Generic placeholder image

Recent Patents on Computer Science


ISSN (Print): 2213-2759
ISSN (Online): 1874-4796

Research Article

Face Recognition Algorithm Based on Sparse Representation of DAE Convolution Neural Network

Author(s): Yuancheng Li and Yan Li *

Volume 10, Issue 4, 2017

Page: [290 - 298] Pages: 9

DOI: 10.2174/2213275910666171117155625

Price: $65


Background: Face recognition has a very important application value in the field of information security as an important method of bioinformatics identification. There are recent patents that discuss a human face similarity recognition method and system. It has also faced the problem of complex feature space and the very large amount of data, which make face recognition one of the most challenging and most academic research topics.

Method: In order to solve the problem of the lack of prior knowledge in the face recognition algorithm based on the traditional convolution neural network, this paper improves the traditional convolution neural network from the two aspects of feature extraction and classification recognition, and proposes a new method-face recognition algorithm based on the sparse representation of denoising autoencoder convolution neural network, SRDAECNN.

Results: Extensive experiments are performed on LFW, ORL, YALE and other face database. The experimental results show that our proposed face recognition algorithm has high accuracy.

Conclusion: The model combines the advantages of the convolution neural network and sparse representation- based classifier, which can overcome the problem of incomplete feature extraction due to the random initialization of convolution kernel, and introduce sparse representation algorithm on classification recognition to enhance the recognition effect.

Keywords: Face recognition, convolution neural network, denoising autoencoder, sparse representation, convolution kernel, recognition effect.

Graphical Abstract

Rights & Permissions Print Export Cite as
© 2023 Bentham Science Publishers | Privacy Policy