Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Nanocarriers in Improving Chemotherapy of Multidrug Resistant Tumors: Key Developments and Perspectives

Author(s): Dimitry A. Chistiakov, Veronika A. Myasoedova, Alexander N. Orekhov and Yuri V. Bobryshev*

Volume 23, Issue 22, 2017

Page: [3301 - 3308] Pages: 8

DOI: 10.2174/1381612823666170407123941

Price: $65

Abstract

The multidrug resistance (MDR) of tumor cells significantly reduces the efficiency of traditional anticancer therapy. Tumor MDR is complex and involves several mechanisms such as decreased drug uptake, increased drug efflux, enhanced drug exocytosis, increased drug detoxification and inactivation by drugmetabolizing enzymes, altered drug targets due to genetic and epigenetic modifications, altered DNA repair, and impaired apoptotic pathways. Implementation of nanoparticles can markedly improve drug delivery through increased stability in the plasma, prolonged half-life, enhanced specificity of transfer, and advanced drug accumulation and retention in the tumor cells. So far, many various types of nanocarriers have been used for the delivery of anticancer agents. These carriers greatly increase anti-tumor effects of cytotoxic agents since drug-carrying nanoparticles are able to reverse MDR. The promising integrative approach in cancer nanotherapy assumes the development of multifunctional delivery systems simultaneously transmitting various agents such as drugs, genes, imaging agents, and targeting ligands in order to enhance anti-tumor toxicity and nanoparticle tracking.

Keywords: Multidrug resistance, cancer chemotherapy, nanoparticles, drug delivery, cytotoxicity, tumor.


Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy