Generic placeholder image

Current Medicinal Chemistry


ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions

Author(s): Hiroyuki Itabe*, Rina Kato, Naoko Sawada, Takashi Obama and Matsuo Yamamoto

Volume 26 , Issue 9 , 2019

Page: [1576 - 1593] Pages: 18

DOI: 10.2174/0929867325666180307114855

Price: $65


Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of ox-LDL and LDL rather than oxLDL concentration alone has also been focused. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in the circulatory system.

Keywords: lipoproteins, oxLDL, oxLDL/LDL ratio, oxidized phosphatidylcholine, AMI, periodontitis, GCF, transcytosis.

Witztum, J.L.; Steinberg, D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest., 1991, 88(6), 1785-1792.
Itabe, H. Oxidized low-density lipoproteins: what is understood and what remains to be clarified. Biol. Pharm. Bull., 2003, 26(1), 1-9.
Ishigaki, Y.; Oka, Y.; Katagiri, H. Circulating oxidized LDL: a biomarker and a pathogenic factor. Curr. Opin. Lipidol., 2009, 20(5), 363-369.
Linton, F.M.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Vickers, K.C. The role of lipids and lipoproteins in atherosclerosis. In: Endotext [Internet] eds. South Dartmouth (MA):, Inc, 2000- 2015.
Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med., 2013, 11, 117.
Itabe, H.; Ueda, M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J. Atheroscler. Thromb., 2007, 14(1), 1-11.
Sato, Y.; Nishimichi, N.; Nakano, A.; Takikawa, K.; Inoue, N.; Matsuda, H.; Sawamura, T. Determination of LOX-1-ligand activity in mouse plasma with a chicken monoclonal antibody for ApoB. Atheroscler., 2008, 200(2), 303-309.
Steinbrecher, U.P.; Parthasarathy, S.; Leake, D.S.; Witztum, J.L.; Steinberg, D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. USA, 1984, 81(12), 3883-3887.
Parthasarathy, S.; Young, S.G.; Witztum, J.L.; Pittman, R.C.; Steinberg, D. Probucol inhibits oxidative modification of low density lipoprotein. J. Clin. Invest., 1986, 77(2), 641-644.
Jessup, W.; Mander, E.L.; Dean, R.T. The intracellular storage and turnover of apolipoprotein B of oxidized LDL in macrophages. Biochim. Biophys. Acta, 1992, 1126(2), 167-177.
Sasabe, N.; Keyamura, Y.; Obama, T.; Inoue, N.; Masuko, Y.; Igarashi, Y.; Aiuchi, T.; Kato, R.; Yamaguchi, T.; Kuwata, H.; Iwamoto, S.; Miyazaki, A.; Hara, S.; Yoshikawa, T.; Itabe, H. Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein. Lipids Health Dis., 2014, 13, 48.
Davis, B.; Koster, G.; Douet, L.J.; Scigelova, M.; Woffendin, G.; Ward, J.M.; Smith, A.; Humphries, J.; Burnand, K.G.; Macphee, C.H.; Postle, A.D. Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J. Biol. Chem., 2008, 283(10), 6428-6437.
Itabe, H. Oxidative modification of LDL: its pathological role in atherosclerosis. Clin. Rev. Allergy Immunol., 2009, 37(1), 4-11.
Shibata, T.; Shimizu, K.; Hirano, K.; Nakashima, F.; Kikuchi, R.; Matsushita, T.; Uchida, K. Adductome-based identification of biomarkers for lipid peroxidation. J. Biol. Chem., 2017, 292(20), 8223-8235.
Obama, T.; Kato, R.; Masuda, Y.; Takahashi, K.; Aiuchi, T.; Itabe, H. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics, 2007, 7(13), 2132-2141.
Itabe, H.; Yamamoto, H.; Imanaka, T.; Suzuki, M.; Kawai, Y.; Nakagawa, Y.; Suzuki, A.; Takano, T. Oxidized phosphatidylcholines that modify proteins. Analysis by anti-oxidized low density lipoprotein monoclonal antibody. J. Biol. Chem., 1996, 271(52), 33208-33217.
Watson, A.D.; Leitinger, N.; Navab, M.; Faull, K.F.; Hörkkö, S.; Witztum, J.L.; Palinski, W.; Schwenke, D.; Salomon, R.G.; Sha, W.; Subbanagounder, G.; Fogelman, A.M.; Berliner, J.A. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J. Biol. Chem., 1997, 272(21), 13597-13607.
Podrez, E.A.; Poliakov, E.; Shen, Z.; Zhang, R.; Deng, Y.; Sun, M.; Finton, P.J.; Shan, L.; Gugiu, B.; Fox, P.L.; Hoff, H.F.; Salomon, R.G.; Hazen, S.L. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem., 2002, 277(41), 38503-38516.
Hazen, S.L.; Heinecke, J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest., 1997, 99(9), 2075-2081.
Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 1999, 344(Pt 1), 109-116.
Berliner, J.A.; Territo, M.C.; Sevanian, A.; Ramin, S.; Kim, J.A.; Bamshad, B.; Esterson, M.; Fogelman, A.M. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J. Clin. Invest., 1990, 85(4), 1260-1266.
Younis, N.N.; Soran, H.; Sharma, R.; Charlton-Menys, V.; Greenstein, A.; Elseweidy, M.M.; Durrington, P.N. Small-dense LDL and LDL glycation in metabolic syndrome and in statin-treated and non-statin-treated type 2 diabetes. Diab. Vasc. Dis. Res., 2010, 7(4), 289-295.
Imanaga, Y.; Sakata, N.; Takebayashi, S.; Matsunaga, A.; Sasaki, J.; Arakawa, K.; Nagai, R.; Horiuchi, S.; Itabe, H.; Takano, T. In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. Atheroscler., 2000, 150(2), 343-355.
Soran, H.; Durrington, P.N. Susceptibility of LDL and its subfractions to glycation. Curr. Opin. Lipidol., 2011, 22(4), 254-261.
Liao, F.; Berliner, J.A.; Mehrabian, M.; Navab, M.; Demer, L.L.; Lusis, A.J.; Fogelman, A.M. Minimally modified low density lipoprotein is biologically active in vivo in mice. J. Clin. Invest., 1991, 87(6), 2253-2257.
Khan, B.V.; Parthasarathy, S.S.; Alexander, R.W.; Medford, R.M. Modified low density lipoprotein and its constituents augment cytokine-activated vascular cell adhesion molecule-1 gene expression in human vascular endothelial cells. J. Clin. Invest., 1995, 95(3), 1262-1270.
Essler, M.; Retzer, M.; Bauer, M.; Heemskerk, J.W.; Aepfelbacher, M.; Siess, W. Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of Rho/Rho kinase and inhibition of myosin light chain phosphatase. J. Biol. Chem., 1999, 274(43), 30361-30364.
Malden, L.T.; Chait, A.; Raines, E.W.; Ross, R. The influence of oxidatively modified low density lipoproteins on expression of platelet-derived growth factor by human monocyte-derived macrophages. J. Biol. Chem., 1991, 266(21), 13901-13907.
Lipton, B.A.; Parthasarathy, S.; Ord, V.A.; Clinton, S.K.; Libby, P.; Rosenfeld, M.E. Components of the protein fraction of oxidized low density lipoprotein stimulate interleukin-1 alpha production by rabbit arterial macrophage-derived foam cells. J. Lipid Res., 1995, 36(10), 2232-2242.
Ramos, M.A.; Kuzuya, M.; Esaki, T.; Miura, S.; Satake, S.; Asai, T.; Kanda, S.; Hayashi, T.; Iguchi, A. Induction of macrophage VEGF in response to oxidized LDL and VEGF accumulation in human atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol., 1998, 18(7), 1188-1196.
Kusuhara, M.; Chait, A.; Cader, A.; Berk, B.C. Oxidized LDL stimulates mitogen-activated protein kinases in smooth muscle cells and macrophages. Arterioscler. Thromb. Vasc. Biol., 1997, 17(1), 141-148.
Sata, M.; Walsh, K. Oxidized LDL activates fas-mediated endothelial cell apoptosis. J. Clin. Invest., 1998, 102(9), 1682-1689.
Kataoka, H.; Kume, N.; Miyamoto, S.; Minami, M.; Morimoto, M.; Hayashida, K.; Hashimoto, N.; Kita, T. Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2001, 21(6), 955-960.
Suzuki, H.; Kurihara, Y.; Takeya, M.; Kamada, N.; Kataoka, M.; Jishage, K.; Ueda, O.; Sakaguchi, H.; Higashi, T.; Suzuki, T.; Takashima, Y.; Kawabe, Y.; Cynshi, O.; Wada, Y.; Honda, M.; Kurihara, H.; Aburatani, H.; Doi, T.; Matsumoto, A.; Azuma, S.; Noda, T.; Toyoda, Y.; Itakura, H.; Yazaki, Y.; Kodama, T. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature, 1997, 386(6622), 292-296.
Endemann, G.; Stanton, L.W.; Madden, K.S.; Bryant, C.M.; White, R.T.; Protter, A.A. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem., 1993, 268(16), 11811-11816.
Nozaki, S.; Kashiwagi, H.; Yamashita, S.; Nakagawa, T.; Kostner, B.; Tomiyama, Y.; Nakata, A.; Ishigami, M.; Miyagawa, J.; Kameda-Takemura, K.; Kurata, Y.; Matsuzawa, Y. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36-deficient subjects. J. Clin. Invest., 1995, 96(4), 1859-1865.
Sawamura, T.; Kume, N.; Aoyama, T.; Moriwaki, H.; Hoshikawa, H.; Aiba, Y.; Tanaka, T.; Miwa, S.; Katsura, Y.; Kita, T.; Masaki, T. An endothelial receptor for oxidized low-density lipoprotein. Nature, 1997, 386(6620), 73-77.
Greaves, D.R.; Gordon, S. Thematic review series: the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J. Lipid Res., 2005, 46(1), 11-20.
Steinbrecher, U.P. Receptors for oxidized low density lipoprotein. Biochim. Biophys. Acta, 1999, 1436(3), 279-298.
Yamada, Y.; Doi, T.; Hamakubo, T.; Kodama, T. Scavenger receptor family proteins: roles for atherosclerosis, host defence and disorders of the central nervous system. Cell. Mol. Life Sci., 1998, 54(7), 628-640.
Ehara, S.; Ueda, M.; Naruko, T.; Haze, K.; Itoh, A.; Otuska, M.; Komatsu, R.; Matsuo, T.; Itabe, H.; Takano, T.; Tsukamoto, Y.; Yoshiyama, M.; Takeuchi, K.; Yoshikawa, J.; Becker, A.E. Oxidized low density lipoprotein relates to plaque destabilization in human coronary atherosclerotic lesions. Circulation, 2001, 103(15), 1955-1960.
Rosenfeld, M.E.; Khoo, J.C.; Miller, E.; Parthasarathy, S.; Palinski, W.; Witztum, J.L. Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid-protein adducts. J. Clin. Invest., 1991, 87(1), 90-99.
Yamada, S.; Koike, T.; Nakagawa, T.; Kuniyoshi, N.; Ying, Y.; Itabe, H.; Yamashita, A.; Asada, Y.; Shiomi, M. Morphological features of coronary plaques in WHHLMI rabbits (Oryctolagus cuniculus), an animal model for familial hypercholesterolemia. Exp. Anim., 2017, 66(2), 145-157.
Sumiyoshi, S.; Nakashima, Y.; Chen, Y.X.; Itabe, H.; Sueishi, K. Interleukin-10 expression is positively correlated with oxidized LDL deposition and inversely with T-lymphocyte infiltration in atherosclerotic intimas of human coronary arteries. Pathol. Res. Pract., 2006, 202(3), 141-150.
Khamis, R.Y.; Woollard, K.J.; Hyde, G.D.; Boyle, J.J.; Bicknell, C.; Chang, S.H.; Malik, T.H.; Hara, T.; Mauskapf, A.; Granger, D.W.; Johnson, J.L.; Ntziachristos, V.; Matthews, P.M.; Jaffer, F.A.; Haskard, D.O. Near infrared fluorescence (NIRF) molecular imaging of oxidized LDL with an autoantibody in experimental atherosclerosis. Sci. Rep., 2016, 6, 21785.
Itabe, H.; Suzuki, K.; Tsukamoto, Y.; Komatsu, R.; Ueda, M.; Mori, M.; Higashi, Y.; Takano, T. Lysosomal accumulation of oxidized phosphatidylcholine-apolipoprotein B complex in macrophages: intracellular fate of oxidized low density lipoprotein. Biochim. Biophys. Acta, 2000, 1487(2-3), 233-245.
Hoppe, G.; Ravandi, A.; Herrera, D.; Kuksis, A.; Hoff, H.F. Oxidation products of cholesteryl linoleate are resistant to hydrolysis in macrophages, form complexes with proteins, and are present in human atherosclerotic lesions. J. Lipid Res., 1997, 38(7), 1347-1360.
Van Berkel, T.J.C.; De Rijke, Y.B.; Kruijt, J.K. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on kupffer and endothelial liver cells. J. Biol. Chem., 1991, 266(4), 2282-2289.
Shoji, T.; Nishizawa, Y.; Fukumoto, M.; Shimamura, K.; Kimura, J.; Kanda, H.; Emoto, M.; Kawagishi, T.; Morii, H. Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects. Atheroscler., 2000, 148(1), 171-177.
Ravandi, A.; Boekholdt, S.M.; Mallat, Z.; Talmud, P.J.; Kastelein, J.J.; Wareham, N.J.; Miller, E.R.; Benessiano, J.; Tedgui, A.; Witztum, J.L.; Khaw, K.T.; Tsimikas, S. Relationship of IgG and IgM autoantibodies and immune complexes to oxidized LDL with markers of oxidation and inflammation and cardiovascular events: results from the EPIC-Norfolk Study. J. Lipid Res., 2011, 52(10), 1829-1836.
Itabe, H.; Takeshima, E.; Iwasaki, H.; Kimura, J.; Yoshida, Y.; Imanaka, T.; Takano, T. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J. Biol. Chem., 1994, 269(21), 15274-15279.
Itabe, H.; Yamamoto, H.; Imanaka, T.; Shimamura, K.; Uchiyama, H.; Kimura, J.; Sanaka, T.; Hata, Y.; Takano, T. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J. Lipid Res., 1996, 37(1), 45-53.
Holvoet, P.; Donck, J.; Landeloos, M.; Brouwers, E.; Luijtens, K.; Arnout, J.; Lesaffre, E.; Vanrenterghem, Y.; Collen, D. Correlation between oxidized low density lipoproteins and von Willebrand factor in chronic renal failure. Thromb. Haemost., 1996, 76(5), 663-669.
Holvoet, P.; Vanhaecke, J.; Janssens, S.; Van de Werf, F.; Collen, D. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation, 1998, 98(15), 1487-1494.
Holvoet, P.; Van Cleemput, J.; Collen, D.; Vanhaecke, J. Oxidized low density lipoprotein is a prognostic marker of transplant-associated coronary artery disease. Arterioscler. Thromb. Vasc. Biol., 2000, 20(3), 698-702.
Holvoet, P.; Kritchevsky, S.B.; Tracy, R.P.; Mertens, A.; Rubin, S.M.; Butler, J.; Goodpaster, B.; Harris, T.B. The metabolic syndrome, circulating oxidized LDL, and risk of myocardial infarction in well-functioning elderly people in the health, aging, and body composition cohort. Diabetes, 2004, 53(4), 1068-1073.
Fang, J.C.; Kinlay, S.; Behrendt, D.; Hikita, H.; Witztum, J.L.; Selwyn, A.P.; Ganz, P. Circulating autoantibodies to oxidized LDL correlate with impaired coronary endothelial function after cardiac transplantation. Arterioscler. Thromb. Vasc. Biol., 2002, 22(12), 2044-2048.
Tsimikas, S.; Bergmark, C.; Beyer, R.W.; Patel, R.; Pattison, J.; Miller, E.; Juliano, J.; Witztum, J.L. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J. Am. Coll. Cardiol., 2003, 41(3), 360-370.
Penny, W.F.; Ben-Yehuda, O.; Kuroe, K.; Long, J.; Bond, A.; Bhargava, V.; Peterson, J.F.; McDaniel, M.; Juliano, J.; Witztum, J.L.; Ross, J., Jr; Peterson, K.L. Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein. J. Am. Coll. Cardiol., 2001, 37(3), 766-774.
Tsimikas, S.; Witztum, J.L.; Miller, E.R.; Sasiela, W.J.; Szarek, M.; Olsson, A.G.; Schwartz, G.G. High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation, 2004, 110(11), 1406-1412.
Tsimikas, S.; Mallat, Z.; Talmud, P.J.; Kastelein, J.J.P.; Wareham, N.J.; Sandhu, M.S.; Miller, E.R.; Benessiano, J.; Tedgui, A.; Witztum, J.L.; Khaw, K.T.; Boekholdt, S.M. Oxidation-specific biomarkers, lipoprotein(a), and risk of fatal and nonfatal coronary events. J. Am. Coll. Cardiol., 2010, 56(12), 946-955.
Tsimikas, S.; Willeit, P.; Willeit, J.; Santer, P.; Mayr, M.; Xu, Q.; Mayr, A.; Witztum, J.L.; Kiechl, S. Oxidation-specific biomarkers, prospective 15-year cardiovascular and stroke outcomes, and net reclassification of cardiovascular events. J. Am. Coll. Cardiol., 2012, 60(21), 2218-2229.
Inoue, N.; Okamura, T.; Kokubo, Y.; Fujita, Y.; Sato, Y.; Nakanishi, M.; Yanagida, K.; Kakino, A.; Iwamoto, S.; Watanabe, M.; Ogura, S.; Otsui, K.; Matsuda, H.; Uchida, K.; Yoshimoto, R.; Sawamura, T. LOX index, a novel predictive biochemical marker for coronary heart disease and stroke. Clin. Chem., 2010, 56(4), 550-558.
Iwamoto, S.; Fujita, Y.; Kakino, A.; Yanagida, K.; Matsuda, H.; Yoshimoto, R.; Sawamura, T. An alternative protein standard to measure activity of LOX-1 ligand containing apoB (LAB) - utilization of anti-LOX-1 single- chain antibody fused to apoB fragment. J. Atheroscler. Thromb., 2011, 18(9), 818-828.
Ohki, I.; Ishigaki, T.; Oyama, T.; Matsunaga, S.; Xie, Q.; Ohnishi-Kameyama, M.; Murata, T.; Tsuchiya, D.; Machida, S.; Morikawa, K.; Tate, S. Crystal structure of human lectin-like, oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to OxLDL. Structure, 2005, 13(6), 905-917.
Kotani, K.; Maekawa, M.; Kanno, T.; Kondo, A.; Toda, N.; Manabe, M. Distribution of immunoreactive malondialdehyde-modified low-density lipoprotein in human serum. Biochim. Biophys. Acta, 1994, 1215(1-2), 121-125.
Tanaga, K.; Bujo, H.; Inoue, M.; Mikami, K.; Kotani, K.; Takahashi, K.; Kanno, T.; Saito, Y. Increased circulating malondialdehyde-modified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler. Thromb. Vasc. Biol., 2002, 22(4), 662-666.
Itabe, H.; Jimi, S.; Kamimura, S.; Suzuki, K.; Uesugi, N.; Imanaka, T.; Shijo, H.; Takano, T. Appearance of cross linked proteins in human atheroma and rat pre-fibrotic liver detected by a new monoclonal antibody. Biochim. Biophys. Acta, 1998, 1406(1), 28-39.
Ylä-Herttuala, S.; Palinski, W.; Butler, S.W.; Picard, S.; Steinberg, D.; Witztum, J.L. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler. Thromb., 1994, 14(1), 32-40.
Naruko, T.; Ueda, M.; Ehara, S.; Itoh, A.; Haze, K.; Shirai, N.; Ikura, Y.; Ohsawa, M.; Itabe, H.; Kobayashi, Y.; Yamagishi, H.; Yoshiyama, M.; Yoshikawa, J.; Becker, A.E. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arterioscler. Thromb. Vasc. Biol., 2006, 26(4), 877-883.
Tsimikas, S.; Lau, H.K.; Han, K-R.; Shortal, B.; Miller, E.R.; Segev, A.; Curtiss, L.K.; Witztum, J.L.; Strauss, B.H. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation, 2004, 109(25), 3164-3170.
Imazu, M.; Ono, K.; Tadehara, F.; Kajiwara, K.; Yamamoto, H.; Sumii, K.; Tasaki, N.; Oiwa, J.; Shimohara, Y.; Gomyo, Y.; Itabe, H. Plasma levels of oxidized low density lipoprotein are associated with stable angina pectoris and modalities of acute coronary syndrome. Int. Heart J., 2008, 49(5), 515-524.
Yamashita, H.; Ehara, S.; Yoshiyama, M.; Naruko, T.; Haze, K.; Shirai, N.; Sugama, Y.; Ikura, Y.; Ohsawa, M.; Itabe, H.; Kataoka, T.; Kobayashi, Y.; Becker, A.E.; Yoshikawa, J.; Ueda, M. Elevated plasma levels of oxidized low-density lipoprotein relate to the presence of angiographically detected complex and thrombotic coronary artery lesion morphology in patients with unstable angina. Circ. J., 2007, 71(5), 681-687.
Johnston, N.; Jernberg, T.; Lagerqvist, B.; Siegbahn, A.; Wallentin, L. Improved identification of patients with coronary artery disease by the use of new lipid and lipoprotein biomarkers. Am. J. Cardiol., 2006, 97(5), 640-645.
Pawlak, K.; Mysliwiec, M.; Pawlak, D. Oxidized low-density lipoprotein (oxLDL) plasma levels and oxLDL to LDL ratio - are they real oxidative stress markers in dialyzed patients? Life Sci., 2013, 92(4-5), 253-258.
Motamed, M.; Nargesi, A.A.; Heidari, B.; Mirmiranpour, H.; Esteghamati, A.; Nakhjavani, M. Oxidized low-density lipoprotein (ox-LDL) to LDL ratio (ox-LDL/LDL) and ox-LDL to high-density lipoprotein ratio (ox-LDL/HDL): Are they accurate biomarkers of type 2 diabetes mellitus? Clin. Lab., 2016, 62(9), 1609-1617.
Girona, J.; Manzanares, J.M.; Marimón, F.; Cabré, A.; Heras, M.; Guardiola, M.; Ribalta, J.; Masana, L. Oxidized to non-oxidized lipoprotein ratios are associated with arteriosclerosis and the metabolic syndrome in diabetic patients. Nutr. Metab. Cardiovasc. Dis., 2008, 18(5), 380-387.
Tsutsui, T.; Tsutamoto, T.; Wada, A.; Maeda, K.; Mabuchi, N.; Hayashi, M.; Ohnishi, M.; Kinoshita, M. Plasma oxidized low-density lipoprotein as a prognostic predictor in patients with chronic congestive heart failure. J. Am. Coll. Cardiol., 2002, 39(6), 957-962.
Côté, C.; Pibarot, P.; Després, J.P.; Mohty, D.; Cartier, A.; Arsenault, B.J.; Couture, C.; Mathieu, P. Association between circulating oxidised low-density lipoprotein and fibrocalcific remodelling of the aortic valve in aortic stenosis. Heart, 2008, 94(9), 1175-1180.
Nishi, K.; Itabe, H.; Uno, M.; Kitazato, K.T.; Horiguchi, H.; Shinno, K.; Nagahiro, S. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler. Thromb. Vasc. Biol., 2002, 22(10), 1649-1654.
Uno, M.; Kitazato, K.T.; Nishi, K.; Itabe, H.; Nagahiro, S. Raised plasma oxidised LDL in acute cerebral infarction. J. Neurol. Neurosurg. Psychiatry, 2003, 74(3), 312-316.
Uno, M.; Kitazato, K.T.; Suzue, A.; Matsuzaki, K.; Harada, M.; Itabe, H.; Nagahiro, S. Inhibition of brain damage by edaravone, a free radical scavenger, can be monitored by plasma biomarkers that detect oxidative and astrocyte damage in patients with acute cerebral infarction. Free Radic. Biol. Med., 2005, 39(8), 1109-1116.
Wang, A.; Yang, Y.; Su, Z.; Yue, W.; Hao, H.; Ren, L.; Wang, Y.; Cao, Y.; Wang, Y. Association of oxidized low-density lipoprotein with prognosis of stroke and stroke subtypes. Stroke, 2017, 48(1), 91-97.
Holvoet, P.; Lee, D.H.; Steffes, M.; Gross, M.; Jacobs, D.R., Jr Association between circulating oxidized low-density lipoprotein and incidence of the metabolic syndrome. JAMA, 2008, 299(19), 2287-2293.
Pohjantähti-Maaroos, H.; Palomäki, A.; Kankkunen, P.; Laitinen, R.; Husgafvel, S.; Oksanen, K. Circulating oxidized low-density lipoproteins and arterial elasticity: comparison between men with metabolic syndrome and physically active counterparts. Cardiovasc. Diabetol., 2010, 9, 41.
Schreurs, M.P.H.; Hubel, C.A.; Bernstein, I.M.; Jeyabalan, A.; Cipolla, M.J. Increased oxidized low-density lipoprotein causes blood-brain barrier disruption in early-onset preeclampsia through LOX-1. FASEB J., 2013, 27(3), 1254-1263.
Mahley, R.W. Central nervous system lipoproteins. ApoE and regulation of cholesterol metabolism. Arterioscler. Thromb. Vasc. Biol., 2016, 36(7), 1305-1315.
Bacchetti, T.; Vignini, A.; Giulietti, A.; Nanetti, L.; Provinciali, L.; Luzzi, S.; Mazzanti, L.; Ferretti, G. Higher levels of oxidized low-density lipoproteins in Alzheimer’s disease patients: Roles for platelet activating factor acetyl hydrolase and paraoxionase-1. J. Alzheimers Dis., 2015, 46(1), 179-186.
Murr, J.; Carmichael, P-H.; Julien, P.; Laurin, D. Plasma oxidized low-density lipoprotein levels and risk of Alzheimer’s disease. Neurobiol. Aging, 2014, 35(8), 1833-1838.
Kato, R.; Mori, C.; Kitazato, K.; Arata, S.; Obama, T.; Mori, M.; Takahashi, K.; Aiuchi, T.; Takano, T.; Itabe, H. Transient increase in plasma oxidized LDL during the progression of atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol., 2009, 29(1), 33-39.
Tsimikas, S.; Aikawa, M.; Miller, F.J., Jr; Miller, E.R.; Torzewski, M.; Lentz, S.R.; Bergmark, C.; Heistad, D.D.; Libby, P.; Witztum, J.L. Increased plasma oxidized phospholipid:apolipoprottein B-100 with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering. Arterioscler. Thromb. Vasc. Biol., 2007, 27(1), 175-181.
Fraley, A.E.; Schwartz, G.G.; Olsson, A.G.; Kinlay, S.; Szarek, M.; Rifai, N.; Libby, P.; Ganz, P.; Witztum, J.L.; Tsimikas, S. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: Results from the MIRACL (Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering) trial. J. Am. Coll. Cardiol., 2009, 53(23), 2186-2196.
Takahashi, K.; Kimura, Y.; Nagata, K.; Yamamoto, A.; Matsuo, M.; Ueda, K. ABC proteins: key molecules for lipid homeostasis. Med. Mol. Morphol., 2005, 38(1), 2-12.
Oram, J.F.; Lawn, R.M.; Garvin, M.R.; Wade, D.P. ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages. J. Biol. Chem., 2000, 275(44), 34508-34511.
McNeish, J.; Aiello, R.J.; Guyot, D.; Turi, T.; Gabel, C.; Aldinger, C.; Hoppe, K.L.; Roach, M.L.; Royer, L.J.; de Wet, J.; Broccardo, C.; Chimini, G.; Francone, O.L. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc. Natl. Acad. Sci. USA, 2000, 97(8), 4245-4250.
Yamauchi, Y.; Iwamoto, N.; Rogers, M.A.; Abe-Dohmae, S.; Fujimoto, T.; Chang, C.C.; Ishigami, M.; Kishimoto, T.; Kobayashi, T.; Ueda, K.; Furukawa, K.; Chang, T.Y.; Yokoyama, S. Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum. J. Biol. Chem., 2015, 290(39), 23464-23477.
Levin, N.; Bischoff, E.D.; Daige, C.L.; Thomas, D.; Vu, C.T.; Heyman, R.A.; Tangirala, R.K.; Schulman, I.G. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler. Thromb. Vasc. Biol., 2005, 25(1), 135-142.
Tangirala, R.K.; Bischoff, E.D.; Joseph, S.B.; Wagner, B.L.; Walczak, R.; Laffitte, B.A.; Daige, C.L.; Thomas, D.; Heyman, R.A.; Mangelsdorf, D.J.; Wang, X.; Lusis, A.J.; Tontonoz, P.; Schulman, I.G. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11896-11901.
Aiello, R.J.; Brees, D.; Bourassa, P.A.; Royer, L.; Lindsey, S.; Coskran, T.; Haghpassand, M.; Francone, O.L. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterioscler. Thromb. Vasc. Biol., 2002, 22(4), 630-637.
Chawla, A.; Boisvert, W.A.; Lee, C-H.; Laffitte, B.A.; Barak, Y.; Joseph, S.B.; Liao, D.; Nagy, L.; Edwards, P.A.; Curtiss, L.K.; Evans, R.M.; Tontonoz, P. A PPAR γ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell, 2001, 7(1), 161-171.
Kimura, T.; Tse, K.; Sette, A.; Ley, K. Vaccination to modulate atherosclerosis. Autoimmunity, 2015, 48(3), 152-160.
Fyfe, A.I.; Qiao, J-H.; Lusis, A.J. Immune-deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J. Clin. Invest., 1994, 94(6), 2516-2520.
Caligiuri, G.; Nicoletti, A.; Poirier, B.; Hansson, G.K. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J. Clin. Invest., 2002, 109(6), 745-753.
Binder, C.J.; Hörkkö, S.; Dewan, A.; Chang, M-K.; Kieu, E.P.; Goodyear, C.S.; Shaw, P.X.; Palinski, W.; Witztum, J.L.; Silverman, G.J. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med., 2003, 9(6), 736-743.
Miller, Y.I.; Chang, M.K.; Binder, C.J.; Shaw, P.X.; Witztum, J.L. Oxidized low density lipoprotein and innate immune receptors. Curr. Opin. Lipidol., 2003, 14(5), 437-445.
Ren, S.; Hure, A.; Peel, R.; D’Este, C.; Abhayaratna, W.; Tonkin, A.; Hopper, I.; Thrift, A.G.; Levi, C.; Sturm, J.; Durrheim, D.; Hung, J.; Briffa, T.; Chew, D.P.; Anderson, P.; Moon, L.; McEvoy, M.; Hansbro, P.; Newby, D.; Attia, J. Rationale and design of a randomized controlled trial of pneumococcal polysaccharide vaccine for prevention of cardiovascular events: the australian study for the prevention through immunization of cardiovascular events (AUSPICE). Am. Heart J., 2016, 177, 58-65.
Schiopu, A.; Frendéus, B.; Jansson, B.; Söderberg, I.; Ljungcrantz, I.; Araya, Z.; Shah, P.K.; Carlsson, R.; Nilsson, J.; Fredrikson, G.N. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1(-/-)/low-density lipoprotein receptor(-/-) mice. J. Am. Coll. Cardiol., 2007, 50(24), 2313-2318.
Li, S.; Kievit, P.; Robertson, A-K.; Kolumam, G.; Li, X.; von Wachenfeldt, K.; Valfridsson, C.; Bullens, S.; Messaoudi, I.; Bader, L.; Cowan, K.J.; Kamath, A.; van Bruggen, N.; Bunting, S.; Frendéus, B.; Grove, K.L. Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol. Metab., 2013, 2(3), 256-269.
Kakino, A.; Fujita, Y.; Nakano, A.; Horiuchi, S.; Sawamura, T. Developmental endothelial locus-1 (Del-1) inhibits oxidized low-density lipoprotein activity by direct binding, and its overexpression attenuates atherogenesis in mice. Circ. J., 2016, 80(12), 2541-2549.
Palinski, W.; D’Armiento, F.P.; Witztum, J.L.; de Nigris, F.; Casanada, F.; Condorelli, M.; Silvestre, M.; Napoli, C. Maternal hypercholesterolemia and treatment during pregnancy influence the long-term progression of atherosclerosis in offspring of rabbits. Circ. Res., 2001, 89(11), 991-996.
Yamashita, T.; Freigang, S.; Eberle, C.; Pattison, J.; Gupta, S.; Napoli, C.; Palinski, W. Maternal immunization programs postnatal immune responses and reduces atherosclerosis in offspring. Circ. Res., 2006, 99(7), e51-e64.
Löe, H.; Theilade, E.; Jensen, S.B. Experimental Gingivitis in Man. J. Periodontol., 1965, 36(3), 177-187.
Theilade, E.; Wright, W.H.; Jensen, S.B.; Löe, H. Experimental gingivitis in man. II. A longitudinal clinical and bacteriological investigation. J. Periodontal Res., 1966, 1(1), 1-13.
Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L., Jr Microbial complexes in subgingival plaque. J. Clin. Periodontol., 1998, 25(2), 134-144.
Socransky, S.S.; Smith, C.; Haffajee, A.D. Subgingival microbial profiles in refractory periodontal disease. J. Clin. Periodontol., 2002, 29(3), 260-268.
Soskolne, W.A.; Klinger, A. The relationship between periodontal diseases and diabetes: an overview. Ann. Periodontol., 2001, 6(1), 91-98.
Taylor, G.W. Bidirectional interrelationships between diabetes and periodontal diseases: an epidemiologic perspective. Ann. Periodontol., 2001, 6(1), 99-112.
Tonetti, M.S.; D’Aiuto, F.; Nibali, L.; Donald, A.; Storry, C.; Parkar, M.; Suvan, J.; Hingorani, A.D.; Vallance, P.; Deanfield, J. Treatment of periodontitis and endothelial function. N. Engl. J. Med., 2007, 356(9), 911-920.
Bahekar, A.A.; Singh, S.; Saha, S.; Molnar, J.; Arora, R. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am. Heart J., 2007, 154(5), 830-837.
Buhlin, K.; Holmer, J.; Gustafsson, A.; Hörkkö, S.; Pockley, A.G.; Johansson, A.; Paju, S.; Klinge, B.; Pussinen, P.J. Association of periodontitis with persistent, pro-atherogenic antibody responses. J. Clin. Periodontol., 2015, 42(11), 1006-1014.
Haraszthy, V.I.; Zambon, J.J.; Trevisan, M.; Zeid, M.; Genco, R.J. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol., 2000, 71(10), 1554-1560.
Mahendra, J.; Mahendra, L.; Kurian, V.M.; Jaishankar, K.; Mythilli, R. Prevalence of periodontal pathogens in coronary atherosclerotic plaque of patients undergoing coronary artery bypass graft surgery. J. Maxillofac. Oral Surg., 2009, 8(2), 108-113.
Mahendra, J.; Mahendra, L.; Felix, J.; Romanos, G.E. Genetic analysis of Porphyromonas gingivalis (fimA), Aggregatibacter actinomycetemcomitans, and red complex in coronary plaque. J. Investig. Clin. Dent., 2014, 5(3), 201-207.
Velsko, I.M.; Chukkapalli, S.S.; Rivera, M.F.; Lee, J-Y.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis. PLoS One, 2014, 9(5), e97811.
Chukkapalli, S.S.; Rivera, M.F.; Velsko, I.M.; Lee, J-Y.; Chen, H.; Zheng, D.; Bhattacharyya, I.; Gangula, P.R.; Lucas, A.R.; Kesavalu, L. Invasion of oral and aortic tissues by oral spirochete Treponema denticola in ApoE(-/-) mice causally links periodontal disease and atherosclerosis. Infect. Immun., 2014, 82(5), 1959-1967.
Brown, P.M.; Kennedy, D.J.; Morton, R.E.; Febbraio, M. CD36/SR-B2-TLR dependent pathways enhance Porphyromonas gingivalis mediated atherosclerosis in the Ldlr KO mouse model. PLoS One, 2015, 10(5), e0125126.
Montebugnoli, L.; Servidio, D.; Miaton, R.A.; Prati, C.; Tricoci, P.; Melloni, C.; Melandri, G. Periodontal health improves systemic inflammatory and haemostatic status in subjects with coronary heart disease. J. Clin. Periodontol., 2005, 32(2), 188-192.
Eberhard, J.; Grote, K.; Luchtefeld, M.; Heuer, W.; Schuett, H.; Divchev, D.; Scherer, R.; Schmitz-Streit, R.; Langfeldt, D.; Stumpp, N.; Staufenbiel, I.; Schieffer, B.; Stiesch, M. Experimental gingivitis induces systemic inflammatory markers in young healthy individuals: a single-subject interventional study. PLoS One, 2013, 8(2), e55265.
Delima, A.J.; Van Dyke, T.E. Origin and function of the cellular components in gingival crevice fluid. Periodontol. 2000, 2003, 31, 55-76.
Sakiyama, Y.; Kato, R.; Inoue, S.; Suzuki, K.; Itabe, H.; Yamamoto, M. Detection of oxidized low-density lipoproteins in gingival crevicular fluid from dental patients. J. Periodontal Res., 2010, 45(2), 216-222.
Itabe, H. Oxidized low-density lipoprotein as a biomarker of in vivo oxidative stress: from atherosclerosis to periodontitis. J. Clin. Biochem. Nutr., 2012, 51(1), 1-8.
Nagahama, Y.; Obama, T.; Usui, M.; Kanazawa, Y.; Iwamoto, S.; Suzuki, K.; Miyazaki, A.; Yamaguchi, T.; Yamamoto, M.; Itabe, H. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells. Biochem. Biophys. Res. Commun., 2011, 413(4), 566-571.
Ishizuka, M.; Kato, R.; Moriya, Y.; Noguchi, E.; Koide, Y.; Inoue, S.; Itabe, H.; Yamamoto, M. Changes in apolipoprotein B and oxidized low-density lipoprotein levels in gingival crevicular fluids as a result of periodontal tissue conditions. J. Periodontal Res., 2017, 52(3), 594-602.
Noguchi, E.; Kato, R.; Ohno, K.; Mitsui, A.; Obama, T.; Hirano, T.; Itabe, H.; Yamamoto, M. The apolipoprotein B concentration in gingival crevicular fluid increases in patients with diabetes mellitus. Clin. Biochem., 2014, 47(1-2), 67-71.
Hashida, R.; Anamizu, C.; Kimura, J.; Ohkuma, S.; Yoshida, Y.; Takano, T. Transcellular transport of lipoprotein through arterial endothelial cells in monolayer culture. Cell Struct. Funct., 1986, 11(1), 31-42.
Dehouck, B.; Fenart, L.; Dehouck, M.P.; Pierce, A.; Torpier, G.; Cecchelli, R. A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J. Cell Biol., 1997, 138(4), 877-889.
Vasile, E.; Simionescu, M.; Simionescu, N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J. Cell Biol., 1983, 96(6), 1677-1689.
Kraehling, J.R.; Chidlow, J.H.; Rajagopal, C.; Sugiyama, M.G.; Fowler, J.W.; Lee, M.Y.; Zhang, X.; Ramírez, C.M.; Park, E.J.; Tao, B.; Chen, K.; Kuruvilla, L.; Larriveé, B.; Folta-Stogniew, E.; Ola, R.; Rotllan, N.; Zhou, W.; Nagle, M.W.; Herz, J.; Williams, K.J.; Eichmann, A.; Lee, W.L.; Fernández-Hernando, C.; Sessa, W.C. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat. Commun., 2016, 7, 13516.
Santibanez, J.F.; Blanco, F.J.; Garrido-Martin, E.M.; Sanz-Rodriguez, F.; del Pozo, M.A.; Bernabeu, C. Caveolin-1 interacts and cooperates with the transforming growth factor-β type I receptor ALK1 in endothelial caveolae. Cardiovasc. Res., 2008, 77(4), 791-799.
Armstrong, S.M.; Sugiyama, M.G.; Fung, K.Y.; Gao, Y.; Wang, C.; Levy, A.S.; Azizi, P.; Roufaiel, M.; Zhu, S.N.; Neculai, D.; Yin, C.; Bolz, S.S.; Seidah, N.G.; Cybulsky, M.I.; Heit, B.; Lee, W.L. A novel assay uncovers an unexpected role for SR-BI in LDL transcytosis. Cardiovasc. Res., 2015, 108(2), 268-277.
Malcor, J.D.; Payrot, N.; David, M.; Faucon, A.; Abouzid, K.; Jacquot, G.; Floquet, N.; Debarbieux, F.; Rougon, G.; Martinez, J.; Khrestchatisky, M.; Vlieghe, P.; Lisowski, V. Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. J. Med. Chem., 2012, 55(5), 2227-2241.
Li, W.; Yang, X.; Xing, S.; Bian, F.; Yao, W.; Bai, X.; Zheng, T.; Wu, G.; Jin, S. Endogenous ceramide contributes to the transcytosis of oxLDL across endothelial cells and promotes its subendothelial retention in vascular wall. Oxid. Med. Cell. Longev., 2014, 2014, 823071.
Hodis, H.N.; Kramsch, D.M.; Avogaro, P.; Bittolo-Bon, G.; Cazzolato, G.; Hwang, J.; Peterson, H.; Sevanian, A. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J. Lipid Res., 1994, 35(4), 669-677.
Yang, C-Y.; Raya, J.L.; Chen, H-H.; Chen, C-H.; Abe, Y.; Pownall, H.J.; Taylor, A.A.; Smith, C.V. Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol., 2003, 23(6), 1083-1090.
Sánchez-Quesada, J.L.; Villegas, S.; Ordóñez-Llanos, J. Electronegative low-density lipoprotein. A link between apolipoprotein B misfolding, lipoprotein aggregation and proteoglycan binding. Curr. Opin. Lipidol., 2012, 23(5), 479-486.
Hirano, T.; Yoshino, G.; Kashiwazaki, K.; Adachi, M. Doxazosin reduces prevalence of small dense low density lipoprotein and remnant-like particle cholesterol levels in nondiabetic and diabetic hypertensive patients. Am. J. Hypertens., 2001, 14(9 Pt 1), 908-913.
Wu, J.; Shi, Y.H.; Niu, D.M.; Li, H.Q.; Zhang, C.N.; Wang, J.J. Association among retinol-binding protein 4, small dense LDL cholesterol and oxidized LDL levels in dyslipidemia subjects. Clin. Biochem., 2012, 45(9), 619-622.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy