Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of CXCR3 in Neurological Diseases

Author(s): Ya-Qun Zhou, Dai-Qiang Liu, Shu-Ping Chen, Jia Sun, Xue-Rong Zhou, Cui Xing *, Da-Wei Ye* and Yu-Ke Tian

Volume 17, Issue 2, 2019

Page: [142 - 150] Pages: 9

DOI: 10.2174/1570159X15666171109161140

Price: $65

Abstract

Background: Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases.

Methods: English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews.

Results: The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer’s disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases.

Conclusion: These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.

Keywords: CXCR3, CXCL10, neurological disease, multiple sclerosis, Alzheimer’s disease, chronic pain.

Graphical Abstract
[1]
Oliver, D.J.; Borasio, G.D.; Caraceni, A.; de Visser, M.; Grisold, W.; Lorenzl, S.; Veronese, S.; Voltz, R. A consensus review on the development of palliative care for patients with chronic and progressive neurological disease. Eur. J. Neurol., 2015, 23(1), 30-38.
[PMID: 26423203]
[2]
Xu, Y.; Tian, X.B.; An, K.; Yang, H.; Tian, Y.K. Lumbar transplantation of immortalized enkephalin-expressing astrocytes attenuates chronic neuropathic pain. Eur. J. Pain, 2008, 12(4), 525-533.
[http://dx.doi.org/10.1016/j.ejpain.2007.08.005] [PMID: 17904399]
[3]
Ramesh, G.; MacLean, A.G.; Philipp, M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm., 2013, 2013, 480739.
[http://dx.doi.org/10.1155/2013/480739] [PMID: 23997430]
[4]
Han, D.; Wu, C.; Xiong, Q.; Zhou, L.; Tian, Y. Anti-inflammatory mechanism of bone marrow mesenchymal stem cell transplantation in rat model of spinal cord injury. Cell Biochem. Biophys., 2015, 71(3), 1341-1347.
[http://dx.doi.org/10.1007/s12013-014-0354-1] [PMID: 25388837]
[5]
Griffith, J.W.; Sokol, C.L.; Luster, A.D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol., 2014, 32, 659-702.
[http://dx.doi.org/10. 1146/annurev-immunol-032713-120145] [PMID: 24655300]
[6]
Ślusarczyk, J.; Trojan, E.; Chwastek, J.; Głombik, K.; Basta-Kaim, A. A potential contribution of chemokine network dysfunction to the depressive disorders. Curr. Neuropharmacol., 2016, 14(7), 705-720.
[http://dx.doi.org/10.2174/1570159X14666160219131357] [PMID: 26893168]
[7]
Van Raemdonck, K.; Van den Steen, P.E.; Liekens, S.; Van Damme, J.; Struyf, S. CXCR3 ligands in disease and therapy. Cytokine Growth Factor Rev., 2015, 26(3), 311-327.
[http://dx.doi.org/10.1016/j.cytogfr.2014.11.009] [PMID: 25498524]
[8]
Loetscher, M.; Gerber, B.; Loetscher, P.; Jones, S.A.; Piali, L.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J. Exp. Med., 1996, 184(3), 963-969.
[http://dx.doi.org/10.1084/jem.184.3.963] [PMID: 9064356]
[9]
Altara, R.; Manca, M.; Brandão, R.D.; Zeidan, A.; Booz, G.W.; Zouein, F.A. Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clin. Sci. (Lond.), 2016, 130(7), 463-478.
[http://dx.doi.org/10.1042/CS20150666] [PMID: 26888559]
[10]
Cao, F.; Chen, S.S.; Yan, X.F.; Xiao, X.P.; Liu, X.J.; Yang, S.B.; Xu, A.J.; Gao, F.; Yang, H.; Chen, Z.J.; Tian, Y.K. Evaluation of side effects through selective ablation of the mu opioid receptor expressing descending nociceptive facilitatory neurons in the rostral ventromedial medulla with dermorphin-saporin. Neurotoxicology, 2009, 30(6), 1096-1106.
[http://dx.doi.org/10.1016/j.neuro. 2009.06.004] [PMID: 19559047]
[11]
Cole, K.E.; Strick, C.A.; Paradis, T.J.; Ogborne, K.T.; Loetscher, M.; Gladue, R.P.; Lin, W.; Boyd, J.G.; Moser, B.; Wood, D.E.; Sahagan, B.G.; Neote, K. Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med., 1998, 187(12), 2009-2021.
[http://dx.doi.org/10.1084/jem.187.12.2009] [PMID: 9625760]
[12]
Lasagni, L.; Francalanci, M.; Annunziato, F.; Lazzeri, E.; Giannini, S.; Cosmi, L.; Sagrinati, C.; Mazzinghi, B.; Orlando, C.; Maggi, E.; Marra, F.; Romagnani, S.; Serio, M.; Romagnani, P. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J. Exp. Med., 2003, 197(11), 1537-1549.
[http://dx.doi.org/10.1084/jem.20021897] [PMID: 12782716]
[13]
Farber, J.M. A macrophage mRNA selectively induced by gamma-interferon encodes a member of the platelet factor 4 family of cytokines. Proc. Natl. Acad. Sci. USA, 1990, 87(14), 5238-5242.
[http://dx.doi.org/10.1073/pnas.87.14.5238] [PMID: 2115167]
[14]
Luster, A.D.; Unkeless, J.C.; Ravetch, J.V. Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature, 1985, 315(6021), 672-676.
[http://dx.doi.org/10.1038/315672a0] [PMID: 3925348]
[15]
von Hundelshausen, P.; Petersen, F.; Brandt, E. Platelet-derived chemokines in vascular biology. Thromb. Haemost., 2007, 97(5), 704-713.
[http://dx.doi.org/10.1160/TH07-01-0066] [PMID: 17479180]
[16]
Israelsson, C.; Bengtsson, H.; Lobell, A.; Nilsson, L.N.; Kylberg, A.; Isaksson, M.; Wootz, H.; Lannfelt, L.; Kullander, K.; Hillered, L.; Ebendal, T. Appearance of Cxcl10-expressing cell clusters is common for traumatic brain injury and neurodegenerative disorders. Eur. J. Neurosci., 2010, 31(5), 852-863.
[http://dx.doi.org/10. 1111/j.1460-9568.2010.07105.x] [PMID: 20374285]
[17]
Barbosa, I.G.; Rocha, N.P.; Bauer, M.E.; de Miranda, A.S.; Huguet, R.B.; Reis, H.J.; Zunszain, P.A.; Horowitz, M.A.; Pariante, C.M.; Teixeira, A.L. Chemokines in bipolar disorder: trait or state? Eur. Arch. Psychiatry Clin. Neurosci., 2013, 263(2), 159-165.
[http://dx.doi.org/10.1007/s00406-012-0327-6] [PMID: 22584806]
[18]
Roberts, W.K.; Blachère, N.E.; Frank, M.O.; Dousmanis, A.; Ransohoff, R.M.; Darnell, R.B. A destructive feedback loop mediated by CXCL10 in central nervous system inflammatory disease. Ann. Neurol., 2015, 78(4), 619-629.
[http://dx.doi.org/10.1002/ana.24494] [PMID: 26224283]
[19]
Skripuletz, T.; Hackstette, D.; Bauer, K.; Gudi, V.; Pul, R.; Voss, E.; Berger, K.; Kipp, M.; Baumgärtner, W.; Stangel, M. Astrocytes regulate myelin clearance through recruitment of microglia during cuprizone-induced demyelination. Brain, 2013, 136(Pt 1), 147-167.
[http://dx.doi.org/10.1093/brain/aws262] [PMID: 23266461]
[20]
Cramer, S.P.; Modvig, S.; Simonsen, H.J.; Frederiksen, J.L.; Larsson, H.B. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain, 2015, 138(Pt 9), 2571-2583.
[http://dx.doi.org/10.1093/brain/awv203] [PMID: 26187333]
[21]
Balashov, K.E.; Rottman, J.B.; Weiner, H.L.; Hancock, W.W. CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc. Natl. Acad. Sci. USA, 1999, 96(12), 6873-6878.
[http://dx.doi.org/10.1073/pnas.96.12.6873] [PMID: 10359806]
[22]
Krauthausen, M.; Kummer, M.P.; Zimmermann, J.; Reyes-Irisarri, E.; Terwel, D.; Bulic, B.; Heneka, M.T.; Müller, M. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer’s disease model. J. Clin. Invest., 2015, 125(1), 365-378.
[http://dx.doi.org/10.1172/JCI66771] [PMID: 25500888]
[23]
Bu, H.; Shu, B.; Gao, F.; Liu, C.; Guan, X.; Ke, C.; Cao, F.; Hinton, A.O., Jr; Xiang, H.; Yang, H.; Tian, X.; Tian, Y. Spinal IFN-γ-induced protein-10 (CXCL10) mediates metastatic breast cancer-induced bone pain by activation of microglia in rat models. Breast Cancer Res. Treat., 2014, 143(2), 255-263.
[http://dx.doi.org/10. 1007/s10549-013-2807-4] [PMID: 24337539]
[24]
Pu, Y.; Li, S.; Zhang, C.; Bao, Z.; Yang, Z.; Sun, L. High expression of CXCR3 is an independent prognostic factor in glioblastoma patients that promotes an invasive phenotype. J. Neurooncol., 2015, 122(1), 43-51.
[http://dx.doi.org/10.1007/s11060-014-1692-y] [PMID: 25527046]
[25]
Guan, X.H.; Fu, Q.C.; Shi, D.; Bu, H.L.; Song, Z.P.; Xiong, B.R.; Shu, B.; Xiang, H.B.; Xu, B.; Manyande, A.; Cao, F.; Tian, Y.K. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp. Neurol., 2015, 263, 39-49.
[http://dx.doi.org/10.1016/j.expneurol. 2014.09.019] [PMID: 25281485]
[26]
Loetscher, M.; Loetscher, P.; Brass, N.; Meese, E.; Moser, B. Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur. J. Immunol., 1998, 28(11), 3696-3705.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199811)28:11<3696:AID-IMMU3696>3.0.CO;2-W] [PMID: 9842912]
[27]
Mueller, A.; Meiser, A.; McDonagh, E.M.; Fox, J.M.; Petit, S.J.; Xanthou, G.; Williams, T.J.; Pease, J.E. CXCL4-induced migration of activated T lymphocytes is mediated by the chemokine receptor CXCR3. J. Leukoc. Biol., 2008, 83(4), 875-882.
[http://dx.doi.org/10.1189/jlb.1006645] [PMID: 18174362]
[28]
Struyf, S.; Burdick, M.D.; Proost, P.; Van Damme, J.; Strieter, R.M. Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis. Circ. Res., 2004, 95(9), 855-857.
[http://dx.doi.org/10. 1161/01.RES.0000146674.38319.07] [PMID: 15459074]
[29]
Vandercappellen, J.; Van Damme, J.; Struyf, S. The role of the CXC chemokines platelet factor-4 (CXCL4/PF-4) and its variant (CXCL4L1/PF-4var) in inflammation, angiogenesis and cancer. Cytokine Growth Factor Rev., 2011, 22(1), 1-18.
[http://dx.doi.org/ 10.1016/j.cytogfr.2010.10.011] [PMID: 21111666]
[30]
Padovan, E.; Spagnoli, G.C.; Ferrantini, M.; Heberer, M. IFN-alpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J. Leukoc. Biol., 2002, 71(4), 669-676.
[PMID: 11927654]
[31]
Farber, J.M. Mig and IP-10: CXC chemokines that target lymphocytes. J. Leukoc. Biol., 1997, 61(3), 246-257.
[http://dx.doi.org/10. 1002/jlb.61.3.246] [PMID: 9060447]
[32]
Campanella, G.S.; Lee, E.M.; Sun, J.; Luster, A.D. CXCR3 and heparin binding sites of the chemokine IP-10 (CXCL10). J. Biol. Chem., 2003, 278(19), 17066-17074.
[http://dx.doi.org/10.1074/jbc.M212077200] [PMID: 12571234]
[33]
Colvin, R.A.; Campanella, G.S.; Sun, J.; Luster, A.D. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J. Biol. Chem., 2004, 279(29), 30219-30227.
[http://dx.doi.org/10.1074/jbc.M403595200] [PMID: 15150261]
[34]
Zohar, Y.; Wildbaum, G.; Novak, R.; Salzman, A.L.; Thelen, M.; Alon, R.; Barsheshet, Y.; Karp, C.L.; Karin, N. CXCL11-dependent induction of FOXP3-negative regulatory T cells suppresses autoimmune encephalomyelitis. J. Clin. Invest., 2014, 124(5), 2009-2022.
[http://dx.doi.org/10.1172/JCI71951] [PMID: 24713654]
[35]
Ciccarelli, O.; Barkhof, F.; Bodini, B.; De Stefano, N.; Golay, X.; Nicolay, K.; Pelletier, D.; Pouwels, P.J.; Smith, S.A.; Wheeler-Kingshott, C.A.; Stankoff, B.; Yousry, T.; Miller, D.H. Pathogenesis of multiple sclerosis: insights from molecular and metabolic imaging. Lancet Neurol., 2014, 13(8), 807-822.
[http://dx.doi.org/10. 1016/S1474-4422(14)70101-2] [PMID: 25008549]
[36]
Kaur, G.; Trowsdale, J.; Fugger, L. Natural killer cells and their receptors in multiple sclerosis. Brain, 2013, 136(Pt 9), 2657-2676.
[http://dx.doi.org/10.1093/brain/aws159] [PMID: 22734127]
[37]
Simpson, J.E.; Newcombe, J.; Cuzner, M.L.; Woodroofe, M.N. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol. Appl. Neurobiol., 2000, 26(2), 133-142.
[http://dx.doi.org/10.1046/j.1365-2990.2000.026002133.x] [PMID: 10840276]
[38]
Mahad, D.J.; Howell, S.J.; Woodroofe, M.N. Expression of chemokines in the CSF and correlation with clinical disease activity in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry, 2002, 72(4), 498-502.
[PMID: 11909910]
[39]
Teleshova, N.; Pashenkov, M.; Huang, Y.M.; Söderström, M.; Kivisäkk, P.; Kostulas, V.; Haglund, M.; Link, H. Multiple sclerosis and optic neuritis: CCR5 and CXCR3 expressing T cells are augmented in blood and cerebrospinal fluid. J. Neurol., 2002, 249(6), 723-729.
[http://dx.doi.org/10.1007/s00415-002-0699-z] [PMID: 12111306]
[40]
Sørensen, T.L.; Trebst, C.; Kivisäkk, P.; Klaege, K.L.; Majmudar, A.; Ravid, R.; Lassmann, H.; Olsen, D.B.; Strieter, R.M.; Ransohoff, R.M.; Sellebjerg, F. Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. J. Neuroimmunol., 2002, 127(1-2), 59-68.
[http://dx.doi.org/10. 1016/S0165-5728(02)00097-8] [PMID: 12044976]
[41]
Sindern, E.; Patzold, T.; Ossege, L.M.; Gisevius, A.; Malin, J.P. Expression of chemokine receptor CXCR3 on cerebrospinal fluid T-cells is related to active MRI lesion appearance in patients with relapsing-remitting multiple sclerosis. J. Neuroimmunol., 2002, 131(1-2), 186-190.
[http://dx.doi.org/10.1016/S0165-5728 (02)00263-1] [PMID: 12458051]
[42]
Mahad, D.J.; Lawry, J.; Howell, S.J.; Woodroofe, M.N. Longitudinal study of chemokine receptor expression on peripheral lymphocytes in multiple sclerosis: CXCR3 upregulation is associated with relapse. Mult. Scler., 2003, 9(2), 189-198.
[http://dx.doi.org/10. 1191/1352458503ms899oa] [PMID: 12708814]
[43]
Tur, C.; Montalban, X.; Tintoré, M.; Nos, C.; Río, J.; Aymerich, F.X.; Brieva, L.; Téllez, N.; Perkal, H.; Comabella, M.; Galán, I.; Calle, D.; Sastre-Garriga, J.; Rovira, A. Interferon β-1b for the treatment of primary progressive multiple sclerosis: five-year clinical trial follow-up. Arch. Neurol., 2011, 68(11), 1421-1427.
[http://dx.doi.org/10.1001/archneurol.2011.241] [PMID: 22084124]
[44]
Serres, S.; Bristow, C.; de Pablos, R.M.; Merkler, D.; Soto, M.S.; Sibson, N.R.; Anthony, D.C. Magnetic resonance imaging reveals therapeutic effects of interferon-beta on cytokine-induced reactivation of rat model of multiple sclerosis. J. Cereb. Blood Flow Metab., 2013, 33(5), 744-753.
[http://dx.doi.org/10.1038/jcbfm.2013.12] [PMID: 23423190]
[45]
Kappos, L.; Wiendl, H.; Selmaj, K.; Arnold, D.L.; Havrdova, E.; Boyko, A.; Kaufman, M.; Rose, J.; Greenberg, S.; Sweetser, M.; Riester, K.; O’Neill, G.; Elkins, J. Daclizumab HYP versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med., 2015, 373(15), 1418-1428.
[http://dx.doi.org/10.1056/NEJMoa 1501481] [PMID: 26444729]
[46]
Sørensen, T.L.; Sellebjerg, F. Selective suppression of chemokine receptor CXCR3 expression by interferon-beta1a in multiple sclerosis. Mult. Scler., 2002, 8(2), 104-107.
[http://dx.doi.org/10.1191/1352458502ms781oa] [PMID: 11990865]
[47]
Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br. J. Pharmacol., 2011, 164(4), 1079-1106.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01302.x] [PMID: 21371012]
[48]
Narumi, S.; Kaburaki, T.; Yoneyama, H.; Iwamura, H.; Kobayashi, Y.; Matsushima, K. Neutralization of IFN-inducible protein 10/CXCL10 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol., 2002, 32(6), 1784-1791.
[http://dx.doi.org/ 10.1002/1521-4141(200206)32:6<1784:AID-IMMU1784>3.0.CO;2-R] [PMID: 12115662]
[49]
Klein, R.S.; Izikson, L.; Means, T.; Gibson, H.D.; Lin, E.; Sobel, R.A.; Weiner, H.L.; Luster, A.D. IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. J. Immunol., 2004, 172(1), 550-559.
[http://dx.doi.org/10.4049/jimmunol.172.1.550] [PMID: 14688366]
[50]
Müller, M.; Carter, S.L.; Hofer, M.J.; Manders, P.; Getts, D.R.; Getts, M.T.; Dreykluft, A.; Lu, B.; Gerard, C.; King, N.J.; Campbell, I.L. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol., 2007, 179(5), 2774-2786.
[http://dx.doi.org/ 10.4049/jimmunol.179.5.2774] [PMID: 17709491]
[51]
Liu, L.; Huang, D.; Matsui, M.; He, T.T.; Hu, T.; Demartino, J.; Lu, B.; Gerard, C.; Ransohoff, R.M. Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3-/- mice with experimental autoimmune encephalomyelitis. J. Immunol., 2006, 176(7), 4399-4409.
[http://dx.doi.org/10.4049/jimmunol.176.7.4399] [PMID: 16547278]
[52]
Marques, C.P.; Kapil, P.; Hinton, D.R.; Hindinger, C.; Nutt, S.L.; Ransohoff, R.M.; Phares, T.W.; Stohlman, S.A.; Bergmann, C.C. CXCR3-dependent plasma blast migration to the central nervous system during viral encephalomyelitis. J. Virol., 2011, 85(13), 6136-6147.
[http://dx.doi.org/10.1128/JVI.00202-11] [PMID: 21507985]
[53]
Phares, T.W.; Stohlman, S.A.; Hinton, D.R.; Bergmann, C.C. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J. Virol., 2013, 87(6), 3382-3392.
[http://dx.doi.org/10.1128/JVI. 03307-12] [PMID: 23302888]
[54]
Mirones, I.; de Prada, I.; Gomez, A.M.; Luque, A.; Martin, R.; Perez-Jimenez, M.A.; Madero, L.; Garcia-Castro, J.; Ramirez, M. A role for the CXCR3/CXCL10 axis in Rasmussen encephalitis Pediatr Neurol, 2013, 49(6), 451-457. e451
[55]
Ostrom, Q.T.; Gittleman, H.; Liao, P.; Rouse, C.; Chen, Y.; Dowling, J.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncol., 2014, 16(Suppl. 4), iv1-iv63.
[http://dx.doi.org/10.1093/neuonc/nou223] [PMID: 25304271]
[56]
Zhu, M.; Li, M.; Zhou, Y.; Dangelmajer, S.; Kahlert, U.D.; Xie, R.; Xi, Q.; Shahveranov, A.; Ye, D.; Lei, T. Isoflurane enhances the malignant potential of glioblastoma stem cells by promoting their viability, mobility in vitro and migratory capacity in vivo. Br. J. Anaesth., 2016, 116(6), 870-877.
[http://dx.doi.org/10.1093/bja/aew124] [PMID: 27199319]
[57]
Kawada, K.; Sonoshita, M.; Sakashita, H.; Takabayashi, A.; Yamaoka, Y.; Manabe, T.; Inaba, K.; Minato, N.; Oshima, M.; Taketo, M.M. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res., 2004, 64(11), 4010-4017.
[http://dx.doi.org/10. 1158/0008-5472.CAN-03-1757] [PMID: 15173015]
[58]
Zhu, G.; Yan, H.H.; Pang, Y.; Jian, J.; Achyut, B.R.; Liang, X.; Weiss, J.M.; Wiltrout, R.H.; Hollander, M.C.; Yang, L. CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity. Oncotarget, 2015, 6(41), 43408-43419.
[http://dx.doi.org/10.18632/oncotarget.6125] [PMID: 26485767]
[59]
Ma, X.; Norsworthy, K.; Kundu, N.; Rodgers, W.H.; Gimotty, P.A.; Goloubeva, O.; Lipsky, M.; Li, Y.; Holt, D.; Fulton, A. CXCR3 expression is associated with poor survival in breast cancer and promotes metastasis in a murine model. Mol. Cancer Ther., 2009, 8(3), 490-498.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0485] [PMID: 19276169]
[60]
Wu, Z.; Han, X.; Yan, J.; Pan, Y.; Gong, J.; Di, J.; Cheng, Z.; Jin, Z.; Wang, Z.; Zheng, Q.; Wang, Y. The prognostic significance of chemokine receptor CXCR3 expression in colorectal carcinoma. Biomed. Pharmacother., 2012, 66(5), 373-377.
[http://dx.doi.org/ 10.1016/j.biopha.2011.12.003] [PMID: 22401929]
[61]
Du, C.; Yao, Y.; Xue, W.; Zhu, W.G.; Peng, Y.; Gu, J. The expression of chemokine receptors CXCR3 and CXCR4 in predicting postoperative tumour progression in stages I-II colon cancer: a retrospective study. BMJ Open, 2014, 4(8), e005012.
[http://dx.doi.org/10.1136/bmjopen-2014-005012] [PMID: 25232565]
[62]
Crispen, P.L.; Boorjian, S.A.; Lohse, C.M.; Leibovich, B.C.; Kwon, E.D. Predicting disease progression after nephrectomy for localized renal cell carcinoma: the utility of prognostic models and molecular biomarkers. Cancer, 2008, 113(3), 450-460.
[http://dx.doi.org/10.1002/cncr.23566] [PMID: 18523999]
[63]
Klatte, T.; Seligson, D.B.; Leppert, J.T.; Riggs, S.B.; Yu, H.; Zomorodian, N.; Kabbinavar, F.F.; Strieter, R.M.; Belldegrun, A.S.; Pantuck, A.J. The chemokine receptor CXCR3 is an independent prognostic factor in patients with localized clear cell renal cell carcinoma. J. Urol., 2008, 179(1), 61-66.
[http://dx.doi.org/10. 1016/j.juro.2007.08.148] [PMID: 17997430]
[64]
Klatte, T.; Seligson, D.B.; LaRochelle, J.; Shuch, B.; Said, J.W.; Riggs, S.B.; Zomorodian, N.; Kabbinavar, F.F.; Pantuck, A.J.; Belldegrun, A.S. Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol. Biomarkers Prev., 2009, 18(3), 894-900.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0786] [PMID: 19240241]
[65]
Maru, S.V.; Holloway, K.A.; Flynn, G.; Lancashire, C.L.; Loughlin, A.J.; Male, D.K.; Romero, I.A. Chemokine production and chemokine receptor expression by human glioma cells: role of CXCL10 in tumour cell proliferation. J. Neuroimmunol., 2008, 199(1-2), 35-45.
[http://dx.doi.org/10.1016/j.jneuroim.2008.04.029] [PMID: 18538864]
[66]
Li, R.; Chen, X.; You, Y.; Wang, X.; Liu, Y.; Hu, Q.; Yan, W. Comprehensive portrait of recurrent glioblastoma multiforme in molecular and clinical characteristics. Oncotarget, 2015, 6(31), 30968-30974.
[http://dx.doi.org/10.18632/oncotarget.5038] [PMID: 26427041]
[67]
Liu, C.; Luo, D.; Reynolds, B.A.; Meher, G.; Katritzky, A.R.; Lu, B.; Gerard, C.J.; Bhadha, C.P.; Harrison, J.K. Chemokine receptor CXCR3 promotes growth of glioma. Carcinogenesis, 2011, 32(2), 129-137.
[http://dx.doi.org/10.1093/carcin/bgq224] [PMID: 21051441]
[68]
Heneka, M.T.; Golenbock, D.T.; Latz, E. Innate immunity in Alzheimer’s disease. Nat. Immunol., 2015, 16(3), 229-236.
[http://dx.doi.org/10.1038/ni.3102] [PMID: 25689443]
[69]
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[70]
Xia, M.Q.; Hyman, B.T. Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease. J. Neurovirol., 1999, 5(1), 32-41.
[http://dx.doi.org/10.3109/13550289909029743] [PMID: 10190688]
[71]
Corrêa, J.D.; Starling, D.; Teixeira, A.L.; Caramelli, P.; Silva, T.A. Chemokines in CSF of Alzheimer’s disease patients. Arq. Neuropsiquiatr., 2011, 69(3), 455-459.
[http://dx.doi.org/10.1590/S0004-282X2011000400009] [PMID: 21755121]
[72]
Xia, M.Q.; Bacskai, B.J.; Knowles, R.B.; Qin, S.X.; Hyman, B.T. Expression of the chemokine receptor CXCR3 on neurons and the elevated expression of its ligand IP-10 in reactive astrocytes: in vitro ERK1/2 activation and role in Alzheimer’s disease. J. Neuroimmunol., 2000, 108(1-2), 227-235.
[http://dx.doi.org/10. 1016/S0165-5728(00)00285-X] [PMID: 10900358]
[73]
Liu, C.; Cui, G.; Zhu, M.; Kang, X.; Guo, H. Neuroinflammation in Alzheimer’s disease: chemokines produced by astrocytes and chemokine receptors. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8342-8355.
[PMID: 25674199]
[74]
Tsuda, M.; Beggs, S.; Salter, M.W.; Inoue, K. Microglia and intractable chronic pain. Glia, 2013, 61(1), 55-61.
[http://dx.doi.org/10.1002/glia.22379] [PMID: 22740331]
[75]
Guan, X.; Fu, Q.; Xiong, B.; Song, Z.; Shu, B.; Bu, H.; Xu, B.; Manyande, A.; Cao, F.; Tian, Y. Activation of PI3Kγ/Akt pathway mediates bone cancer pain in rats. J. Neurochem., 2015, 134(3), 590-600.
[http://dx.doi.org/10.1111/jnc.13139] [PMID: 25919859]
[76]
Song, Z.P.; Xiong, B.R.; Guan, X.H.; Cao, F.; Manyande, A.; Zhou, Y.Q.; Zheng, H.; Tian, Y.K. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes. Acta Pharmacol. Sin., 2016, 37(6), 753-762.
[http://dx.doi.org/10. 1038/aps.2016.1] [PMID: 27157092]
[77]
Ballantyne, J.C.; Sullivan, M.D. Intensity of chronic pain--the wrong metric? N. Engl. J. Med., 2015, 373(22), 2098-2099.
[http://dx.doi.org/10.1056/NEJMp1507136] [PMID: 26605926]
[78]
Tian, X.; Wang, G.; Xu, Y.; Wang, P.; Chen, S.; Yang, H.; Gao, F.; Xu, A.; Cao, F.; Jin, X.; Manyande, A.; Tian, Y. An improved tet-on system for gene expression in neurons delivered by a single lentiviral vector. Hum. Gene Ther., 2009, 20(2), 113-123.
[http://dx.doi.org/10.1089/hum.2008.018] [PMID: 20377365]
[79]
Wang, G.M.; Tian, X.B.; Chen, J.P.; Yang, S.B.; Gao, F.; Yang, H.; An, K.; Tian, Y.K. Prevention of neuropathic pain in an animal model of spare nerve injury following oral immunization with recombinant adenovirus serotype 5-mediated NR2B gene transfer. Gene Ther., 2007, 14(24), 1681-1687.
[http://dx.doi.org/10.1038/sj.gt.3303025] [PMID: 17960165]
[80]
Negi, G.; Kumar, A.; Sharma, S.S. Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. J. Pineal Res., 2011, 50(2), 124-131.
[PMID: 21062351]
[81]
Dominguez, E.; Mauborgne, A.; Mallet, J.; Desclaux, M.; Pohl, M. SOCS3-mediated blockade of JAK/STAT3 signaling pathway reveals its major contribution to spinal cord neuroinflammation and mechanical allodynia after peripheral nerve injury. J. Neurosci., 2010, 30(16), 5754-5766.
[http://dx.doi.org/10.1523/JNEUROSCI. 5007-09.2010] [PMID: 20410127]
[82]
Ji, R.R.; Xu, Z.Z.; Gao, Y.J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov., 2014, 13(7), 533-548.
[http://dx.doi.org/10.1038/nrd4334] [PMID: 24948120]
[83]
Ellis, A.; Bennett, D.L. Neuroinflammation and the generation of neuropathic pain. Br. J. Anaesth., 2013, 111(1), 26-37.
[http://dx.doi.org/10.1093/bja/aet128] [PMID: 23794642]
[84]
Zhou, Y.Q.; Gao, H.Y.; Guan, X.H.; Yuan, X.; Fang, G.G.; Chen, Y.; Ye, D.W. Chemokines and their receptors: potential therapeutic targets for bone cancer pain. Curr. Pharm. Des., 2015, 21(34), 5029-5033.
[http://dx.doi.org/10.2174/1381612821666150831141931] [PMID: 26320755]
[85]
Zhou, Y.Q.; Liu, Z.; Liu, Z.H.; Chen, S.P.; Li, M.; Shahveranov, A.; Ye, D.W.; Tian, Y.K. Interleukin-6: an emerging regulator of pathological pain. J. Neuroinflammation, 2016, 13(1), 141.
[http://dx.doi.org/10.1186/s12974-016-0607-6] [PMID: 27267059]
[86]
Zhou, Y.Q.; Liu, Z.; Liu, H.Q.; Liu, D.Q.; Chen, S.P.; Ye, D.W.; Tian, Y.K. Targeting glia for bone cancer pain. Expert Opin. Ther. Targets, 2016, 20(11), 1365-1374.
[http://dx.doi.org/10.1080/14728222.2016.1214716] [PMID: 27428617]
[87]
Zhou, Y.Q.; Chen, S.P.; Liu, D.Q.; Manyande, A.; Zhang, W.; Yang, S.B.; Xiong, B.R.; Fu, Q.C.; Song, Z.P.; Rittner, H.; Ye, D.W.; Tian, Y.K. The role of spinal GABAB receptors in cancer-induced bone pain in rats. J. Pain, 2017, 18(8), 933-946.
[http://dx.doi.org/10.1016/j.jpain.2017.02.438] [PMID: 28323246]
[88]
Fu, Q.; Shi, D.; Zhou, Y.; Zheng, H.; Xiang, H.; Tian, X.; Gao, F.; Manyande, A.; Cao, F.; Tian, Y.; Ye, D. MHC-I promotes apoptosis of GABAergic interneurons in the spinal dorsal horn and contributes to cancer induced bone pain. Exp. Neurol., 2016, 286, 12-20.
[http://dx.doi.org/10.1016/j.expneurol.2016.09.002] [PMID: 27619625]
[89]
Song, Z.; Xiong, B.; Zheng, H.; Manyande, A.; Guan, X.; Cao, F.; Ren, L.; Zhou, Y.; Ye, D.; Tian, Y. STAT1 as a downstream mediator of ERK signaling contributes to bone cancer pain by regulating MHC II expression in spinal microglia. Brain Behav. Immun., 2017, 60, 161-173.
[http://dx.doi.org/10.1016/j.bbi.2016.10.009] [PMID: 27742579]
[90]
Ke, C.; Gao, F.; Tian, X.; Li, C.; Shi, D.; He, W.; Tian, Y. Slit2/Robo1 mediation of synaptic plasticity contributes to bone cancer pain. Mol. Neurobiol., 2017, 54(1), 295-307.
[http://dx.doi.org/10.1007/s12035-015-9564-9] [PMID: 26738857]
[91]
Chen, S.P.; Zhou, Y.Q.; Liu, D.Q.; Zhang, W.; Manyande, A.; Guan, X.H.; Tian, Y.K.; Ye, D.W.; Omar, D.M. PI3K/Akt pathway: a potential therapeutic target for chronic pain. Curr. Pharm. Des., 2017, 23(12), 1860-1868.
[http://dx.doi.org/10.2174/1381612823666170210150147] [PMID: 28190392]
[92]
Ye, D.; Bu, H.; Guo, G.; Shu, B.; Wang, W.; Guan, X.; Yang, H.; Tian, X.; Xiang, H.; Gao, F. Activation of CXCL10/CXCR3 signaling attenuates morphine analgesia: involvement of Gi protein. J. Mol. Neurosci., 2014, 53(4), 571-579.
[http://dx.doi.org/10.1007/s12031-013-0223-1] [PMID: 24415274]
[93]
Jiang, B.C.; He, L.N.; Wu, X.B.; Shi, H.; Zhang, W.W.; Zhang, Z.J.; Cao, D.L.; Li, C.H.; Gu, J.; Gao, Y.J. Promoted interaction of C/EBPα with demethylated Cxcr3 gene promoter contributes to neuropathic pain in mice. J. Neurosci., 2017, 37(3), 685-700.
[http://dx.doi.org/10.1523/JNEUROSCI.2262-16.2016] [PMID: 28100749]
[94]
Gonçalves, D.U.; Proietti, F.A.; Ribas, J.G.; Araújo, M.G.; Pinheiro, S.R.; Guedes, A.C.; Carneiro-Proietti, A.B. Epidemiology, treatment, and prevention of human T-cell leukemia virus type 1-associated diseases. Clin. Microbiol. Rev., 2010, 23(3), 577-589.
[http://dx.doi.org/10.1128/CMR.00063-09] [PMID: 20610824]
[95]
Sun, Y.; Ye, D.W.; Zhang, P.; Wu, Y.X.; Wang, B.Y.; Peng, G.; Yu, S.Y. Anti-rheumatic drug iguratimod (T-614) alleviates cancer-induced bone destruction via down-regulating interleukin-6 production in a nuclear factor-κB-dependent manner. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2016, 36(5), 691-699.
[http://dx.doi.org/10.1007/s11596-016-1646-z] [PMID: 27752889]
[96]
Ando, H.; Sato, T.; Tomaru, U.; Yoshida, M.; Utsunomiya, A.; Yamauchi, J.; Araya, N.; Yagishita, N.; Coler-Reilly, A.; Shimizu, Y.; Yudoh, K.; Hasegawa, Y.; Nishioka, K.; Nakajima, T.; Jacobson, S.; Yamano, Y. Positive feedback loop via astrocytes causes chronic inflammation in virus-associated myelopathy. Brain, 2013, 136(Pt 9), 2876-2887.
[http://dx.doi.org/10.1093/brain/awt183] [PMID: 23892452]
[97]
Altamura, A.C.; Serati, M.; Albano, A.; Paoli, R.A.; Glick, I.D.; Dell’Osso, B. An epidemiologic and clinical overview of medical and psychopathological comorbidities in major psychoses. Eur. Arch. Psychiatry Clin. Neurosci., 2011, 261(7), 489-508.
[http://dx.doi.org/10.1007/s00406-011-0196-4] [PMID: 21331479]
[98]
Watkins, C.C.; Sawa, A.; Pomper, M.G. Glia and immune cell signaling in bipolar disorder: insights from neuropharmacology and molecular imaging to clinical application. Transl. Psychiatry, 2014, 4, e350.
[http://dx.doi.org/10.1038/tp.2013.119] [PMID: 24448212]
[99]
Rosenblat, J.D.; McIntyre, R.S. Are medical comorbid conditions of bipolar disorder due to immune dysfunction? Acta Psychiatr. Scand., 2015, 132(3), 180-191.
[http://dx.doi.org/10.1111/acps. 12414] [PMID: 25772638]
[100]
Monfrim, X.; Gazal, M.; De Leon, P.B.; Quevedo, L.; Souza, L.D.; Jansen, K.; Oses, J.P.; Pinheiro, R.T.; Silva, R.A.; Lara, D.R.; Ghisleni, G.; Spessato, B.; Kaster, M.P. Immune dysfunction in bipolar disorder and suicide risk: is there an association between peripheral corticotropin-releasing hormone and interleukin-1β? Bipolar Disord., 2014, 16(7), 741-747.
[http://dx.doi.org/10.1111/bdi. 12214] [PMID: 24862833]
[101]
Stertz, L.; Fries, G.R.; Rosa, A.R.; Kauer-Sant’anna, M.; Ferrari, P.; Paz, A.V.; Green, C.; Cunha, A.B.; Dal-Pizzol, F.; Gottfried, C.; Kapczinski, F. Damage-associated molecular patterns and immune activation in bipolar disorder. Acta Psychiatr. Scand., 2015, 132(3), 211-217.
[http://dx.doi.org/10.1111/acps.12417] [PMID: 25891376]
[102]
Brietzke, E.; Kauer-Sant’Anna, M.; Teixeira, A.L.; Kapczinski, F. Abnormalities in serum chemokine levels in euthymic patients with bipolar disorder. Brain Behav. Immun., 2009, 23(8), 1079-1082.
[http://dx.doi.org/10.1016/j.bbi.2009.04.008] [PMID: 19406226]
[103]
Xanthou, G.; Duchesnes, C.E.; Williams, T.J.; Pease, J.E. CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11. Eur. J. Immunol., 2003, 33(8), 2241-2250.
[http://dx.doi.org/10.1002/eji.200323787] [PMID: 12884299]
[104]
Loetscher, P.; Pellegrino, A.; Gong, J.H.; Mattioli, I.; Loetscher, M.; Bardi, G.; Baggiolini, M.; Clark-Lewis, I. The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J. Biol. Chem., 2001, 276(5), 2986-2991.
[http://dx.doi.org/10.1074/jbc.M005652200] [PMID: 11110785]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy