical Abstract

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy